JPS61217207A - Method and device for centering log - Google Patents

Method and device for centering log

Info

Publication number
JPS61217207A
JPS61217207A JP5899085A JP5899085A JPS61217207A JP S61217207 A JPS61217207 A JP S61217207A JP 5899085 A JP5899085 A JP 5899085A JP 5899085 A JP5899085 A JP 5899085A JP S61217207 A JPS61217207 A JP S61217207A
Authority
JP
Japan
Prior art keywords
axis
log
claws
amount
gripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5899085A
Other languages
Japanese (ja)
Other versions
JPH0460001B2 (en
Inventor
野崎 鉦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Machinery Works Ltd
Original Assignee
Taihei Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Machinery Works Ltd filed Critical Taihei Machinery Works Ltd
Priority to JP5899085A priority Critical patent/JPS61217207A/en
Publication of JPS61217207A publication Critical patent/JPS61217207A/en
Publication of JPH0460001B2 publication Critical patent/JPH0460001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Wood Veneers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はベニヤレースによって原木を回転切削する際、
原木の旋削中心と々る総体軸芯を決定する方法および装
置に関するものであり、特に原木の長手方向に亘って、
その両端近傍部分を含む3個所以上の任意位置を、原木
の総体軸芯の座標値を決定する算定基準とし、原木の仮
中心を回転中心とした把持爪の回動によって得られた演
算結果に基づき、後退限に位置する把持爪のy軸におけ
る前進補正量、またy軸における下降補正量を算出し、
原木を移動させるものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention provides
The present invention relates to a method and apparatus for determining the overall axis of the turning center of a log, and in particular, over the longitudinal direction of the log.
Three or more arbitrary positions, including the areas near both ends, are used as calculation standards to determine the coordinate values of the entire body axis of the log, and the calculation results obtained by rotating the gripping claws around the temporary center of the log as the rotation center. Based on this, calculate the forward correction amount on the y-axis and the downward correction amount on the y-axis of the gripping claw located at the backward limit,
It is used to move logs.

「従来の技術」 一般的に、原木のベニヤレースにおける旋削中心を決定
するには、適宜長さに切断した原木の側木口端面に共通
する最大内接円を算定し、この円の中心を求めることに
よって行なわれている。
``Prior art'' Generally, in order to determine the turning center of a veneer lace on raw wood, the maximum inscribed circle common to the side end faces of the raw wood cut to an appropriate length is calculated, and the center of this circle is found. It is done by

具体的には、各合板工場等において、作業者が原木の両
木目端面に物権をあてて、直交する長短径の長さを測定
した後、各長短径の中線を計算して白墨で印し、中線の
交点を求めて旋削中心としていた。
Specifically, at each plywood factory, workers place property rights on both grain edges of raw wood, measure the lengths of the major and minor axes that intersect at right angles, and then calculate the median line of each major and minor axis and mark it in chalk. The center of turning was determined by finding the intersection of the median lines.

また他の方式として、原木の面木口近傍を一対の昇降動
自在で、且つ前後動自在な受台により支持し、上方に配
置された一対のプロジェクタから原木の側木口端面に投
影される同心円に基づき、原木の両木目端面のy軸上に
おいては受台の上下動、X軸上においては受台の前後動
によって調整し、側木口端面の外形に内接する任意の同
心円中心を旋削中心としていた。
Another method is to support the area near the end of the log by a pair of supports that can move up and down and back and forth, and to project concentric circles from a pair of projectors placed above onto the end of the side of the log. Based on this, adjustments were made by vertical movement of the pedestal on the y-axis of both grain end faces of the raw wood, and back and forth movement of the pedestal on the X-axis, and the turning center was set at the center of an arbitrary concentric circle inscribed in the outer shape of the side wood end face .

さらに、原木の両木目端面の近傍に、原木を載置する受
台と原木の上面を検知する検知器を相対峙し、両者を上
下より等距離接近させて、原木を挾持する方式によって
も、旋削中心を求めていた。
Furthermore, a method in which a pedestal on which the log is placed and a detector that detects the top surface of the log are placed facing each other near both ends of the grain of the log, and the two are brought close to each other from above and below at equal distances to sandwich the log, can also be used. I was looking for a turning center.

