JPS61218625A - Resin composition for forming water vapor proof and protecting film for solar cell - Google Patents

Resin composition for forming water vapor proof and protecting film for solar cell

Info

Publication number
JPS61218625A
JPS61218625A JP60059747A JP5974785A JPS61218625A JP S61218625 A JPS61218625 A JP S61218625A JP 60059747 A JP60059747 A JP 60059747A JP 5974785 A JP5974785 A JP 5974785A JP S61218625 A JPS61218625 A JP S61218625A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
weight
curing agent
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059747A
Other languages
Japanese (ja)
Inventor
Shiro Mazaki
真崎 史郎
Kazuhiko Mogami
最上 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP60059747A priority Critical patent/JPS61218625A/en
Publication of JPS61218625A publication Critical patent/JPS61218625A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:The titled composition having improved screen printing characteristics and curing characteristics, comprising a bisphenol epoxy resin having a relationship between molecular weight and molecular cohesive force satisfying a specific condition, a specified curing agent and a curing promoter of an organometallic compound. CONSTITUTION:(A) 100pts.wt bisphenol epoxy resin having the formula SIGMAxiXi=400-1,000 (xi is weight fraction of epoxy resin i to the whole epoxy resin used; Xi is average molecular weight of epoxy resin i) is blended with (B) 20-50pts.wt. modified acid anhydride curing agent obtained by esterifying 10-65mol% acid anhydride (preferably hexahydrophthalic anhydride, etc.) with a polyhydric alcohol, and (C) 1-5pts.wt. based on 100pts.wt. total amounts of the components A and B of an organometallic compound (preferably tin octylate, etc.) as a curing promoter, to give the aimed composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽電池、特にその受光面の防湿保護膜を形成
し得る樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solar cell, and particularly to a resin composition capable of forming a moisture-proof protective film on the light-receiving surface of the solar cell.

〔従来の技術〕[Conventional technology]

