JPS6121735A - Phenolic chelating ion exchange resin - Google Patents

Phenolic chelating ion exchange resin

Info

Publication number
JPS6121735A
JPS6121735A JP5139385A JP5139385A JPS6121735A JP S6121735 A JPS6121735 A JP S6121735A JP 5139385 A JP5139385 A JP 5139385A JP 5139385 A JP5139385 A JP 5139385A JP S6121735 A JPS6121735 A JP S6121735A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
resin
reaction
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5139385A
Other languages
Japanese (ja)
Other versions
JPS6348587B2 (en
Inventor
Hiromoto Uejima
植嶋 宏元
Masahide Hirai
平井 雅英
Yoshihiro Kajigase
楫ケ瀬 祐宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5139385A priority Critical patent/JPS6121735A/en
Publication of JPS6121735A publication Critical patent/JPS6121735A/en
Publication of JPS6348587B2 publication Critical patent/JPS6348587B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the selective adsorbing catacity to a ferric ion, by constituting a phenolic chelating ion exchange resin by introducing a specific chelate group represented by general formula into the phenol nuclei of phenols. CONSTITUTION:A phenol compound represented by formula (wherein M is an alkali metal or hydrogen and R1 and R2 are hydrogen and an alkyl group), phenols and aldehydes are subjected to condensation reaction in such a state that a preparation mol ratio is adjusted corresponding to a purpose to prepare a phenolic chelating ion exchange resin. As the phenol compound represented by the formula, one having M is the formula substituted with an alkali metal has good dissolvability and easy reactivity. In order to obtain the resin having as uniform a composition as possible in the aforementioned condensation reaction, reaction temp. is controlled to 20-90 deg.C and it is desirable to gradually raise temp.

Description

【発明の詳細な説明】 本発明は新規なフェノール系キレート性イオン交換樹脂
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel phenolic chelating ion exchange resin.

従来から重金属イオンの吸着除去および回収に有用なキ
レート性イオン交換樹脂としてDowex A−1(ダ
ウケミカル社製)、ダイヤイオンCR−10゜20(三
菱化成社製)およびユニセレソクtlR−10,203
0(ユニチカ社製)などが市販され実用に供されている
。一般にこれらのキレート性イオン交換樹脂は水溶液中
の銅、ニッケル、亜鉛などの重金属の吸着除去ならびに
回収に利用されその効果が認められているが、これらは
複数の重金属イオンを含有する水溶液中の特定の重金属
イオン・特に第二鉄イオンの選択的吸着除去および低p
l+水溶液中の重金属イオンの選択捕捉性能に問題があ
ることも認められてい゛る。
Dowex A-1 (manufactured by Dow Chemical Company), Diaion CR-10゜20 (manufactured by Mitsubishi Kasei Corporation) and Unicelesoc tlR-10,203 are conventionally used as chelating ion exchange resins useful for adsorption removal and recovery of heavy metal ions.
0 (manufactured by Unitika) and others are commercially available and in practical use. Generally, these chelating ion exchange resins are used for adsorption removal and recovery of heavy metals such as copper, nickel, and zinc in aqueous solutions, and their effectiveness has been recognized. Selective adsorption removal of heavy metal ions, especially ferric ions, and low p
It has also been recognized that there are problems with the selective trapping performance of heavy metal ions in l+ aqueous solutions.

しかるに重金属を含有する水溶液には種々のpl+のも
のがあり、また複数の重金属を含有する水溶液中の第二
鉄イオンのみを選択的に吸着除去して。
However, there are various types of aqueous solutions containing heavy metals, and only ferric ions in aqueous solutions containing a plurality of heavy metals are selectively adsorbed and removed.

含有重金属を分割回収できれば処理水溶液をそのまま再
利用に供することが考えらる用途もあるが。
In some applications, if the heavy metals contained can be recovered in parts, the treated aqueous solution can be reused as is.

従来公知のキレート性イオン交換樹脂には特に第二鉄イ
オンに対してすぐれた選択捕捉能を示すものがなく、ま
た低pHw4域ですぐれた選択吸着能を示すものもない
。そのため一部には特殊重金属の捕捉を目的として官能
基の種類等について多方面から研究が続けられているが
未だ実用化には至っていない。
Among the conventionally known chelating ion exchange resins, there is none that exhibits particularly excellent selective trapping ability for ferric ions, and none that exhibits excellent selective adsorption ability in the low pH w4 range. For this reason, research is being continued from various angles on the types of functional groups, etc., in part for the purpose of capturing special heavy metals, but this has not yet been put to practical use.

本発明者らはかかる現状に鑑みて、特に第二鉄イオンに
対してすぐれた選択吸着能を示すキレート性イオン交換
樹脂を化学的に安定で、かつ比較的安価な化合物を利用
して製造すべく鋭意研究した結果、2コのイミノジ酢酸
基を導入したフェノール化合物をフェノール−アルデヒ
ド系樹脂母体の側鎖に導入したキレート性イオン交換樹
脂が低pH領域で第二鉄イオンに対してすぐれた選択吸
着能を有することを見いだし9本発明に到達した。
In view of the current situation, the present inventors have attempted to produce a chelating ion exchange resin that exhibits particularly excellent selective adsorption ability for ferric ions using chemically stable and relatively inexpensive compounds. As a result of intensive research, we found that chelating ion exchange resin, in which a phenol compound with two iminodiacetic acid groups introduced into the side chain of the phenol-aldehyde resin matrix, is an excellent choice for ferric ions in the low pH region. It was discovered that the present invention has adsorption ability.

すなわち1本発明はフェノール類のフェノール核にキレ
ート基を導入したフェノール系キレート性イオン交換樹
脂において、キレート基が一般式(ただし1Mはアルカ
リ金属または水素、R1R2は水素またはアルキル基を
表す。)で示されるフェノール化合物であることを特徴
とするフェノール系キレート性イオン交換樹脂である。
That is, the present invention provides a phenolic chelating ion exchange resin in which a chelate group is introduced into the phenol nucleus of a phenol, in which the chelate group has the general formula (where 1M represents an alkali metal or hydrogen, and R1R2 represents hydrogen or an alkyl group). This is a phenol-based chelating ion exchange resin characterized by being a phenol compound shown below.