しかしながら、上記記載した各種方式のうち、第1の方
式は、作業者の主観により原木端面の長短径を独自に設
定しており、測定された長短径より中線を算出するに際
しては、必然的に誤差が生じ、正確を期することは困難
であり、1だ第2の方式においても、両木目端面に投影
される同心円図は、一定距離を隔てたプロジェクタから
の映像であるため、複数の同心円は拡幅された状態とな
り、作業者による端面輪郭と任意同心円との識別は困難
となる。さらに第3の方式においても、受台の上昇量と
検知器の下降量を等距離に制御しても、個々の原木の断
面は不整形であるので、挾持状態は不正確となる。
However, among the various methods described above, the first method independently sets the major and minor axes of the end face of the log depending on the operator's subjectivity, and when calculating the median line from the measured major and minor axes, it is necessary to Errors occur and it is difficult to ensure accuracy. Even in the first and second methods, the concentric circles projected on both wood grain end faces are images from projectors separated by a certain distance, so it is difficult to ensure accuracy. The concentric circles are in a widened state, making it difficult for the operator to distinguish between the end face contour and the arbitrary concentric circles. Furthermore, in the third method, even if the amount of rise of the pedestal and the amount of fall of the detector are controlled to be equidistant, the cross section of each log is irregular, so the clamping state will be inaccurate.

また、上記各方式は何れも原木の両端、若しくはその近
傍位置を、旋削中心を決定する算定基準としているので
、原木の長手方向に対しての曲りや変形については、そ
の都度作業者の勘に頼らざるを得ないものとなり、この
ため、旋削中心の誤差は一層増長される。従って、実際
にベニヤレースで回転切削すると、定寸に満たない小幅
状のベニヤ単板を多量に削出することに々る。
In addition, each of the above methods uses both ends of the raw wood or the positions near them as calculation criteria for determining the center of turning, so bending or deformation in the longitudinal direction of the raw wood depends on the operator's intuition each time. Therefore, the error in the turning center is further increased. Therefore, when a veneer lace is actually rotary cut, a large amount of veneer veneer with a narrow width that is less than the specified size is cut out.

「発明が解決しようとする問題点」 本発明は斜上に鑑み、原木の芯出し位置において、後退
限に待機する把持爪によって、原木の仮中心を回転中心
として回動し、長手方向に亘る複数個所の断面輪郭を検
知して総体軸芯の座標値を演算した後、この座標値に基
づくX軸上の補正量を把持爪の前進動により、また、y
軸上の補正量を、把持爪から原木を把持交換した搬送爪
の下降動によって行ない、その後、原木をベニヤレース
の旋削中心まで定距離搬送するものである。
``Problems to be Solved by the Invention'' In view of the upward slope, the present invention is designed to rotate the temporary center of the raw material as a rotation center by means of a gripping claw that waits at the retraction limit at the centering position of the raw material, and to extend in the longitudinal direction. After detecting the cross-sectional contours at multiple locations and calculating the coordinate values of the overall body axis, the correction amount on the X axis based on these coordinate values is
The amount of correction on the axis is performed by the downward movement of the transport claws that grip and replace the raw wood from the gripping claws, and then the raw wood is transported a fixed distance to the turning center of the veneer race.

「実施例」 以下、本発明の実施例を添付図面に基づき説明する。"Example" Embodiments of the present invention will be described below with reference to the accompanying drawings.

左右に任意間隔を置いて、上下方向に複数対の機枠1を
立設し、この機枠1の上部間に各々横梁2を横架して門
型状に形成すると共に、′長手方向に亘る機枠lの上部
間に、各々水平梁3を固着して連結する。
A plurality of pairs of machine frames 1 are erected in the vertical direction at arbitrary intervals left and right, and cross beams 2 are horizontally suspended between the upper parts of the machine frames 1 to form a gate shape. Horizontal beams 3 are fixed and connected between the upper parts of the machine frames l.

左右両側の各機枠1間には、相対向して一対の案内軸4
が各々取着され、この一対の案内軸4に、軸受箱5の上
部両端の穿孔部分を嵌挿し、軸受箱5を支持している。
Between each machine frame 1 on both the left and right sides, there is a pair of guide shafts 4 facing each other.
are respectively attached, and the perforated portions at both ends of the upper part of the bearing box 5 are fitted into the pair of guide shafts 4 to support the bearing box 5.

この軸受箱5の下端から延設した支持体6の後部に、把
持用流体シリンダ7を取着し、そのピストンロッド8の
先端を、軸受箱5のほぼ中央部に嵌挿支持されて成るス
ピンドル9の後端に取着している。
A gripping fluid cylinder 7 is attached to the rear part of the support body 6 extending from the lower end of the bearing box 5, and the tip of the piston rod 8 is fitted into and supported by the substantially central part of the bearing box 5. It is attached to the rear end of 9.