近年、石油に代わる新エネルギー資源開発の一環として
太陽光発電システムの研究開発が活発であり、太陽電池
の受光面を構成する表面保護材料としては、ガラスと硬
化性樹脂に大別される。この後者の硬化性樹脂は空気中
に於ける硬化特性に優れ、皮膜の光透過性、表面硬度、
耐引掻性、耐摩耗性、耐屈曲性、耐熱性、耐水性、耐候
性、並びに基体表面との密着性等に優れた保護膜を与え
るものである。かかる目的に使用される樹脂組成物は、
従来よりシリコーン樹脂、ウレタン樹脂、エボキシア゛
クリレート樹脂、ウレタンアクリレート樹脂、エポキシ
樹脂等が知られているが、シリコーン樹脂は高価且つ水
分の透過による光電半導体たとえばアモルファスシリコ
ン、半結晶シリコン、多結晶シリコン等の劣化、ウレタ
ン樹脂系では、耐熱性、並びに二液混合後の保存性が、
また硬化性に優れるエポキシアクリレート或いはウレタ
ンアクリレート系に於いては、耐水性及び光増感剤の作
用による長期使用下での着色即ち光透過性の低下等の問
題で太陽電池保護膜として要求される特性を全て満足出
来るものはなかった。他方エポキシ樹脂は所謂半導体封
止材料としての実績で証明される如く、硬度、耐熱性、
耐水性、密着性等保護膜として卓越した特性を発揮する
が、太陽電池用保護膜として使用する場合、光透過性の
点より着色する硬化剤は使用出来ないという難点がある
。たとえば1〜3級アミン系或いはフェノール系硬化剤
は硬化剤が着色ないし長期間使用中に着色する事により
光の透過を阻害するため使用が困難である。光透過性の
観点から最も好都合な硬化剤系は酸無水物系であるが、
この酸無水物は、低粘度且つ蒸気圧が低いために樹脂の
硬化過程に蒸発しやすいという欠点を有し、結果として
塗膜が硬化しなかったり、塗膜の表面層が粘着したり或
いは硬化過程に於けるエポキシ基と酸無水物基の当量比
のずれから硬化物特性が充分発揮出来ないという欠点た
とえば防湿性が悪くなる欠点があった。かかる欠点を回
避する手法として酸無水物の過剰配合の手法が知られて
いるが、この場合は、残存した酸無水物が著しく耐水性
を低下せしめ惹いてはアモルファスの劣化を招き光電変
換効果が低下するという難点があった。
In recent years, research and development of solar power generation systems has been active as part of the development of new energy resources to replace petroleum, and the surface protection materials that make up the light-receiving surface of solar cells can be broadly classified into glass and hardening resin. This latter curable resin has excellent curing properties in the air, and has excellent film transparency, surface hardness,
It provides a protective film with excellent scratch resistance, abrasion resistance, bending resistance, heat resistance, water resistance, weather resistance, and adhesion to the substrate surface. The resin composition used for this purpose is
Conventionally, silicone resins, urethane resins, epoxy acrylate resins, urethane acrylate resins, epoxy resins, etc. have been known, but silicone resins are expensive and are suitable for use in photoelectric semiconductors due to moisture permeation, such as amorphous silicon, semicrystalline silicon, polycrystalline silicon, etc. In urethane resin systems, heat resistance and storage stability after mixing two components are
In addition, epoxy acrylate or urethane acrylate, which have excellent curability, are required as solar cell protective films due to problems such as water resistance and coloration due to the action of photosensitizers, that is, a decrease in light transmittance. There was nothing that could satisfy all the characteristics. On the other hand, epoxy resin has good hardness, heat resistance,
Although it exhibits excellent properties as a protective film such as water resistance and adhesion, when used as a protective film for solar cells, it has the disadvantage that coloring curing agents cannot be used due to light transmittance. For example, it is difficult to use primary to tertiary amine-based or phenol-based curing agents because they become colored or become colored during long-term use, inhibiting light transmission. The most convenient curing agent system from the viewpoint of optical transparency is an acid anhydride system.
This acid anhydride has the disadvantage that it easily evaporates during the curing process of the resin due to its low viscosity and low vapor pressure.As a result, the coating film may not cure, the surface layer of the coating film may become sticky, or it may not cure properly. Due to a difference in the equivalence ratio of epoxy groups and acid anhydride groups during the process, the cured product has the disadvantage of not being able to fully exhibit its properties, such as poor moisture resistance. A method of over-blending acid anhydride is known as a method to avoid such drawbacks, but in this case, the remaining acid anhydride significantly reduces water resistance, leading to deterioration of the amorphous and reducing the photoelectric conversion effect. There was a problem with the decline.

また一方かかる太陽電池用保護膜には、上記した塗膜特
性や硬化特性の他にスクリーン印刷による印刷特性が良
好であることが要求される。即ちこの種太陽電池用保護
膜は電極取出し部など複雑な形状と防湿に適する一定の
膜厚を形成させる必要があるためにスクリーン印刷によ
って印刷される必要があるが、この際樹脂が硬化過程中
に於いて流動したり、タレを生じたり、或いはにじんだ
りせずに、換言すれば寸法精度が良好であって且つまた
樹脂がスクリーンメツシュを通過する際に巻き込んだ泡
を消泡することが光透過の点から必要である。即ち樹脂
の粘度を下げることにより消泡性を向上することが出来
るが、にじみ、タレ等が発生し、逆に粘度を上げるとに
じみやタレは防止出来ても消泡性が満足出来なくなると
いう関係にあった。事実エポキシアクリレート、ウレタ
ンアクリレート、ウレタン樹脂等は寸法精度は優れてい
るが硬化塗膜中に泡が多数残存し、硬化速度の遅いシリ
コーン樹脂、エポキシ樹脂等では消泡性は良好であるが
寸法精度に欠けるという欠点を有していた。
On the other hand, such a protective film for a solar cell is required to have good printing properties by screen printing in addition to the coating film properties and curing properties described above. In other words, this type of protective film for solar cells needs to be printed by screen printing because it needs to have a complex shape such as the electrode lead-out part and a certain film thickness suitable for moisture proofing. The resin does not flow, sag, or bleed, in other words, it has good dimensional accuracy and is capable of defoaming the bubbles that are trapped when the resin passes through the screen mesh. This is necessary from the viewpoint of light transmission. In other words, by lowering the viscosity of the resin, the antifoaming properties can be improved, but bleeding, sagging, etc. will occur, and conversely, if the viscosity is increased, even if bleeding and sagging can be prevented, the antifoaming properties will not be satisfactory. It was there. In fact, epoxy acrylate, urethane acrylate, urethane resin, etc. have excellent dimensional accuracy, but many bubbles remain in the cured coating, and silicone resins, epoxy resins, etc., which have a slow curing speed, have good antifoaming properties but have poor dimensional accuracy. It had the disadvantage of lacking in