本発明にいう一般式で示されるフェノール化合物として
は、たとえば(1−オキシフェニレン−2,6)−ビス
−メチルイミノジ酢酸があり、かかるフェノール化合物
はイミノジ酢酸、フェノールおよびホルマリンがらHe
1v、Chim、^cta、35.1785(1952
)に記載の方法により合成される。またイミノジ酢酸は
アンモニア、シアン化水素、ポルマリン等の安価な原料
から合成さ、工業的に製造されている低分子のキレ−7
ト剤のエチレンジアミンテトラ酢酸、ニトロトリ酢酸と
同様に一^−CH2COOH4基を有しているので他の
キレート剤に比較して化学的安定は非常にすぐれている
Examples of the phenolic compound represented by the general formula according to the present invention include (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, and such phenolic compounds include iminodiacetic acid, phenol, and formalin.
1v, Chim, ^cta, 35.1785 (1952
) is synthesized by the method described in . In addition, iminodiacetic acid is synthesized from inexpensive raw materials such as ammonia, hydrogen cyanide, and polymerine, and is an industrially produced low-molecular-weight compound called Kir-7.
Like the chelating agents ethylenediaminetetraacetic acid and nitrotriacetic acid, it has a 1^-CH2COOH4 group, so it has much better chemical stability than other chelating agents.

本発明のキレート性イオン交換樹脂は、たとえば(I−
オキシフェニレン−2,6)−ビス−メチルイミノジ酢
酸のようなフェノール化合物とフエ。
The chelating ion exchange resin of the present invention is, for example, (I-
Fe with phenolic compounds such as oxyphenylene-2,6)-bis-methyliminodiacetic acid.

ノール類およびアルデヒド類を目的に応してそ餅仕込み
モル比を調整して縮合反応により樹脂化して製造するも
のである。
It is produced by adjusting the mole ratio of somochi (rice cake) to be prepared according to the purpose, and converting the nols and aldehydes into a resin through a condensation reaction.

一般のフェノール樹脂においては、熱処理のみ\で硬化
するレゾール樹脂、アルデヒド類などの添加を必要とす
るノボラック樹脂がよく知られているが1本発明のフェ
ノール系キレート性イオン交換樹脂に机)でもアルデヒ
ド類とフェノール類のモル比(以下F/Pと略記する)
の弯更によりレゾール型あるいはノボラック型の樹脂を
製造することができる。   ′ すなわち、熱処理のみで硬化するレゾール型フェノール
樹脂を得るためにはF/Pを1.1〜1.5の範囲にし
、熱処理以外の架橋処理を必要とするノボラック型フェ
ノール系キレート性イオン交換樹脂においてはF/Pを
0.7〜1.1にすることが望まれる。従って一般のフ
ェノール樹脂製造条件におけるP/Pと上記のF/Pと
は同一の意味をもつが。
Among general phenolic resins, resol resins that harden only by heat treatment, and novolac resins that require the addition of aldehydes, etc., are well known. and phenols (hereinafter abbreviated as F/P)
Moreover, resol type or novolac type resins can be produced by the curvature of . ' In other words, in order to obtain a resol-type phenolic resin that cures only by heat treatment, the F/P should be in the range of 1.1 to 1.5, and a novolac-type phenolic chelating ion exchange resin that requires crosslinking treatment other than heat treatment. In this case, it is desirable to set F/P to 0.7 to 1.1. Therefore, P/P under general phenolic resin production conditions and F/P above have the same meaning.

フェノール類、アルデヒド類および(1−オキシフェニ
レン−2,6)−ビス−メチルイミノジ酢酸より本発明
のキレート性イオン交換樹脂を製造する場合(1−オキ
シフェニレン−2,6)’−ビスーメチルイミノジ酢酸
と等モル量のアルデヒド類を過剰に用いなければならな
いのは当然のことである。
When producing the chelating ion exchange resin of the present invention from phenols, aldehydes and (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, (1-oxyphenylene-2,6)'-bis-methyliminodiacetic acid It goes without saying that an equimolar amount of aldehyde must be used in excess as acetic acid.

フェノール類・アルデヒド類および(1−オキシフェニ
レン−2,6)−ビス−メチルイミノジ酢酸より本発明
のキレート性イオン交換樹脂を製造するには1例えば、
フェノール類とアルデヒド類あるいはアルデヒド類を添
加し、縮合反応を行なえばよい。縮合反応はできるだけ
均一な組成の樹脂を得るために反応温度は、20〜90
℃に制御し、徐々に昇温することが望ましい。最終的に
90〜111 ”Cに保ち還流下に反応−を進行させ、
所望の縮合段階に至れば、減圧あるいは常圧下で加熱す
ることにより脱水し、活劇な樹脂組成物を得ることがで
きる。このとき必要ならば、新たな水を加え、樹脂組成
物を洗浄することもできる。
To produce the chelating ion exchange resin of the present invention from phenols/aldehydes and (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, 1 For example,
Phenols and aldehydes or aldehydes may be added to perform a condensation reaction. In the condensation reaction, the reaction temperature is 20 to 90℃ in order to obtain a resin with as uniform a composition as possible.
It is desirable to control the temperature at ℃ and gradually increase the temperature. Finally, the temperature was kept at 90-111"C and the reaction proceeded under reflux.
Once the desired condensation stage is reached, the resin composition can be dehydrated by heating under reduced pressure or normal pressure to obtain a highly active resin composition. At this time, if necessary, fresh water can be added to wash the resin composition.

本発明のキレート性イオン交換樹脂の製造に際し、フェ
ノール化合物は一般式中のMがアルカリ金属に置換され
たものが溶解性がよく反応が容易であるから、たとえば
(1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸に力性ソーダ等のアルカリ金属を作用させて酢
酸基の末端をアルカリ金属に置換した後重縮合反応を行
うことが望ましい。またフェノール化合物とフェノール
類の混合量はキレート性能および樹脂の耐久性に影響す
るものであり、全フェノールに対するフェノール化合物
のモル比が0.1未満では本発明の目的とするキレ−1
・性能が不十分となり、一方0.5を超えると架橋三次
元化が十分進まず実用に耐える樹脂が得がたくなるので
モル比で0.1〜0.5の範囲なるよう混合することが
望ましい。一本発明において用いられるフェノール類と
しては9例えばフェノーノに、クレゾール、キシレノー
ルなどのアルキル置換フェノール、レゾルシノール、カ
テコールなどの多価フェノール、α−ナフトールなどの
フェノール性水酸基をもって化合物があげられ、これら
を単独あるいは混合して用いることができる。
When producing the chelating ion exchange resin of the present invention, phenolic compounds in which M in the general formula is substituted with an alkali metal have good solubility and are easy to react with, for example (1-oxyphenylene-2,6 )-bis-methyliminodiacetic acid is reacted with an alkali metal such as sodium hydroxide to replace the terminal end of the acetic acid group with the alkali metal, and then the polycondensation reaction is preferably carried out. In addition, the mixing amount of the phenol compound and phenols affects the chelating performance and the durability of the resin, and if the molar ratio of the phenol compound to the total phenol is less than 0.1, the chelate
・Performance will be insufficient, and if it exceeds 0.5, three-dimensional crosslinking will not progress sufficiently and it will be difficult to obtain a resin that can withstand practical use, so it is recommended to mix so that the molar ratio is within the range of 0.1 to 0.5. desirable. Examples of phenols used in the present invention include compounds with phenolic hydroxyl groups such as phenol, alkyl-substituted phenols such as cresol and xylenol, polyhydric phenols such as resorcinol and catechol, and α-naphthol; Alternatively, they can be used in combination.