このスピンドル9の先端には、原木10の木口端面11
を把持する把持爪12が取着され、またその中央近傍に
は、支持体6の下部に設置されたモータ13の回動を、
チェ714を介して受動するチェンホイール15が軸方
向摺動自在、且つ回転方向に対して一体に嵌挿されてい
る。この時、相対向して位置する他方の軸受箱5に嵌挿
支持された従動側のスピンドル9には、第6図、第7図
に示す如く、大歯車16が軸方向摺動自在、且つ回転方
向に対して一体に嵌挿され、この大歯車16に小径の連
係歯車17を歯合させ、さらに、この連係歯車17の軸
部に嵌着された小歯車18と、支持体6に取着されたロ
ータリーエンコーダ19のビニオン20を歯合させて、
原木10の回転角を任意角度毎に計測する原木回転角検
知器21を配置している。
At the tip of this spindle 9, there is a butt end surface 11 of the log 10.
A gripping claw 12 is attached near the center of the gripping claw 12 for gripping the support 6, and a motor 13 installed at the bottom of the support 6 rotates
A chain wheel 15 that is passively driven via a chain 714 is slidable in the axial direction and is integrally fitted in the rotating direction. At this time, as shown in FIGS. 6 and 7, a large gear 16 is mounted on the driven side spindle 9, which is fitted and supported by the other bearing box 5 located opposite to each other, and which is slidable in the axial direction. A small-diameter linking gear 17 is fitted into the large gear 16 integrally with respect to the rotating direction, and a small gear 18 fitted onto the shaft of the linking gear 17 is attached to the support 6. The binions 20 of the attached rotary encoder 19 are meshed,
A log rotation angle detector 21 is arranged to measure the rotation angle of the log 10 at each arbitrary angle.

さらに、前記軸受箱5の中央部には、X軸補正用流体シ
リンダ22が取着され、そのピストンロッド23の先端
を一方の機枠1に取着すると共に、案内軸4と平行に配
置されたラック24に、支持体6に取着されたエンコー
ダ25のビニオン26を歯合させ、リミットスイッチ2
7によってエンコーダ25をリセットし、後退限からの
軸受箱5の移動量を規制するX軸補正装置28を配置し
ている。
Further, an X-axis correction fluid cylinder 22 is attached to the center of the bearing box 5, and the tip of its piston rod 23 is attached to one of the machine frames 1, and is arranged parallel to the guide shaft 4. The pinion 26 of the encoder 25 attached to the support body 6 is meshed with the rack 24, and the limit switch 2
7, an X-axis correction device 28 is arranged to reset the encoder 25 and regulate the amount of movement of the bearing box 5 from the backward limit.

一方、前記横梁2には、原木10の長手方向に亘る任意
の断面輪郭を検知する変位量検知器29が、複数個所、
本実施例においては中央並びに両端の3個所、設置され
ている。
On the other hand, the cross beam 2 is provided with displacement detectors 29 at a plurality of locations for detecting arbitrary cross-sectional contours in the longitudinal direction of the log 10.
In this embodiment, three locations are provided, one in the center and one at both ends.

即ち、横梁2の原木10搬入方向側面に取着された一対
の側板30間に、ドッグレッグ状の揺動腕31の基部近
傍をピン32にて枢支しくまた、揺動腕31の後部を変
位用流体シリンダ33に枢支すると共に、そのピストン
ロッド34の先端を一対の側板30の上部に枢支し、揺
動腕31の先端を、流体動によってビン32接部を支点
として、常時原木10の外周面へ圧接させている。さら
に、揺動腕31のビン32接部に嵌着された半円状の測
定板35と、側板30に取着されたエンコーダ36のビ
ニオン37を歯合させ、揺動腕31の揺動変位量を検知
している。
That is, between a pair of side plates 30 attached to the side surfaces of the cross beam 2 in the direction in which the logs 10 are carried in, the vicinity of the base of the dogleg-shaped swinging arm 31 is pivoted by a pin 32, and the rear part of the swinging arm 31 is supported by a pin 32. It is pivoted to the displacement fluid cylinder 33, and the tip of the piston rod 34 is pivoted to the upper part of the pair of side plates 30, and the tip of the swinging arm 31 is constantly moved by fluid movement, using the contact part of the bin 32 as a fulcrum. It is brought into pressure contact with the outer peripheral surface of 10. Furthermore, the semicircular measuring plate 35 fitted to the contact portion of the swinging arm 31 with the bin 32 and the pinion 37 of the encoder 36 attached to the side plate 30 are brought into mesh with each other, and the swinging displacement of the swinging arm 31 is adjusted. Detecting the amount.

尚、両端に位置する変位量検知器29は、図示例のよう
に、原木10長に応じて検知位置を移動自在とすべく、
横梁2に取着された一対の調整軸38に側板30を嵌挿
させて、横梁2に取着された調整用流体シリンダ39の
ピストンロッド40の先端を、側板30に連結する場合
もある。
In addition, the displacement amount detectors 29 located at both ends are arranged so that their detection positions can be moved freely according to the length of the log 10, as shown in the illustrated example.
In some cases, the side plate 30 is fitted onto a pair of adjustment shafts 38 attached to the cross beam 2, and the tip of the piston rod 40 of the adjustment fluid cylinder 39 attached to the cross beam 2 is connected to the side plate 30.