〔発明の目的並びに概要〕[Purpose and outline of the invention]

本発明の目的は、太陽電池用保護膜として使用されて来
た従来の樹脂組成物就中エポキシ樹脂組成物の上記難点
を解決し、硬化剤に基づく難点を未然に防止して硬化特
性に優れ、且つスクリーン印刷時に生ずる問題点が解消
された太陽電池用エポキシ樹脂保護膜を提供することで
ある。
The purpose of the present invention is to solve the above-mentioned drawbacks of conventional resin compositions, especially epoxy resin compositions, which have been used as protective films for solar cells, and to prevent the drawbacks due to curing agents and to provide excellent curing properties. Another object of the present invention is to provide an epoxy resin protective film for a solar cell, which eliminates the problems that occur during screen printing.

本発明者は従来から上記目的を達成するために研究を続
けて来たが、この研究に於いてスクリーン印刷時の印刷
適性は、使用するエポキシ樹脂の分子量と分子凝集力と
の相関関係に大きく依存し、ある特性の限られた範囲に
あるときは掻めて優れた印刷特性を発揮することを偶然
にも発見した。
The present inventor has been conducting research to achieve the above objective, and in this research, it was found that the printability during screen printing is largely dependent on the correlation between the molecular weight of the epoxy resin used and the molecular cohesive force. It was discovered by chance that when certain characteristics are within a limited range, excellent printing characteristics can be exhibited.

そしてこのような特定の範囲にあるエポキシ樹脂の中で
も、その硬化物の特性の点より、強靭性並びに透明性の
優れたビスフェノール型エポキシ樹脂が最も通している
ことを見出し、これ等新しい事実を基礎に、更に硬化剤
並びに併用すべき硬化促進剤等について研究を続けた結
果、遂に本発明を完成するに至ったものであって、即ち
本発明は、(イ)Σx 、LX z ” 400〜10
00(但しXiはエポキシ樹脂工の使用した全エポキシ
樹脂に対する重量分率、XLはエポキシ樹脂工の平均分
子量) の範囲にあるビスフェノール型エポキシ樹脂、(ロ)該
エポキシ樹脂100重量部に対して20〜50重量部の
、その10〜65モル%が多価アルコールでエステル化
された変性酸無水物硬化剤、及び (ハ)該エポキシ樹脂と該硬化剤の合計100重重量部
に対し、1〜5M量部の有機金属化合物を含をすること
を特徴とする太陽電池用防湿保護膜形成性樹脂組成物に
係るものである。
Among the epoxy resins in this specific range, we discovered that bisphenol-type epoxy resins, which have excellent toughness and transparency, are the most effective in terms of the properties of their cured products, and based on these new facts, we Furthermore, as a result of continuing research on curing agents and curing accelerators to be used in combination, the present invention was finally completed.
00 (however, Xi is the weight fraction based on the total epoxy resin used in the epoxy resin, XL is the average molecular weight of the epoxy resin), (b) 20 parts by weight based on 100 parts by weight of the epoxy resin. ~50 parts by weight of a modified acid anhydride curing agent, 10 to 65 mol% of which is esterified with a polyhydric alcohol, and (c) 1 to 100 parts by weight of the total of the epoxy resin and the curing agent. The present invention relates to a moisture-proof protective film-forming resin composition for solar cells, which contains 5M parts of an organometallic compound.