アルデヒド類としては9例えばホルムアルデヒド、パラ
ホルムアルデヒド、ヘキサメチレンテトラミンなどのア
ルデヒド誘導体、アセトアルデヒド、プロピオンアルデ
ヒドなどの脂肪族アルデヒド、ベンズアルデヒドに代表
される芳香族アルデヒド、フルフラールなどの異節環ア
ルデヒドなどがあげられ、これらは単独あるいは混合し
て使用される。
Examples of aldehydes include aldehyde derivatives such as formaldehyde, paraformaldehyde, and hexamethylenetetramine, aliphatic aldehydes such as acetaldehyde and propionaldehyde, aromatic aldehydes such as benzaldehyde, and heterocyclic aldehydes such as furfural. These may be used alone or in combination.

縮合反応を行うに際しては9反応促進剤として。9 As a reaction accelerator when carrying out a condensation reaction.

塩酸、硫酸などの鉱酸、ギ酸、蓚酸などの有機酸。Mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as formic acid and oxalic acid.

ヘンゼンスルホン酸などの芳香族スルホン酸、または水
酸化ナトリウム、水酸化カリウムなどの金属水酸化物、
アンモニア、トリメチルアミン、トリエチルアミンなど
のアミン類、あるいはピリジンなどに代表されるような
含窒素塩基性化合物を単独あるいは混合して用いること
ができる。
Aromatic sulfonic acids such as Hensensulfonic acid, or metal hydroxides such as sodium hydroxide, potassium hydroxide,
Amines such as ammonia, trimethylamine, and triethylamine, and nitrogen-containing basic compounds such as pyridine can be used alone or in combination.

本発明のノボラック系のキレート性イオン交換樹脂は、
その熱可塑性を利用して種々の形に加工した後、架橋反
応を行い硬化させることができるので利用範囲が広い。
The novolac-based chelating ion exchange resin of the present invention is
Utilizing its thermoplasticity, it can be processed into various shapes and then cured by a crosslinking reaction, so it has a wide range of uses.

その場合、架橋反応をアルデヒド水溶液に浸漬して行う
ならば、架橋速度を上げるため触媒として塩酸、蓚酸な
どの酸を添加するかあるいは加熱することが好ましい。
In that case, if the crosslinking reaction is carried out by immersion in an aqueous aldehyde solution, it is preferable to add an acid such as hydrochloric acid or oxalic acid as a catalyst or to heat it to increase the crosslinking rate.

また。Also.

ノボラック系キレート性イオン交換樹脂を粉砕し。Pulverized novolak chelating ion exchange resin.

ヘキサミン等の架橋剤を混合することにより成型用材料
とし、加熱により架橋させることもできる。
It can also be made into a molding material by mixing a crosslinking agent such as hexamine, and crosslinked by heating.

一方2本発明のレゾール系キレート性イオン交換樹脂樹
脂は水あるいは有機溶媒に溶解させ1種々の形に加工さ
せた後加熱することにより容易に硬化させることができ
る。もちろん、不溶性の溶媒中で造粒と架橋とを同時に
行なって小球状のキレート性イオン交換樹脂とすること
ができるので。
On the other hand, the resol type chelating ion exchange resin of the present invention can be easily cured by dissolving it in water or an organic solvent, processing it into various shapes, and then heating it. Of course, it is possible to simultaneously perform granulation and crosslinking in an insoluble solvent to form a small spherical chelating ion exchange resin.

従来公知の小球状キレート性イオン交換樹脂と全く同様
な利用形態が採用できる。特に製造に際し加工性がすぐ
れている点は2本発明のキレート性イオン交換樹脂の大
きな特徴でもある。
It can be used in exactly the same manner as conventionally known small spherical chelating ion exchange resins. In particular, the chelating ion exchange resin of the present invention is characterized by its excellent processability during production.

本発明のフェノール系キレート性イオン交換樹脂の重金
属イオンに対する選択吸着性は金型金属イオン水溶液の
pll、温度、共存イオンの種類および濃度などにより
変化するが、一般に第二鉄〉銅〉ニッケル〉アルミニウ
ム〉亜鉛〉コバルト〉マンガン〉カルシウム〉マグネシ
ウム〉バリウム)ナトリウムの順になり、第二鉄に対す
る選択性が一番大きく、特に、低pi水溶液中の第二鉄
イオンに対する吸着性能が他金属に比べ非常に良い。た
とえば水溶液のpH,温度を調整すると本発明のキレー
ト性イオン交換樹脂はカルシウム、亜鉛、第二鉄の三種
の同濃度の金属イオンが共存する水溶液を処理した場合
、カルシウム、亜鉛′のイオン濃度をほとんど変化させ
ず、第二鉄イオンのみを選択的に吸着するほど第二鉄イ
オンに対する好選択性を示すのである。しかもこれらの
重金属イオン吸着能力および選択性は、ノボラック型あ
るいはレゾール型のフェノール系キレート性イオン交換
樹脂のいずれかにおいても全く同様の結果が得られるの
である。
The selective adsorption of heavy metal ions of the phenolic chelating ion exchange resin of the present invention varies depending on the PLL of the mold metal ion aqueous solution, temperature, type and concentration of coexisting ions, etc., but generally ferric, copper, nickel, and aluminum. 〉Zinc〉Cobalt〉Manganese〉Calcium〉Magnesium〉Barium) Sodium has the highest selectivity for ferric iron, and in particular, its adsorption performance for ferric ions in low-pi aqueous solutions is very high compared to other metals. good. For example, by adjusting the pH and temperature of the aqueous solution, the chelating ion exchange resin of the present invention can reduce the ion concentration of calcium and zinc' when treating an aqueous solution containing the same concentrations of three metal ions: calcium, zinc, and ferric iron. It exhibits such good selectivity for ferric ions that it selectively adsorbs only ferric ions with almost no change. Furthermore, the same results in heavy metal ion adsorption ability and selectivity can be obtained with either novolac type or resol type phenolic chelating ion exchange resins.