次いで、左右の水平梁3をレールとして、その四隅部に
車輪41が支承された走行体42を、横梁2と平行に横
架し、ベニヤレースまで往復動自在としている。
Next, using the left and right horizontal beams 3 as rails, a traveling body 42 with wheels 41 supported at its four corners is horizontally suspended parallel to the cross beam 2, so that it can freely reciprocate up to the veneer race.

この走行体42の左右両側には、横梁2と平行に配置さ
れた横軸43に吊持体伺が相対向して嵌挿され、各吊持
体44には、走行体42の下部に逆向きに枢支された一
対の吊持体用流体シリンダ45のピストンロッド46の
先端が取着され、各吊持体44を横軸43に沿って移動
自在としている。
On both left and right sides of the running body 42, suspension supports are fitted into horizontal shafts 43 arranged parallel to the crossbeam 2 so as to face each other, and each suspension support 44 is provided with an opposite side at the bottom of the running body 42. The ends of piston rods 46 of a pair of fluid cylinders 45 for suspension bodies are attached to each other, and each suspension body 44 is movable along a horizontal axis 43.

さらに、各吊持体44には、その下端より垂下された一
対のガイド軸47に搬送爪48が嵌挿され、この搬送爪
48の後端を、吊持体44に逆向きに取着されたX軸補
正用流体シリンダ49のピストンロッド50に取着する
と共に、吊持体44の側部に取着されたエンコーダ51
のビニオン52を、搬送爪48の側部に取着されたラッ
ク53に歯合させ、搬送爪48の下降量を規制するX軸
補正装置54が配設されている。
Furthermore, a transport claw 48 is fitted into a pair of guide shafts 47 hanging from the lower end of each suspension member 44, and the rear end of the transport claw 48 is attached to the suspension member 44 in the opposite direction. An encoder 51 is attached to the piston rod 50 of the X-axis correction fluid cylinder 49 and attached to the side of the suspension body 44.
An X-axis correcting device 54 is provided that meshes the pinion 52 with a rack 53 attached to the side of the transport claw 48 and regulates the amount of descent of the transport claw 48.

と、原木10把持後の第2段下降りの二段階に規制する
。従って、第2段下降り後の位置を原木径の大小に応じ
、中段或いは下段のいずれかに規制すへく、シリンダ室
内においてピストンロッド50の外周に摺動する外接ピ
ストンロッド55を内在している。
and the second stage descending after grasping the log 10. Therefore, the position after descending from the second stage is regulated to either the middle stage or the lower stage depending on the diameter of the log. There is.

尚、この搬送爪48の二段階下降を規制するには、X軸
補正用流体シリンダ49のピストンロッド50に、さら
に第2段下降り用の流体シリンダ(図示せず)を直列的
に吊持し、そのピストンロッド(図示せず)の先端に搬
送爪48の後端を接続したり、また、X軸補正用流体シ
リンダ49の第1段下降T並びに第2段下降りを機械的
に規制する可動ストッパ(図示せず)を配設することも
可能である。
In order to restrict the two-stage descent of the transport claw 48, a fluid cylinder (not shown) for lowering the second stage is further suspended in series on the piston rod 50 of the X-axis correction fluid cylinder 49. The rear end of the conveyance claw 48 is connected to the tip of the piston rod (not shown), and the first stage downward movement T and second stage downward movement of the X-axis correction fluid cylinder 49 is mechanically restricted. It is also possible to provide a movable stop (not shown).

尚、図中56はベニヤレースのチャックである。In addition, numeral 56 in the figure is a chuck made of veneer lace.

1作用」 次に作用を説明する。1 action” Next, the action will be explained.

まず、原木10を芯出し位置へ搬入するに際し、把持用
流体シリンダ7のピストンロッド8を縮小させて、第1
図に示すように把持爪12を退避させ、また第2図に示
すように、X軸補正用流体シリンダ22のピストンロッ
ド23を縮小させて、軸受箱5を案内軸4上、後退限に
待機させると共に、原木10長に応じて、調整用流体シ
リンダ39によって両端の揺動腕31の位置を調整した
後、変位用流体ンリンダ33のピストンロッド34ヲ伸
長させて、揺動腕31をピン32接部を支点として上限
位置へ退避させる。
First, when carrying the log 10 to the centering position, the piston rod 8 of the gripping fluid cylinder 7 is contracted, and the first
As shown in the figure, the gripping claw 12 is retracted, and as shown in FIG. At the same time, the positions of the swinging arms 31 at both ends are adjusted by the adjustment fluid cylinder 39 according to the length of the log 10, and then the piston rod 34 of the displacement fluid cylinder 33 is extended, and the swinging arm 31 is moved to the pin 32. Retract to the upper limit position using the contact part as a fulcrum.