〔発明の効果〕〔Effect of the invention〕

本発明に於いては、上記特定の式を満足する特定のエポ
キシ樹脂、換言すれば分子量と分子凝集力との関係があ
る特定範囲にあるエポキシ樹脂のなかで、特にビスフェ
ノール型エポキシ樹脂を使用すること、硬化剤として上
記特定の割合で多価アルコールによりエステル化された
酸無水物系硬化剤を選択使用すること、並びにこの際の
硬化促進剤として特に有機金属系化合物を使用すること
という三つの手段を採用することを必須とし、この三つ
の手段を併用することにより、スクリーン印刷時に生ず
る従来の難点、即ち消泡性と寸法安定性とを同時に満足
出来ないという難点を解消することが出来ると共に、太
陽電池用保護膜として要求される緒特性を満足出来、特
に従来のエポキシ樹脂保護膜では到底達成出来なかった
優れた透明性と大きな耐水或いは耐湿性とを有する保護
膜が収得出来る効果を発揮する。
In the present invention, a bisphenol type epoxy resin is particularly used among the epoxy resins that satisfy the above-mentioned specific formula, in other words, the relationship between molecular weight and molecular cohesive force is within a specific range. In particular, the following three methods are used: selecting an acid anhydride curing agent esterified with a polyhydric alcohol in the above-mentioned specific ratio as a curing agent, and using an organometallic compound as a curing accelerator in this case. By using these three methods in combination, it is possible to solve the conventional difficulties that occur during screen printing, namely, the inability to satisfy defoaming properties and dimensional stability at the same time. It satisfies the characteristics required for a protective film for solar cells, and in particular, it has the effect of providing a protective film with excellent transparency and high water or moisture resistance, which could not be achieved with conventional epoxy resin protective films. do.

たとえば環状脂肪族エポキシ樹脂では透明性、透光性に
ついては問題ないが、樹脂粘度が低い上に分子凝集力が
弱いため硬化過程でパターンエッヂにタレを生じ寸法精
度を著しく低下せしめる点及び硬化皮膜が硬(て脆いた
め屈曲性が劣悪である。又フェノールノボラック塑成い
はタレゾールノボラック型エポキシ樹脂では硬化塗膜が
着色し太陽電池の生命ともいうべき透光性の点で使用に
耐えない。
For example, with cycloaliphatic epoxy resin, there are no problems with transparency and translucency, but because the resin viscosity is low and the molecular cohesion is weak, pattern edges sag during the curing process, significantly reducing dimensional accuracy and the cured film. It is hard and brittle, resulting in poor flexibility.Also, with phenol novolak plastic or Talesol novolak type epoxy resin, the cured coating becomes colored and cannot withstand use due to its translucency, which is the lifeblood of solar cells. .

〔発明の構成〕[Structure of the invention]

本発明に於いて使用されるエポキシ樹脂は、ΣX L 
X L= 400〜1000(但しxLはエポキシ樹脂
りの使用した全エポキシ樹脂に対する重量分率、xiは
エポキシ樹脂、の平均分子量) の範囲にあるビスフェノール型エポキシ樹脂である。
The epoxy resin used in the present invention is ΣXL
It is a bisphenol type epoxy resin in the range of XL=400 to 1000 (where xL is the weight fraction of the epoxy resin to the total epoxy resin used, and xi is the average molecular weight of the epoxy resin).

ここで上記ΣXよXニー400〜1000の意味につい
て下記に例を挙げて説明する。たとえばエポキシ樹脂A
の重量分率が30%で、その平均分子量が2000のも
のと、エポキシ樹脂Bの重量分率が20%でその平均分
子量が500のちのを併用する場合を例にとると、 Σx 1 X L −0,3X200 + 0.7X5
00 =950となる。このようにΣXLXLが400
〜1000の範囲になるようにエポキシ樹脂を選択して
使用するものである。この際たとえばエポキシ樹脂とし
て平均分子量1000のものを使用すると、重量分率は
1となるので     ・ ΣX工X工= 1 x 1000−1000となる。
Here, the meaning of the above-mentioned ΣX y X knee 400 to 1000 will be explained using an example below. For example, epoxy resin A
For example, if the weight fraction of epoxy resin B is 30% and the average molecular weight is 2000, and the latter one whose weight fraction is 20% and the average molecular weight of epoxy resin B is 500 is used, Σx 1 X L -0.3X200 + 0.7X5
00=950. In this way, ΣXLXL is 400
The epoxy resin is selected and used so that it falls within the range of 1,000 to 1,000. At this time, for example, if an epoxy resin with an average molecular weight of 1000 is used, the weight fraction will be 1, so ΣX engineering x engineering = 1 x 1000-1000.