本発明のフェノール系キレート性イオン交換樹脂は、そ
の製造条件によって重金属イオンに対する吸着能力が異
なるが、はぼ仕込み(l−オキシフェニレン−2,6)
−ビス−メチルイミノジ酢酸基1当量につき0.5〜1
.0当量の重金属イオンがキレートを形成する。
The phenol-based chelating ion exchange resin of the present invention has different adsorption ability for heavy metal ions depending on its manufacturing conditions.
-0.5 to 1 per equivalent of bis-methyliminodiacetic acid group
.. Zero equivalents of heavy metal ions form a chelate.

第二鉄イオンを含有する水溶液において鉄イオンは水酸
化物を形成してその一部が溶解するが。
In an aqueous solution containing ferric ions, iron ions form hydroxides and some of them dissolve.

水溶液のpHが3以下になるとほとんどの鉄分はイオン
化する。従って第二鉄イオンの吸着除去に際してはpH
3以下の酸性水溶液をキレート性イオン交換樹脂で処理
することが望ましいが、従来公知のキレート性イオン交
換樹脂はpH3以下、特にpH2以下の強酸性において
は重金属吸着能が低下するので−はとんど2〜10.好
ましくは3〜9の範囲で利用される。しかるに本発明の
キレート性イオン交換樹脂はpH3以下、特にpH2以
下の強酸性化においても第二鉄イオンに対して強い選択
吸着能を示すので1強酸性水溶液中の第二鉄イオンの吸
着除去はもちろん、複数の重金属を含有する水溶液をp
H2以下の強酸性として処理することにより第二鉄イオ
ンのみを選択的に吸着せしめることができるのである。
When the pH of the aqueous solution becomes 3 or less, most of the iron is ionized. Therefore, when adsorbing and removing ferric ions, the pH
It is desirable to treat an acidic aqueous solution with a pH of 3 or less with a chelating ion exchange resin, but the heavy metal adsorption capacity of conventionally known chelating ion exchange resins decreases in strong acidity of pH 3 or less, especially pH 2 or less. Do2-10. Preferably, it is used in the range of 3 to 9. However, the chelating ion exchange resin of the present invention exhibits a strong selective adsorption ability for ferric ions even under strong acidification of pH 3 or lower, especially pH 2 or lower, so that ferric ions in a strongly acidic aqueous solution can be adsorbed and removed. Of course, an aqueous solution containing multiple heavy metals is
By treating it as a strong acid of H2 or less, only ferric ions can be selectively adsorbed.

本発明のキレート性イオン交換樹脂に重金属イオンを吸
着させ、その吸着能力が飽和になったときは、塩酸ある
いは硫酸などの鉱酸水溶液を用いて処理することにより
2重金属イオンは樹脂から容易に脱着し、鉱酸水溶液に
溶出する。重金属イオンを溶離した樹脂はそのままでも
再び使用できるが、好ましくは水酸化ナトリウム、水酸
化カリウムなどのアルカリ性水溶液にて処理するか、ま
たは水洗して再使用する。この再生使用による重金属イ
オン吸着能力および選択性の低下はほとんど認められな
い。
Heavy metal ions are adsorbed onto the chelating ion exchange resin of the present invention, and when the adsorption capacity becomes saturated, the double metal ions can be easily desorbed from the resin by treatment with an aqueous mineral acid solution such as hydrochloric acid or sulfuric acid. and elutes in mineral acid aqueous solution. The resin from which the heavy metal ions have been eluted can be used again as is, but it is preferably treated with an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, or washed with water and reused. There is hardly any decrease in heavy metal ion adsorption capacity or selectivity due to this reuse.

本発明のフェノール系キレート性イオン交換樹脂は以上
詳述してきたように簡単な製造方法で得られ、特殊重金
属捕そく効果、特に第二鉄に対してすぐれた捕そく効果
を示すものである。しかも簡単な酸処理でなん回でも再
生使用可能なものであるから実用的であり、今までのフ
ェノール系キレート性イオン交換樹脂とは異なる新しい
用途に利用し得る新規なイオン交換樹脂である。
The phenolic chelating ion exchange resin of the present invention can be obtained by a simple manufacturing method as detailed above, and exhibits special heavy metal scavenging effects, particularly excellent ferric iron scavenging effects. Moreover, it is practical because it can be recycled and reused any number of times by simple acid treatment, and it is a new ion exchange resin that can be used for new purposes different from conventional phenolic chelating ion exchange resins.

以下、実施例により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例中の部および%は重量を表わす。Parts and percentages in the examples represent weight.

実施例1 (1−オキシフェニレン−2゜6)−ビス−メチルイミ
ノジ酢酸96部に22%力性ソーダ227.3部を冷却
しながらゆっくり加え、均一な水溶液とし、37χホル
マリン20.3部を添加し、温度を65〜70℃に保ち
3時間反応を行った。反応終了後9反応液を冷却し攪拌
しながらフェノール23.5部を加え、85〜90℃で
4時間反応を続行した。得られた反応液を冷却し、37
%ホルマリン80.5部を加え。
Example 1 227.3 parts of 22% sodium hydroxide was slowly added to 96 parts of (1-oxyphenylene-2゜6)-bis-methyliminodiacetic acid while cooling to form a homogeneous aqueous solution, and 20.3 parts of 37χ formalin was added. The reaction was carried out for 3 hours while maintaining the temperature at 65 to 70°C. After the reaction was completed, the reaction solution was cooled and 23.5 parts of phenol was added while stirring, and the reaction was continued at 85 to 90° C. for 4 hours. The obtained reaction solution was cooled, and 37
Add 80.5 parts of % formalin.

懸濁重縮合をiテい175部の硬化樹脂を得た。Suspension polycondensation was carried out to obtain 175 parts of a cured resin.

この樹脂を水洗浄した後、鉱酸にて中和して橙黄色の樹
脂を得た。
After washing this resin with water, it was neutralized with mineral acid to obtain an orange-yellow resin.