次いで、前記記載の方法によって、適宜仮芯出しされた
原木10を芯出し位置へ搬入し、一対の把持用流体シリ
ンダ7を作動させて、側木目端面11の仮中心と把持爪
12の中心を合致させて、原木10を把持する。
Next, the raw wood 10 that has been temporarily centered according to the method described above is carried to the centering position, and the pair of gripping fluid cylinders 7 is operated to align the temporary center of the side grain end face 11 and the center of the gripping claw 12. Match them and grasp the log 10.

さらに、変位用流体シリンダ33を作動させて、上限に
退避していた各揺動腕31ヲ、ビン32接部を支点とし
て原木10の長手方向の外周面へ一定圧力にて押し付け
る。
Furthermore, the displacement fluid cylinder 33 is activated to press the swinging arms 31, which had been retracted to the upper limit, against the longitudinal outer circumferential surface of the log 10 using the contact portion of the bin 32 as a fulcrum with a constant pressure.

しかして、モータ13の駆動をチェノ14を介してチェ
ノホイール15へ伝達すれば、スピンドル9は回動され
、原木10は仮中心を回転中心として一回動されること
になる。この時、原木10の回動量は原木回転角検知器
21に、また、原木10の両端近傍並びに中央部の各任
意断面は、原木10の側木口端面11の仮中心間を結ぶ
線上からの変位量として、各変位量検知器29により、
各々同期して検知される0 即ち、原木回転角検知器21においては、従動側のスピ
ンドル9の回転角を、ピニオン20を介してロータリー
エンコーダ19により、遂次検知し、また一方、各変位
量検知器29においては、各任意断面毎の回転中心軸か
らの半径と偏角を、ビン32接部を支点として揺動する
揺動腕31の変位量として捉えており、この変位量は測
定板35と歯合するビニオン37を介してエンコーダ3
6によって遂次検出されている。
When the drive of the motor 13 is transmitted to the cheno wheel 15 via the chenno 14, the spindle 9 is rotated, and the log 10 is rotated once around the temporary center. At this time, the amount of rotation of the log 10 is determined by the log rotation angle detector 21, and each arbitrary cross section near both ends and the center of the log 10 is determined by the displacement from the line connecting the tentative centers of the side end faces 11 of the log 10. As the amount, each displacement amount detector 29
In other words, in the log rotation angle detector 21, the rotation angle of the spindle 9 on the driven side is sequentially detected by the rotary encoder 19 via the pinion 20. In the detector 29, the radius and deflection angle from the rotation center axis for each arbitrary cross section are taken as the amount of displacement of the swinging arm 31 that swings around the contact portion of the bottle 32 as a fulcrum, and this amount of displacement is determined by the measurement plate. Encoder 3 via a pinion 37 meshing with 35
6 has been successively detected.

従って、原木回転角検知器21によって検知された任意
角の電気信号と、変位量検知器29によって検知された
変位量の電気信号は、同期的に取り出され、複数個の断
面輪郭が検知される。これら各断面輪郭は、演算装置(
図示せず)へ入力され、各データに基づき適宜演算され
て、原木10の総体軸芯の座標値が得られることになる
。さらに、この座標値と仮中心、即ち、回転中心からの
y軸、並びにy軸の偏差を求め、X軸補正装置28、X
軸補正装置54へ各々指示する。
Therefore, the electric signal of the arbitrary angle detected by the log rotation angle detector 21 and the electric signal of the displacement amount detected by the displacement amount detector 29 are taken out synchronously, and a plurality of cross-sectional contours are detected. . Each of these cross-sectional contours is calculated by the calculation unit (
(not shown) and is appropriately calculated based on each data to obtain the coordinate values of the entire body axis of the log 10. Furthermore, the y-axis and the deviation of the y-axis from this coordinate value and the temporary center, that is, the rotation center, are determined, and the X-axis correction device 28,
Each instruction is given to the axis correction device 54.

次に、第10図に基づき、各偏差の補正を具体的に説明
する。仮りに、回転中心0を座標上の原点(0、0)と
し、総体軸芯Gの座標値を(Gx。
Next, based on FIG. 10, correction of each deviation will be specifically explained. Suppose that the rotation center 0 is the coordinate origin (0, 0), and the coordinate value of the total body axis G is (Gx).