即ち本発明に於いてはエポキシ樹脂は単独使用の場合も
含まれるが、好ましくは2種以上を併用するものである
That is, in the present invention, the epoxy resin may be used alone, but preferably two or more types are used in combination.

そして本発明に於いては上記特定の式で表わされる範囲
内にあるエポキシ樹脂の中から特にビスフェノール型エ
ポキシ樹脂を選択使用する。この際のビスフェノール型
エポキシ樹脂としては、エポキシ当量が150〜220
0好ましくは180〜1200のものが使用され、たと
えば油化シェル社製のエピコート815.827.82
8.834.1001.1002.1004.1007
等が挙げられる。但し本発明に於いてはフェノールノボ
ラック型またはタレゾールノボラックエポキシ樹脂をビ
スフェノール型エポキシ樹脂100重量部に対し20重
量部以下の量で併用しても良い。
In the present invention, bisphenol type epoxy resins are particularly selected from among the epoxy resins within the range represented by the above specific formula. In this case, the bisphenol type epoxy resin has an epoxy equivalent of 150 to 220.
0, preferably 180 to 1200, such as Epicoat 815.827.82 manufactured by Yuka Shell Co., Ltd.
8.834.1001.1002.1004.1007
etc. However, in the present invention, a phenol novolac type or talesol novolac epoxy resin may be used in combination in an amount of 20 parts by weight or less per 100 parts by weight of the bisphenol type epoxy resin.

本発明に於いては硬化剤としては、その10〜65モル
%が多価アルコールでエステル化された酸無水物系硬化
剤が使用される。酸無水物としては、ヘキサヒドロ無水
フタル酸、メチルへキサヒドロフタル酸、メチルテトラ
ヒドロフタル酸等の酸無水物が好適であるが、21′X
この種分野に従来から使用されて来た酸無水物も使用す
ることが出来る。これをエステル化する多価アルコール
としては、2価または3価のアルコールが代表例として
例示出来、具体的にはエチレングリコール、ジエチレン
グリコール、トリエチレングリコール、プロピレングリ
コール、ジプロピレングリコール、グリセリン等を挙げ
ることが出来、その他4〜6価の多価アルコール等も使
用すること出来る。この際のエステルの程度は酸無水物
の10〜65モル%であり、この際10%に達しないエ
ステル化の場合は硬化物が不安定になって保護被膜の耐
湿型が劣り、表面強度が低下する。また逆に65モル%
よりも多くなると耐水性が低下する傾向が生じ望ましく
ない、この硬化剤の使用量はビスフェノール型エポキシ
樹脂100重量部に対し20〜50重量部好ましくは2
0〜40重量部使用する。
In the present invention, as the curing agent, an acid anhydride curing agent in which 10 to 65 mol % of the curing agent is esterified with a polyhydric alcohol is used. As the acid anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylhexahydrophthalic acid, and methyltetrahydrophthalic acid are suitable, but 21'X
Acid anhydrides conventionally used in this type of field can also be used. Typical examples of the polyhydric alcohol for esterification include dihydric or trihydric alcohols, and specific examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and glycerin. can be used, and other tetrahydric to hexavalent polyhydric alcohols can also be used. The degree of esterification in this case is 10 to 65 mol% of the acid anhydride, and if the esterification does not reach 10%, the cured product will become unstable, the moisture resistance of the protective film will be poor, and the surface strength will deteriorate. descend. On the other hand, 65 mol%
If the amount is more than
Use 0 to 40 parts by weight.

本発明に於いて使用する硬化促進剤は有機金属化合物で
あり、通常有機酸の金属塩を使用する。
The curing accelerator used in the present invention is an organometallic compound, and usually a metal salt of an organic acid is used.