この樹脂をあらかじめpH2,0に調整した第二鉄水溶
液に投入し振とうしてその吸着能を測定した結果、その
吸着能は1.5ミリ当量/g樹脂であった。さらに吸着
後この樹脂を鉱酸にて第二鉄の脱着をおこなったところ
容易に第二鉄イオンが溶離し、その吸着能の低下もほと
んどなかった。またこの吸着能はpH4,0の第二鉄水
溶液で測定したものとほとんど差がなかった。
This resin was poured into a ferric aqueous solution previously adjusted to pH 2.0, shaken, and its adsorption capacity was measured. As a result, the adsorption capacity was 1.5 milliequivalents/g resin. Further, after adsorption, when this resin was subjected to desorption of ferric iron using mineral acid, ferric ions were easily eluted, and there was almost no decrease in the adsorption ability. Moreover, this adsorption capacity was almost not different from that measured with a ferric aqueous solution at pH 4.0.

実施例2 (1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部に22%力性ソーダ227.3部を冷却
しながらゆっくり加え、均一な水溶液とし。
Example 2 227.3 parts of 22% sodium hydroxide was slowly added to 96 parts of (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid while cooling to form a homogeneous aqueous solution.

次に37%ホルマリン20,3部を添加し、温度を65
〜70°Cに保ち3詩情反応を行った。反応終了後1反
応液を冷却し攪拌しなからレゾルシン27.5部を添加
し、25〜50℃で2時間反応を続行した。得られた反
応液を冷却し、37%ポルマリン80.5部を加え、懸
濁重縮合を行い、160部の硬化樹脂を得た。
Next, add 20.3 parts of 37% formalin and lower the temperature to 65%.
The temperature was maintained at ~70°C and three poetic reactions were performed. After the reaction was completed, 27.5 parts of resorcinol was added to the reaction solution while cooling and stirring, and the reaction was continued at 25 to 50° C. for 2 hours. The resulting reaction solution was cooled, 80.5 parts of 37% Polmarine was added, and suspension polycondensation was carried out to obtain 160 parts of cured resin.

この樹脂を実施例1と同様に処理をして得られた樹脂の
吸着性能を測定した結果、1.2 ミリ当量7g樹脂で
あった。
This resin was treated in the same manner as in Example 1, and the adsorption performance of the resin obtained was measured, and the result was 1.2 milliequivalent of 7 g resin.

この樹脂をカラムに充填してカルシウムイオン。This resin is packed into a column to extract calcium ions.

亜鉛イオン、第二鉄イオンを等量含有するpH1,5の
水溶液を処理したところ、第二鉄イオンはほとんど吸着
されたが、カルシウムイオンおよび亜鉛イオンはほとん
ど漏洩した。
When an aqueous solution of pH 1.5 containing equal amounts of zinc ions and ferric ions was treated, most of the ferric ions were adsorbed, but most of the calcium ions and zinc ions leaked out.

実施例3 (1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部、22χ力性ソーダ227.3部と37
%ホルマリン20.3部を添加し、温度を65〜70”
cに保ち3時間反応を続けた。さらにフェノール23.
5部を添加し、85〜90℃で4時間反応を継続し。
Example 3 96 parts of (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, 227.3 parts of 22x hydric soda and 37 parts of
Add 20.3 parts of % formalin and reduce the temperature to 65-70”
The reaction was continued for 3 hours while maintaining the temperature at c. Furthermore, phenol 23.
5 parts were added and the reaction was continued at 85-90°C for 4 hours.

得られた反応液に37%ホルマリン80.5部を加え懸
濁重縮合を行ったところ170部の硬化樹脂が得られた
When 80.5 parts of 37% formalin was added to the resulting reaction solution and suspension polycondensation was carried out, 170 parts of cured resin was obtained.

この樹脂を実施例1と同様に処理をして得られ樹脂の吸
着性能を測定した結果1.7ミリ当量/g樹脂であった
This resin was treated in the same manner as in Example 1, and the adsorption performance of the resin was measured, and the result was 1.7 milliequivalents/g resin.

この樹脂をカラムに充填してアルミニウムイオンと第二
鉄イオンをそれぞれ500pp’m含有するpH1,5
の水溶液を処理したところ、第二鉄イオンはほとんど吸
着されたが、アルミニウムイオンはほとんど漏洩した。
This resin was packed into a column and the pH was 1.5 to 500 pp'm each containing aluminum ions and ferric ions.
When an aqueous solution of was treated, most of the ferric ions were adsorbed, but most of the aluminum ions leaked out.

実施例4 (1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部、22%力性ソーダ227.3部と37
%ホルマリン20.3部を添加し、温度に65〜70℃
に保ち3時間反応を行った。さらにレゾルシン15部を
添加し25〜50℃で2時間反応を持続し1反応終了後
反応混合液を塩酸にて中和し。
Example 4 96 parts of (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, 227.3 parts of 22% sodium hydroxide and 37
Add 20.3 parts of formalin and bring the temperature to 65-70℃
The reaction was carried out for 3 hours while maintaining the temperature. Furthermore, 15 parts of resorcin was added and the reaction was continued at 25 to 50°C for 2 hours, and after one reaction was completed, the reaction mixture was neutralized with hydrochloric acid.

100〜110℃に加熱脱水した。得られた樹脂を粉砕
し35%塩酸水溶液と37%ホルマリン1:l混合液に
一昼夜浸漬し2次いで90°Cで2時間加熱混合したの
ち樹脂を120℃で2時間加熱した。
It was heated and dehydrated at 100 to 110°C. The resulting resin was crushed and immersed in a 1:1 mixture of 35% hydrochloric acid and 37% formalin overnight, followed by heating and mixing at 90°C for 2 hours, and then heating the resin at 120°C for 2 hours.

この樹脂を実施例1と同様の処理により樹脂の吸着能力
を測定したところ1.1 ミリ当量7g樹脂であった。
This resin was treated in the same manner as in Example 1, and the adsorption capacity of the resin was measured, and it was found to be 1.1 milliequivalent of 7 g resin.

実施例5 (1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部に22%力堆ソーダ227.3部を冷却
しながらゆっくり加え、均一な水溶液とし1次に92%
パラ−ホルムアルデヒド16.4部を添加して温度を6
5〜70℃に保ち3時間反応をおζなった。反応終了後
1反応液を冷却し、攪拌しながらフェノール47部を添
加し、85〜90℃で4時間反応をm続した。得られた
反応液に92%パラホルムアルデヒド7!1..2部を
加えて懸濁重縮合を行ったところ250部の硬化樹脂が
得られた。
Example 5 227.3 parts of 22% sodium hydroxide was slowly added to 96 parts of (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid while cooling to form a homogeneous aqueous solution.
Add 16.4 parts of para-formaldehyde and bring the temperature to 6.
The reaction was kept at 5-70°C for 3 hours. After the reaction was completed, the reaction solution was cooled, 47 parts of phenol was added while stirring, and the reaction was continued at 85 to 90° C. for 4 hours. 92% paraformaldehyde 7!1. .. When 2 parts were added and suspension polycondensation was carried out, 250 parts of cured resin was obtained.