−Gy)とすれば、y軸における補正量は軸受箱5の所
定前進量A、例えば、上限位置に待機する搬送爪48の
分岐垂線までの前進量、から(Gx)を減算した移動量
となる。また、y軸における補正量は、搬送爪48の所
定下降量B、例えば、上限位置に待機する搬送爪48の
下端よりy座標が(0)までの距離からチャック56の
半径子αを減算した下降量であり、これから(−Gy)
を減算して第1段下降Tを求めている。
-Gy), then the correction amount on the y-axis is the predetermined advance amount A of the bearing box 5, for example, the advance amount of the transport claw 48 waiting at the upper limit position to the branch perpendicular line, minus (Gx). Become. In addition, the correction amount on the y-axis is determined by subtracting the radius α of the chuck 56 from the predetermined lowering amount B of the transport claw 48, for example, the distance from the lower end of the transport claw 48 waiting at the upper limit position to the y-coordinate (0). It is the amount of descent, and from now on (-Gy)
The first stage descending T is obtained by subtracting .

従って、総体軸芯Gの座標値が(,0,0)、即ち、回
転中心Oと同一であれば、y軸における軸受箱5の移動
量は所定前進量Aであり、また、y軸における搬送爪4
8の第1段下降Tは所定下降量Bとなる。
Therefore, if the coordinate values of the overall axis G are (,0,0), that is, the same as the rotation center O, the amount of movement of the bearing box 5 on the y-axis is the predetermined advance amount A, and the amount of movement on the y-axis is Transport claw 4
The first stage lowering T of 8 becomes a predetermined lowering amount B.

算出された補正量は、まず、左右に位置するX軸補正装
置28のX軸補正用流体シリンダ22へ伝達され、案内
軸4に沿って軸受箱5を各別に前進させると共に、エン
コーダ25によって遂次検出した前進量を演算・装置へ
帰環させ、補正量を正確に制御している。
The calculated correction amount is first transmitted to the X-axis correction fluid cylinders 22 of the X-axis correction devices 28 located on the left and right, moves the bearing box 5 forward individually along the guide shaft 4, and is finally transmitted by the encoder 25. Next, the detected amount of advance is returned to the calculation/device to accurately control the amount of correction.

次いで、左右に位置するX軸補正装置54のX軸補正用
流体シリンダ49へ補正量が伝達され、搬送爪48ヲガ
イド軸47に沿って各々下降させると共に、エンコーダ
51によって遂次検出した下降量を演算装置へ帰環させ
、補正量を正確に制御している。
Next, the correction amount is transmitted to the X-axis correction fluid cylinders 49 of the X-axis correction device 54 located on the left and right, and the conveying claws 48 are lowered along the guide shaft 47, and the lowering amounts sequentially detected by the encoder 51 are transmitted. The amount of correction is accurately controlled by returning it to the arithmetic unit.

補正完了後、一対の吊持体用流体シリンダ45を作動さ
せて、搬送爪48を原木10の側木口端面11へ喰い込
ませ、次いで、把持爪12を側木口端面11より離脱さ
せる。この時、原木10は側木口端面11の幾何学的な
座標上において、一対の搬送爪48に相対的に芯出しさ
れた状態で把持されており、この状態下、X軸補正用流
体シリンダ49を作動させ、シリンダ室内において、第
2段下降りが規制されり外接ピストンロッド55のロッ
ド部分先端へ、ピストン50のピストン部分が当接する
まで下降させる。
After the correction is completed, the pair of suspension fluid cylinders 45 are operated to cause the conveyance claws 48 to bite into the side end faces 11 of the logs 10, and then the grip claws 12 are removed from the side end faces 11. At this time, the raw wood 10 is held in a relatively centered state by the pair of transport claws 48 on the geometric coordinates of the side end face 11, and under this state, the X-axis correction fluid cylinder 49 is activated, and the second step is lowered in the cylinder chamber until the second stage descending is restricted and the piston portion of the piston 50 comes into contact with the tip of the rod portion of the circumscribed piston rod 55.

しかして、搬送爪48に把持された軸芯の高さは、ベニ
ヤレースのチャック56の旋削中心Sと同一となり、そ
の後、走行体42を水平梁3上を定距離Cだけ前進させ
て、原木10の総体軸芯Gと旋削中心Sを合致させ、搬
送爪48からチャック56による原木10の把持変換を
行なうものである。
Therefore, the height of the axis gripped by the conveying jaws 48 becomes the same as the turning center S of the chuck 56 of the veneer race, and after that, the traveling body 42 is advanced by a fixed distance C on the horizontal beam 3, and the raw wood is The overall axis G of the log 10 and the turning center S are made to coincide with each other, and the log 10 is gripped and converted by the conveying claws 48 and the chuck 56.

尚、搬送爪48の第2段下降りと、走行体42の定距離
C前進を同時に行なえば、ベニヤレースへの原木10の
供給時間が短縮できることになる。
Incidentally, if the second stage lowering of the transport claw 48 and the forward movement of the traveling body 42 by a fixed distance C are carried out at the same time, the time for supplying the logs 10 to the veneer race can be shortened.