この際の有機酸としては炭素数8〜28のカルボン酸特
に好ましくは芳香族又は脂肪族のカルボン酸であり、ま
た金属としてはコバルト、亜鉛、スズ等であり、なかで
もスズが好ましい。具体例としてオクチル酸、ナフテン
酸、ジブチルラウリン酸のスズ、コバルト、亜鉛塩を挙
げることが出来る。これらは硬化促進剤はエポキシ樹脂
/酸の当量比で0.2〜1.0という広い範囲で使用出
来、重量的に表示すればビスフェノール型エポキシ樹脂
100重量部に対し1〜5重量部好ましくは2〜4重量
部である。
The organic acid in this case is a carboxylic acid having 8 to 28 carbon atoms, particularly preferably an aromatic or aliphatic carboxylic acid, and the metal is cobalt, zinc, tin, etc., and among them, tin is preferred. Specific examples include tin, cobalt, and zinc salts of octylic acid, naphthenic acid, and dibutyllauric acid. These curing accelerators can be used in a wide range of epoxy resin/acid equivalent ratio of 0.2 to 1.0, and in terms of weight, preferably 1 to 5 parts by weight per 100 parts by weight of bisphenol type epoxy resin. It is 2 to 4 parts by weight.

本発明の組成物には更に必要に応じその他の通常の添加
剤を配合することが出来、消泡剤、コロイダルシリカ、
有機樹脂系の揺変剤或いはカンプリング剤等を具体例と
して例示出来る。
The composition of the present invention may further contain other conventional additives as required, such as antifoaming agents, colloidal silica,
Specific examples include organic resin-based thixotropic agents and compling agents.

〔実施例〕 以下に本発明で使用する硬化剤の製法を参考例として挙
げると共に、本発明を実施例について具体的に説明する
[Example] Hereinafter, the method for producing the curing agent used in the present invention will be listed as a reference example, and the present invention will be specifically explained with reference to Examples.

参考例1 ヘキサヒドロ無水フタル酸154g(1モル)とプロピ
レングリコール15. 2g (0,2モル)を反応容
器に仕込み100−120℃で6時間反応させ、粘稠な
変性硬化剤を得た。
Reference Example 1 Hexahydrophthalic anhydride 154g (1 mol) and propylene glycol 15. 2 g (0.2 mol) was charged into a reaction vessel and reacted at 100-120°C for 6 hours to obtain a viscous modified curing agent.

参考例2 ヘキサヒドロ無水フタル酸154g(1モル)とジエチ
レングリコール31.8g (0,3モル)を反応容器
に仕込み100〜120℃で6時間反応させ、粘稠な変
性硬化剤を得た。
Reference Example 2 154 g (1 mol) of hexahydrophthalic anhydride and 31.8 g (0.3 mol) of diethylene glycol were charged into a reaction vessel and reacted at 100 to 120° C. for 6 hours to obtain a viscous modified curing agent.

参考例3 メチルへキサヒドロ無水フタル酸168g(1モル)と
グリセリン13.8g (0,15モル)を反応容器に
仕込み100〜120℃で6時間反2  応させ粘稠な
変性硬化剤を得た。
Reference Example 3 168 g (1 mol) of methylhexahydrophthalic anhydride and 13.8 g (0.15 mol) of glycerin were placed in a reaction vessel and reacted at 100 to 120°C for 6 hours to obtain a viscous modified curing agent. .

実施例1 エピコート834 (シェル化学社製、平均分子量、4
70)IQOgと参考例1で得た変性硬化剤20gとオ
クチル酸スズ3.6g、)ルオール5g、ブタノール5
gとをよく混合し150メツシユポリエステルスクリー
ンにてステンレス板にスクリーン印刷後150℃オーブ
ン中1時間硬化した時の特性を第1表に示した。
Example 1 Epicoat 834 (manufactured by Shell Chemical Co., Ltd., average molecular weight, 4
70) IQOg, 20g of the modified curing agent obtained in Reference Example 1, and 3.6g of tin octylate,) 5g of luol, 5g of butanol
Table 1 shows the properties when the mixture was well mixed with g and screen printed on a stainless steel plate using a 150 mesh polyester screen, and then cured in an oven at 150°C for 1 hour.