この樹脂を実施例1と同様に処理して樹脂の吸着能を測
定した結果0.8ミリ当量/g樹脂であった。
This resin was treated in the same manner as in Example 1, and the adsorption capacity of the resin was measured, and the result was 0.8 meq/g resin.

実施例6 (1−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部、硫酸25部と37%ポルマリン20.
3部を添加し、温度を65〜70℃に保ち5時間反応を
続けた。さらにフェノール23.5部を添加し、85〜
90℃で4時間反応を継続し、得られた反応液に37%
ホルマリン80.5部を加え懸濁重縮合を行ったところ
150部の硬化彎脂が得られた。
Example 6 96 parts of (1-oxyphenylene-2,6)-bis-methyliminodiacetic acid, 25 parts of sulfuric acid and 20 parts of 37% Polmarin.
3 parts were added and the reaction was continued for 5 hours while keeping the temperature at 65-70°C. Furthermore, 23.5 parts of phenol was added, and 85~
The reaction was continued at 90°C for 4 hours, and the resulting reaction solution contained 37%
When 80.5 parts of formalin was added and suspension polycondensation was carried out, 150 parts of hardened resin was obtained.

これを実施例1と同様の処理をして得られた樹脂の吸着
性能を測定した結果その吸着能は1.3ミリ当量/g樹
脂であった。
This was treated in the same manner as in Example 1, and the adsorption performance of the resulting resin was measured. As a result, the adsorption capacity was 1.3 milliequivalents/g resin.

実施例7 (l−オキシフェニレン−2,6)−ビス−メチルイミ
ノジ酢酸96部に22%力性ソーダ227.3部を冷却
しながらゆっくり加え1次に37%ホルマリン20.3
部を添加し、温度を65〜70℃に保ち3時間攪拌して
反応を行った。反応終了後冷却し。
Example 7 227.3 parts of 22% sodium hydroxide was slowly added to 96 parts of (l-oxyphenylene-2,6)-bis-methyliminodiacetic acid while cooling, and the mixture was first mixed with 20.3 parts of 37% formalin.
The reaction was carried out by stirring for 3 hours while maintaining the temperature at 65 to 70°C. Cool after the reaction is complete.

攪拌しなからm−クレゾール27部を加え、温度を85
〜90°Cに保ち、さらに5時間反応を継続し。
While stirring, add 27 parts of m-cresol and raise the temperature to 85.
The reaction was continued for an additional 5 hours at ~90°C.

反応終了後、37%ホルマリン80.5部を加え、30
分室温にて攪拌を行った。得られた反応液を用い。
After the reaction was completed, 80.5 parts of 37% formalin was added,
Stirring was performed at room temperature. Using the obtained reaction solution.

懸濁重縮合を行なうと155部の樹脂が得られた。Suspension polycondensation yielded 155 parts of resin.

これを実施例1と同様の処理をした結果樹脂の吸着性能
は、 1.25ミリ当量/g樹脂であった。
This was treated in the same manner as in Example 1, and as a result, the adsorption performance of the resin was 1.25 milliequivalents/g resin.

実施例8 実施例1で得られた橙黄色の樹脂をあらかじめpt+ 
2.0に調整した第二鉄水溶液に投入し、振とうしてそ
の吸着能を測定した結果、その吸着能は1.6 ミリ当
量7g樹脂であった。
Example 8 The orange-yellow resin obtained in Example 1 was pre-treated with pt+
The adsorption capacity was measured by pouring it into a ferric aqueous solution adjusted to 2.0 and shaking, and the adsorption capacity was found to be 1.6 milliequivalents of 7g resin.

また、この樹脂をカラムに充填してマグネシウムイオン
、ニッケルイオン、第二銅イオンを等量含有するpH1
,5の水溶液を処理したところ、第二銅イオンはほとん
ど吸着されたが、マグネシウムイオン及びニッケルイオ
ンはほとんど漏洩した。
In addition, this resin is packed into a column to create a pH 1 solution containing equal amounts of magnesium ions, nickel ions, and cupric ions.
, 5 was treated, most of the cupric ions were adsorbed, but most of the magnesium ions and nickel ions leaked out.

比較例I イミノジ酢酸26.6部、フェノール18.8部、37
%ホルマリン16.2部、水4.7部の混合液を70℃
で2時間攪拌した。反応の進行とともに系が不均一状と
なり1反応終了時には白色沈澱物が生成した。
Comparative Example I 26.6 parts of iminodiacetic acid, 18.8 parts of phenol, 37
% formalin and 4.7 parts of water at 70°C.
The mixture was stirred for 2 hours. As the reaction progressed, the system became non-uniform, and a white precipitate was formed at the end of one reaction.

反応終了後、この白色沈澱物を集め、水洗乾燥後イミノ
ジ酢酸基を導入した反応中間体を43部得た。
After the reaction was completed, this white precipitate was collected, washed with water, and dried to obtain 43 parts of a reaction intermediate into which iminodiacetic acid groups were introduced.

このようにして得られた反応中間体を元素分析した。そ
の結果を表1に示す。
The reaction intermediate thus obtained was subjected to elemental analysis. The results are shown in Table 1.

なお、理論値とは、フェノール核にイミノジ酢酸が1個
入ったときの化合物であるヒドロキシベンジルイミノジ
酢酸CI+ H+ :+ Os Nの値である。
Note that the theoretical value is the value of hydroxybenzyliminodiacetic acid CI+ H+ :+ Os N, which is a compound when one iminodiacetic acid is included in the phenol nucleus.

表1 表1の結果から実験値と理論値はよく一致しており、フ
ェノール核に導入されているイミノジ酢酸の数は1個で
あることが明らかである(フェノール核にイミノジ酢酸
が2個入っているNの理論値は7.29%であり1本実
験結果とは一致しない)。。
Table 1 From the results in Table 1, the experimental values and the theoretical values agree well, and it is clear that the number of iminodiacetic acids introduced into the phenol nucleus is one (two iminodiacetic acids are introduced into the phenol nucleus). The theoretical value of N is 7.29%, which does not match the experimental results). .

また反応中間体2.39gを100gの水に溶解させ。Further, 2.39 g of the reaction intermediate was dissolved in 100 g of water.