「発明の効果」 以上のように本発明によれば、後退限に待機する把持爪
によって、原木を仮中心を回転中心として回動させ、長
手方向に亘る複数個所の断面輪郭を検知することによっ
て、原木の総体軸芯の座標値を演算し、この座標値に基
づき、まず把持爪を前進させてX軸上の補正を行ない、
次いで原木、を把持爪から搬送爪へ把持交換した後、搬
送爪を下降させてX軸上の補正を行なうので、正確な旋
削中心が得られ、ベニヤレースによって切削されるベニ
ヤ単板においては、前記記載の各種従来方法により求め
たものに比して、連続状のベニヤ単板の取得率が向上す
る。また、不連続状のベニヤ単板の吐出量が減少し、後
段工程の作業性を改善することができる。
"Effects of the Invention" As described above, according to the present invention, the log is rotated about the temporary center by the gripping claws waiting at the retraction limit, and the cross-sectional contours at multiple locations in the longitudinal direction are detected. , calculate the coordinate values of the overall axis of the log, and based on these coordinate values, first move the gripping claws forward to perform correction on the X axis,
Next, after the raw wood is gripped and exchanged from the gripping jaws to the conveying jaws, the conveying jaws are lowered to perform correction on the X axis, so that an accurate turning center can be obtained, and in the case of veneer veneer cut by the veneer race, The yield rate of continuous veneer veneers is improved compared to those obtained by the various conventional methods described above. In addition, the amount of discontinuous veneer veneer discharged is reduced, and workability in subsequent steps can be improved.

また特に、補正に際して、軸受箱はX軸上の補正量を所
定前進量から減算して、絶えず前進規制され、さらに、
搬送爪はX軸上の補正量を所定下降量から減算して、絶
えず下降規制されており、両者ともに一方向に制御して
いるので、簡素な制御方法並びに機構となる。
In particular, during correction, the bearing box is constantly regulated from moving forward by subtracting the correction amount on the X axis from the predetermined moving amount;
The conveying claw is constantly regulated to descend by subtracting the correction amount on the X axis from the predetermined descending amount, and both are controlled in one direction, resulting in a simple control method and mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部切欠き側面図、第
2図は同一部切欠き正面図、第3図はX軸補正装置の正
面図、第4図は同平面図、第5図は同側面図、第6図は
原木回転角検知器の正面図、第7図は同側面図、第8図
は変位量検知器の正面図、第9図はX軸補正装置の正面
図、第10図は概略説明図である。 1 ・機枠、5・・軸受箱、9・・・スピンドル、10
・・原木、12・・把持爪、2]・・原木回転角検知器
、28・X軸補正装置、29・・変位量検知器、31・
・揺動腕、42・・走行体、48・・搬送爪、54・・
・X軸補正装置、 特許出願人 株式会社 太平製作所 屯 ト 饗
Fig. 1 is a partially cutaway side view showing an embodiment of the present invention, Fig. 2 is a partially cutaway front view of the same, Fig. 3 is a front view of the X-axis correction device, Fig. 4 is a plan view of the same, Figure 5 is a side view of the same, Figure 6 is a front view of the log rotation angle detector, Figure 7 is a side view of the same, Figure 8 is a front view of the displacement detector, and Figure 9 is a front view of the X-axis correction device. The front view and FIG. 10 are schematic illustrations. 1. Machine frame, 5. Bearing box, 9. Spindle, 10.
... Log, 12. Gripping claw, 2]... Log rotation angle detector, 28. X-axis correction device, 29.. Displacement amount detector, 31.
- Swinging arm, 42... Traveling body, 48... Conveyance claw, 54...
・X-axis correction device, patent applicant: Taihei Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1、後退限に待機する把持爪によって、原本を仮中心を
回転中心として回動させ、長手方向に亘る複数個所の断
面輪郭を検知することによって、原木の総体軸芯の座標
値を演算し、この座標値に基づき、まず把持爪を前進さ
せてx軸上の補正を行ない、次いで原木を把持爪から搬
送爪へ把持交換した後、搬送爪を下降させてy軸上の補
正を行なうことを特徴とする原木の芯出し方法。 2、上下方向に立設された機枠間を、x軸補正装置によ
って水平方向に進退自在とした一対の軸受箱に、その先
端に把持爪が装着され、且つ回転角検知器が付設された
スピンドルを摺動自在に各々嵌挿すると共に、機枠上部
の水平梁を案内として走行自在に横架された走行体に、
y軸補正装置によって昇降自在な搬送爪を両側より各々
吊下し、一方、原木の長手方向に任意間隔を置いて複数
個配設される各揺動腕の基端に、変位量検知器を各々付
設してピン接し、さらに前記回転角検知器と変位量検知
器の各データから演算される総体軸芯の座標値に基づき
、前記軸受箱の前進補正量をx軸補正装置へ、また搬送
爪の下降補正量をy軸補正装置へ、各々出力させること
を特徴とする原木の芯出し装置。
[Claims] 1. The original is rotated around a temporary center by a gripping claw waiting at the retraction limit, and the cross-sectional contours at multiple locations in the longitudinal direction are detected, thereby determining the overall axis of the original. The coordinate values are calculated, and based on these coordinate values, the gripping claws are first moved forward to make corrections on the x-axis, and then the log is gripped and exchanged from the gripping claws to the transporting claws, and then the transporting claws are lowered and corrected on the y-axis. A method for centering logs, which is characterized by making corrections. 2. A pair of bearing boxes, which are horizontally movable between vertically erected machine frames using an x-axis correction device, have gripping claws attached to their tips and a rotation angle detector. The spindles are slidably inserted into each, and the horizontal beams at the top of the machine frame are used as guides to move the spindles onto the horizontally suspended traveling body.
Transport claws that can be raised and lowered by a y-axis correction device are suspended from both sides, and a displacement detector is installed at the base end of each swinging arm, which is arranged at arbitrary intervals in the longitudinal direction of the log. The forward correction amount of the bearing box is transferred to the x-axis correction device based on the coordinate value of the overall body axis calculated from each data of the rotation angle detector and the displacement amount detector. A log centering device characterized in that a downward correction amount of a claw is outputted to a y-axis correction device.
JP5899085A 1985-03-23 1985-03-23 Method and device for centering log Granted JPS61217207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5899085A JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5899085A JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Publications (2)