実施例2 エビコー)815(シェル化学社製、平均分子量、33
0)  50 g、エピコー)1002  (同上、1
l100)50、参考例2で得た変性硬化剤20g、オ
クチル酸亜鉛2.4g、セロソルブアセテート20gを
よく混合し、150メツシユポリエステルスクリーンに
てステンレス板に印刷後150℃オーブン中で1時間硬
化した時の特性を第1表に示した。
Example 2 Ebiko) 815 (manufactured by Shell Chemical Co., Ltd., average molecular weight, 33
0) 50 g, Epicor) 1002 (same as above, 1
1100) 50, 20 g of the modified curing agent obtained in Reference Example 2, 2.4 g of zinc octylate, and 20 g of cellosolve acetate were mixed well, printed on a stainless steel plate using a 150 mesh polyester screen, and then cured in an oven at 150°C for 1 hour. Table 1 shows the characteristics when

実施例3 エピコート834.50g、エピコート1002.40
g、エピコート1004 (シェル化学社製、平均分子
量、1400)10g、参考例3で得た変性硬化剤30
g、オクチル酸スズ5.2g、セロソルブアセテート2
0gをよく混合し、150メツシユポリエステルスクリ
ーンにてステンレス板に印刷後、150℃オーブン中で
1時間硬化した時の特性を第1表に示した。
Example 3 Epicote 834.50g, Epicote 1002.40
g, Epikote 1004 (manufactured by Shell Chemical Co., Ltd., average molecular weight, 1400) 10 g, modified curing agent 30 obtained in Reference Example 3
g, tin octylate 5.2 g, cellosolve acetate 2
Table 1 shows the properties when 0g of the mixture was well mixed, printed on a stainless steel plate using a 150 mesh polyester screen, and then cured in an oven at 150°C for 1 hour.

比較例1 実施例1の組成中オクチル酸スズを除いた物を同様の方
法で印刷、硬化した物の特性を第1表に示した。
Comparative Example 1 Table 1 shows the properties of a product printed and cured in the same manner as in Example 1 except for tin octylate.

比較例2 実施例2の変性硬化剤の代わりにヘキサヒドロ無水フタ
ル酸34gを使用したものを同様の方法で印刷、硬化し
た物の特性を第1表に示した。
Comparative Example 2 Table 1 shows the properties of a product printed and cured in the same manner using 34 g of hexahydrophthalic anhydride instead of the modified curing agent of Example 2.

比較例3 エピコート815g、70g、エピコート834.30
g、参考例1で得た変性硬化剤25g、オクチル酸スズ
3.6gをよく混合し、同様の方法で印刷、硬化した物
の特性を第1表に示した。
Comparative Example 3 Epicote 815g, 70g, Epicote 834.30
Table 1 shows the properties of a product obtained by mixing well, 25 g of the modified curing agent obtained in Reference Example 1, and 3.6 g of tin octylate, printing and curing in the same manner.

実施例4 実施例1に於いてオクチル酸スズの代りにナフテン酸コ
バルトを使用し、その他は実施例1と同様に処理した。
Example 4 In Example 1, cobalt naphthenate was used instead of tin octylate, and the other conditions were the same as in Example 1.

結果は実施例1とほぼ同じであった。The results were almost the same as in Example 1.

実施例5 実施例2に於いてオクチル酸亜鉛に代えてジブチルスズ
ラウレートを使用し、その他は実施例2と同様に処理し
た。結果は実施例2とほぼ同じであった。
Example 5 In Example 2, dibutyltin laurate was used in place of zinc octylate, and the other conditions were the same as in Example 2. The results were almost the same as in Example 2.

以上述べた如く、スクリーン印刷後の硬化特性に優れ且
つ太陽電池用防湿保護膜としての緒特性に卓越した樹脂
組成物を得ることが出来た0本発明の樹脂組成物は太陽
電池保護膜として有用であるが、他にも、光透過性、防
湿性の必要な、たとえば光センサー保護膜、光デイスク
防湿保護膜等の用途にも有用である。
As described above, it was possible to obtain a resin composition that has excellent curing properties after screen printing and excellent properties as a moisture-proof protective film for solar cells.The resin composition of the present invention is useful as a solar cell protective film. However, it is also useful for other applications that require light transmittance and moisture resistance, such as optical sensor protective films and optical disk moisture-proof protective films.