攪拌下に0. I N −NaOHを(f=0.998
)を滴下し、 pHが急激に上昇する変曲点(pH5,
0)までに要した0 、 I N 、−Na011を(
f=0.998)を滴定体積(ml数)を求めた。
0.0% under stirring. I N -NaOH (f=0.998
) is added dropwise until the inflection point (pH 5,
0), the 0, I N, -Na011 required to (
f=0.998) to determine the titration volume (number of ml).

その結果を表2に示す。なお理論値とは、この変曲点(
pH5,0)までに要するNaOHの量はイミノジ酢酸
と等モルであるところから、フェノール核にイミノジ酢
酸が1個導入されたときの化合物が消費する0、lN−
Na0H(f=0.998)の量である。
The results are shown in Table 2. The theoretical value is this inflection point (
Since the amount of NaOH required to reach pH 5.0 is equimolar to that of iminodiacetic acid, the amount of NaOH consumed by the compound when one iminodiacetic acid is introduced into the phenol nucleus is 0,1N-
The amount of NaOH (f=0.998).

表2の結果から実験値と理論値とはよく一致している(
もしイミノジ酢酸がフェノール核に2個導入されている
ならば124.2mlの0.I N −Na0IIを消
費することになる)。 ′ 表2 次に上記で得た反応中間体に35%塩酸41.7部を添
加攪拌しつつ、37%ホルマリン81.0部、フェノー
ル28.8部、水4.7部を加え50’cで1時間加熱
撹拌を続けた後室温に冷却した。
From the results in Table 2, the experimental values and theoretical values are in good agreement (
If two iminodiacetic acids are introduced into the phenol nucleus, 124.2 ml of 0. I N -Na0II will be consumed). ' Table 2 Next, 41.7 parts of 35% hydrochloric acid was added to the reaction intermediate obtained above, and while stirring, 81.0 parts of 37% formalin, 28.8 parts of phenol, and 4.7 parts of water were added at 50'c. After heating and stirring for 1 hour, the mixture was cooled to room temperature.

四塩化炭素、モノクロルヘンゼン混合媒体と上記の樹脂
液を容量II!、の容器に入れ回転攪拌しながら120
℃で水を除去しつつ3時間懸濁重縮合を続けて樹脂を得
た。
Carbon tetrachloride, monochlorohensen mixed medium and the above resin liquid to capacity II! , and stir while rotating for 120 minutes.
Suspension polycondensation was continued for 3 hours while removing water at °C to obtain a resin.

この樹脂を実施例(と同様にして吸着能を測定したとこ
ろ、 0.30ミリ当量/g樹脂であった。
The adsorption capacity of this resin was measured in the same manner as in Example (1), and it was found to be 0.30 milliequivalent/g resin.

比較例2 13.5部の青酸を注入管に採取し、 3a、5iap
の37%ホルマリンを三つロフラスコに入れ、0〜5℃
に冷却したものに加えて混合し、冷却しつつ、  6N
硫酸を加えてpH1にした。しばら(0〜5℃に保った
後、この混合物を別の三つロフラスコに4.3部のアン
モニア水120部に溶解した水溶液中へ攪拌しながら徐
々に加えて加熱し、3時間反応を続けた後2部の37%
ホルマリンをカロえ、さらに0.5〜1時間反応を行っ
た。室温まで降温し、フェノール47部、37%ホルマ
リン20部を加え、攪拌しながら70℃まで徐々に加熱
し、3部時間マンニンヒ反応を行った。マンニッヒ反応
終了後、50”C以下に温度を下げ、20部の苛性ソー
ダを水20部に溶解した水溶液を徐々に加え、80〜1
00℃でアンモニアの発生がやむまで加熱攪拌した。こ
の反応物の温度を20℃まで冷却し、塩酸を徐々に加え
てp)II以下にすると、白色の沈澱物が析出した。
Comparative Example 2 13.5 parts of hydrocyanic acid was collected into an injection tube, and 3a, 5iap
Place 37% formalin in a three-way flask and heat at 0-5°C.
6N while cooling.
Sulfuric acid was added to bring the pH to 1. After keeping the temperature at 0 to 5°C for a while, this mixture was gradually added to an aqueous solution of 4.3 parts dissolved in 120 parts of aqueous ammonia in another three-bottle flask with stirring, and the reaction was continued for 3 hours. 37% of the second part
After adding formalin, the reaction was further carried out for 0.5 to 1 hour. The temperature was lowered to room temperature, 47 parts of phenol and 20 parts of 37% formalin were added, and the mixture was gradually heated to 70° C. with stirring to perform a Manninh reaction for 3 hours. After the Mannich reaction was completed, the temperature was lowered to below 50"C, and an aqueous solution of 20 parts of caustic soda dissolved in 20 parts of water was gradually added.
The mixture was heated and stirred at 00°C until the generation of ammonia stopped. The temperature of the reaction mixture was cooled to 20° C. and hydrochloric acid was gradually added to bring the temperature to below p)II, and a white precipitate was deposited.

この白色沈澱物を集め、水洗乾燥後47.8部の反応中
間体を得た。
This white precipitate was collected, washed with water and dried to obtain 47.8 parts of a reaction intermediate.

このようにして得られた反応中間体を元素分析し元。そ
の結果を表3に示す。比較例1と同様実験値と理論値は
よく一致しており、比較例2においてもフェノール核に
導入されているイミノジ酢酸の数は1個であることが明
らかである。
The reaction intermediate thus obtained was subjected to elemental analysis. The results are shown in Table 3. As in Comparative Example 1, the experimental values and theoretical values are in good agreement, and it is clear that in Comparative Example 2 as well, the number of iminodiacetic acids introduced into the phenol nucleus is one.

表3 また、比較例1と同様にして、上記で得られた反応中間
体2.39gを100gの水に溶解させ、攪拌下に0.
lN−Na0H(f=0.998)を滴下し、pHが急
激に上界する変曲点(pH5,0)までに要した0、l
N−NaOHの滴定体積(ml数)を求めた。その結果
を表4に示す。
Table 3 Also, in the same manner as in Comparative Example 1, 2.39 g of the reaction intermediate obtained above was dissolved in 100 g of water, and 0.0 g of the reaction intermediate obtained above was dissolved in 100 g of water with stirring.
The 0, l required to reach the inflection point (pH 5,0) where the pH suddenly rises after dropping lN-NaOH (f = 0.998)
The titration volume (number of ml) of N-NaOH was determined. The results are shown in Table 4.