Publication Number Publication Date
JPS61217207A true JPS61217207A (en) 1986-09-26
JPH0460001B2 JPH0460001B2 (en) 1992-09-24

Family

ID=13100280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5899085A Granted JPS61217207A (en) 1985-03-23 1985-03-23 Method and device for centering log

Country Status (1)

Country Link
JP (1) JPS61217207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967058A2 (en) * 1998-06-26 1999-12-29 Meinan Machinery Works, Inc. Apparatus and method for centering and feeding log
JP2012081688A (en) * 2010-10-14 2012-04-26 Meinan Mach Works Inc Method of supplying raw wood to veneer lathe
US20220009120A1 (en) * 2019-01-30 2022-01-13 Meinan Machinery Works, Inc. Log feeding apparatus, log processing apparatus having the same, and method of controlling the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967058A2 (en) * 1998-06-26 1999-12-29 Meinan Machinery Works, Inc. Apparatus and method for centering and feeding log
EP0967058A3 (en) * 1998-06-26 2001-12-12 Meinan Machinery Works, Inc. Apparatus and method for centering and feeding log
JP2012081688A (en) * 2010-10-14 2012-04-26 Meinan Mach Works Inc Method of supplying raw wood to veneer lathe
US20220009120A1 (en) * 2019-01-30 2022-01-13 Meinan Machinery Works, Inc. Log feeding apparatus, log processing apparatus having the same, and method of controlling the same
US11858164B2 (en) * 2019-01-30 2024-01-02 Meinan Machinery Works, Inc Log feeding apparatus, log processing apparatus having the same, and method of controlling the same

Also Published As

Publication number Publication date
JPH0460001B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
US5582224A (en) Methods and apparatus for centering a log and for supplying a log to be centered
JPS61219469A (en) Method for machining work and device for executing said method
CN110303345B (en) Full-automatic workpiece processing line and operation method thereof
CN113635335B (en) Automatic system for processing and flatness detection
JPS61217207A (en) Method and device for centering log
CN117380787A (en) Automatic straightening equipment for linear guide rail bending
CN111420891A (en) Automatic wheel hub roundness detection and distribution device
JPS61237601A (en) Method and device for selectively centering and supplying log
JPH0473363B2 (en)
JPH0438283B2 (en)
JP4263899B2 (en) Precut wood manufacturing apparatus and manufacturing method
CN213336045U (en) Automatic detection device for columnar workpiece
JP2001105267A (en) Work positioning method
JP2889123B2 (en) Pre-cut planer control device and control method
JPH0776002A (en) Method for conveying lumber for lumber sawing machine
CN217033688U (en) Optical detection platform for plates
JPH01159188A (en) Method of controlling industrial robot
JP4298416B2 (en) Lens conveying device and conveying method
JP3476578B2 (en) Log feeder
JPH06183550A (en) Supply device for material wood
JP2021167050A (en) Method for alignment of eccentric work piece on grinder outside machine, device for its alignment outside machine, and chuck for grinder
JPH0562042B2 (en)
JPH0798223B2 (en) Plate bending machine
JPS60187507A (en) Automatic charger for roughly barked log
JPS60179376A (en) Work positioning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term