(以上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)Σx_iX_i=400〜1000(但し
x_iはエポキシ樹脂_iの使用した全エポキシ樹脂に
対する重量分率、X_iはエポキシ樹脂_iの平均分子
量) の範囲にあるビスフェノール型エポキシ樹 脂、 (ロ)該エポキシ樹脂100重量部に対して、20〜5
0重量部の、その10〜65モル %が多価アルコールでエステル化された変 性酸無水物硬化剤、及び (ハ)該エポキシ樹脂と該硬化剤の合計 100重量部に対し、1〜5重量部の有機 金属化合物 を含有することを特徴とする太陽電池用防湿保護膜形成
性樹脂組成物。
(1) (A) Bisphenol type epoxy resin in the range of Σx_i 20 to 5 parts by weight per 100 parts by weight of the epoxy resin
0 parts by weight of a modified acid anhydride curing agent, of which 10 to 65 mol% is esterified with a polyhydric alcohol, and (c) 1 to 5 parts by weight based on a total of 100 parts by weight of the epoxy resin and the curing agent. 1. A resin composition capable of forming a moisture-proof protective film for a solar cell, comprising: an organometallic compound.
JP60059747A 1985-03-25 1985-03-25 Resin composition for forming water vapor proof and protecting film for solar cell Pending JPS61218625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059747A JPS61218625A (en) 1985-03-25 1985-03-25 Resin composition for forming water vapor proof and protecting film for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059747A JPS61218625A (en) 1985-03-25 1985-03-25 Resin composition for forming water vapor proof and protecting film for solar cell

Publications (1)

Publication Number Publication Date
JPS61218625A true JPS61218625A (en) 1986-09-29

Family

ID=13122135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059747A Pending JPS61218625A (en) 1985-03-25 1985-03-25 Resin composition for forming water vapor proof and protecting film for solar cell

Country Status (1)

Country Link
JP (1) JPS61218625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637156A (en) * 1994-09-22 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Resin Composition and an electronic device using the same
US6525261B1 (en) 1994-09-22 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Resin composition and an electronic device using the same
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637156A (en) * 1994-09-22 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Resin Composition and an electronic device using the same
US6525261B1 (en) 1994-09-22 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Resin composition and an electronic device using the same
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery

Similar Documents

Publication Publication Date Title
US4499239A (en) Resin composition for powder coating
CN104558501A (en) Ultraviolet ray and moisture dual-cured modified polyurethane and preparation method thereof
US4480072A (en) Use of ethyl silicate as a crosslinker for hydroxylated polymers
CN106433609B (en) Color-changing product, preparation method and application thereof
US4130601A (en) Resin composition for powder paint
JPS61218625A (en) Resin composition for forming water vapor proof and protecting film for solar cell
CN109180925B (en) Hydroxyl polyester resin for high-gloss powder coating and preparation method and application thereof
CN101787243A (en) Under-coated coating of water-based UV-light curing vacuum coating
JP2002501561A (en) Modified epoxy resins and thermosetting compositions, especially their use as components of powder coatings
US4356285A (en) Thermosetting resin composition
KR100515389B1 (en) Polyester resin for hybrid P.M powder coating and coating composition
JPS6136030B2 (en)
JPS62260871A (en) Resin composition for powder coating
JP5339135B2 (en) Polyester resin composition and cured product thereof
JP2739229B2 (en) Polyester acrylate
JP2002060681A (en) Polyester resin for powder coating, composition and powder coating using the same
JPS60181123A (en) Epoxy resin composition
CN111320746A (en) Low-temperature curing polyester resin
CN112062942B (en) Ultralow temperature curing polyester resin and preparation method and application thereof
CN116333570B (en) Ultraviolet light curing coating for polyurethane glass fiber composite material
JPS6160720A (en) Resin composition
JPS5840570B2 (en) Koukaseijiyuushisobutsu
KR100394098B1 (en) Copolymeric polyester resin for paint
CA1091377A (en) Process for the manufacture of crystalline, crosslinked, elastomeric epoxide resins
KR790001961B1 (en) Heat-curable resin compositions for powder paints