表4 この結果から明らかなように、比較例1とほぼ同一の結
果が得られ、比較例2で得られる反応中間体は比較例1
で得られる反応中間体と同一構造を有し、フェノール核
に導入されるイミノジ酢酸の個数は1個である。
Table 4 As is clear from the results, almost the same results as Comparative Example 1 were obtained, and the reaction intermediate obtained in Comparative Example 2 was
It has the same structure as the reaction intermediate obtained in , and the number of iminodiacetic acids introduced into the phenol nucleus is one.

次に上記で得た反応中間体に塩酸を添加し、さらに37
%ホルマリンを40.5部添加し、温度を90〜95℃
に保ち、3時間反応を続けた。次いで塩酸を中和し、水
洗したのち反応系を減圧にし、脱水すると樹脂が得られ
た。これを粉砕して得た粉末樹脂を120℃の熱風乾燥
機にて2時間硬化させた。
Next, hydrochloric acid was added to the reaction intermediate obtained above, and further 37
Add 40.5 parts of % formalin and raise the temperature to 90-95°C.
The reaction was continued for 3 hours. Next, after neutralizing the hydrochloric acid and washing with water, the reaction system was reduced in pressure and dehydrated to obtain a resin. The powdered resin obtained by pulverizing this was cured for 2 hours in a hot air dryer at 120°C.

この樹脂を実施例1と同様にして吸着能を測定したとこ
ろ、 0.28ミリ当量/g樹脂であった。
When the adsorption capacity of this resin was measured in the same manner as in Example 1, it was found to be 0.28 meq/g resin.

Claims (5)

【特許請求の範囲】[Claims] (1)フェノール類のフェノール核にキレート基を導入
したフェノール系キレート性イオン交換樹脂において、
キレート基が一般式 ▲数式、化学式、表等があります▼ (ただし、Mはアルカリ金属または水素、R_1、R_
2は水素またはアルキル基を表す。)で示されるフェノ
ール化合物であることを特徴とするフェノール系キレー
ト性イオン交換樹脂。
(1) In a phenolic chelating ion exchange resin in which a chelate group is introduced into the phenol nucleus of phenols,
The chelate group has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, M is an alkali metal or hydrogen, R_1, R_
2 represents hydrogen or an alkyl group. ) A phenolic chelating ion exchange resin characterized by being a phenolic compound represented by:
(2)一般式中のMが、アルカリ金属である特許請求の
範囲第1項記載のイオン交換樹脂。
(2) The ion exchange resin according to claim 1, wherein M in the general formula is an alkali metal.
(3)フェノール化合物が全フェノールに対しモル比で
0.1〜0.5の範囲である特許請求の範囲第1項又は
第2項記載のイオン交換樹脂。
(3) The ion exchange resin according to claim 1 or 2, wherein the phenol compound has a molar ratio of 0.1 to 0.5 with respect to the total phenol.
(4)フェノール系キレート性イオン交換樹脂が小球状
である特許請求の範囲第1ないし3項のいずれか記載の
イオン交換樹脂。
(4) The ion exchange resin according to any one of claims 1 to 3, wherein the phenolic chelating ion exchange resin has a small spherical shape.
(5)フェノール系キレート性イオン交換樹脂がpH2
以下の低pH領域において第二鉄イオンに対する吸着能
をほとんど低下しないものである特許請求の範囲第1な
いし4項のいずれか記載のイオン交換樹脂。
(5) Phenolic chelating ion exchange resin has a pH of 2
The ion exchange resin according to any one of claims 1 to 4, which hardly reduces the adsorption capacity for ferric ions in the following low pH range.
JP5139385A 1985-03-14 1985-03-14 Phenolic chelating ion exchange resin Granted JPS6121735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5139385A JPS6121735A (en) 1985-03-14 1985-03-14 Phenolic chelating ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5139385A JPS6121735A (en) 1985-03-14 1985-03-14 Phenolic chelating ion exchange resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52022497A Division JPS6059011B2 (en) 1977-03-01 1977-03-01 Adsorption treatment method

Publications (2)

Publication Number Publication Date
JPS6121735A true JPS6121735A (en) 1986-01-30
JPS6348587B2 JPS6348587B2 (en) 1988-09-29

Family

ID=12885692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5139385A Granted JPS6121735A (en) 1985-03-14 1985-03-14 Phenolic chelating ion exchange resin

Country Status (1)

Country Link
JP (1) JPS6121735A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222497A (en) * 1975-08-13 1977-02-19 Matsushita Electric Ind Co Ltd Electro-optic type display unit
JPS53106789A (en) * 1977-03-01 1978-09-18 Unitika Ltd Phenol-type chelate resin and adsorption teratment using the same
JPS6059011A (en) * 1983-09-09 1985-04-05 Nippon Steel Corp Desulfurizing method of molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222497A (en) * 1975-08-13 1977-02-19 Matsushita Electric Ind Co Ltd Electro-optic type display unit
JPS53106789A (en) * 1977-03-01 1978-09-18 Unitika Ltd Phenol-type chelate resin and adsorption teratment using the same
JPS6059011A (en) * 1983-09-09 1985-04-05 Nippon Steel Corp Desulfurizing method of molten metal

Also Published As

Publication number Publication date
JPS6348587B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
JPS6059011B2 (en) Adsorption treatment method
US3936399A (en) Process of producing phenolic chelate resin using iminodiacetic acid
US4250031A (en) Phenolic chelate resin and method of adsorption treatment
CN110003376B (en) Preparation method of chelate resin for preparing nickel sulfate from nickel-containing solution
JPH0572924B2 (en)
US4028284A (en) Phenolic chelate resin
US4255554A (en) Process for preparing phenol-formaldehyde-furfuryl alcohol terpolymers
JPS6121735A (en) Phenolic chelating ion exchange resin
JP2000239335A (en) High-density cured spherical phenolic resin
JPH0524167B2 (en)
JPS6160846B2 (en)
JPS62252412A (en) Production of phenolic resin
JPH0270717A (en) Novolac phenol resin for shell mold
JPS6259729B2 (en)
JP2549879B2 (en) Manufacturing method of chelating resin
JPS61108445A (en) Production of resin coated sand grain for shell mold
JPH0735427B2 (en) Fast curing novolak type phenol resin and method for producing the same
SU1113387A1 (en) Process for producing complexing ionite
JPS63162717A (en) Production of spherical chelate resin
JPH1180300A (en) Production of microspherical cured phenolic resin particle
JPH01154843A (en) Manufacture of resin coated sand for gas hardening mold
JPS62267314A (en) Novolak type phenolic resin
JPH04294839A (en) Binder for molding sand and its manufacture
JPH0493311A (en) Lowly odorous novolac phenolic resin composition for shell molding
JPH01113421A (en) Preparation of epoxy resin