JPS6121718B2 - - Google Patents

Info

Publication number
JPS6121718B2
JPS6121718B2 JP57175317A JP17531782A JPS6121718B2 JP S6121718 B2 JPS6121718 B2 JP S6121718B2 JP 57175317 A JP57175317 A JP 57175317A JP 17531782 A JP17531782 A JP 17531782A JP S6121718 B2 JPS6121718 B2 JP S6121718B2
Authority
JP
Japan
Prior art keywords
alkali
waste liquid
gas
carbon dioxide
hydrosulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57175317A
Other languages
Japanese (ja)
Other versions
JPS5969192A (en
Inventor
Katsuro Watanabe
Akimitsu Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUYAMA KK
Original Assignee
FUKUYAMA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUYAMA KK filed Critical FUKUYAMA KK
Priority to JP57175317A priority Critical patent/JPS5969192A/en
Publication of JPS5969192A publication Critical patent/JPS5969192A/en
Publication of JPS6121718B2 publication Critical patent/JPS6121718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides

Description

【発明の詳細な説明】 本発明は石油精製、石油化学、バリウム塩、セ
ロハン、レーヨン製造などの化学工場から発生す
る硫化アルカリ等を含有するアルカリ廃液の処理
方法に関し、特に該廃液を公害防止の面で処理す
ると同時に、該廃液中の有価成分を回収する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating alkaline waste liquid containing alkali sulfide etc. generated from chemical factories such as petroleum refining, petrochemical, barium salt, cellophane, and rayon manufacturing, and in particular, the present invention relates to a method for treating alkaline waste liquid containing alkali sulfide, etc., generated from chemical factories such as petroleum refining, petrochemical, barium salt, cellophane, and rayon manufacturing. The present invention relates to a method for recovering valuable components in the waste liquid at the same time as treating the waste liquid.

上記アルカリ廃液は石油精製、石油化学、セロ
ハン製造などの化学工場で脱硫を目的にした各種
アルカリ洗浄工程から発生又は排出し、これらの
アルカリ廃液中には硫化アルカリ、炭酸アルカリ
分の外に水硫化アルカリ分又は苛性アルカリ分な
どが混溶しているばかりでなく、一般には被洗浄
成分によつてアルカリ可溶性有機物をも溶存して
おり、処理の困難な廃液(以下、このような廃液
をアルカリ廃液という)である。このようなアル
カリ廃液を公害防止処理するには、従来、そのア
ルカリ分を酸によつて中和し、さらに溶存する
H2S分の追出し減少をはかるため酸性(通常pH3
〜4)にになるまで過剰の酸を添加し、更にスト
リツピングしているが、なおこの酸性液中には微
量のH2Sが溶存しているため、完全無害化には酸
化剤などによる酸化処理あるいは活性炭処理、活
性汚泥処理などの方法を単独又は重複して実施す
ることによつて処理している。一方、酸の過剰添
加時に発生するH2Sは、イオウ回収、硫酸回収、
石こう回収、場合によつてはアルカリ液へ吸収さ
せて再度硫化物として回収する方法等によつて無
害化がはかられている。
The above alkaline waste liquid is generated or discharged from various alkali cleaning processes for the purpose of desulfurization in chemical factories such as petroleum refining, petrochemicals, and cellophane manufacturing. The waste liquid is difficult to treat because it not only contains alkali or caustic alkaline components, but also alkali-soluble organic substances dissolved in the components to be cleaned (hereinafter, such waste liquid is referred to as alkaline waste liquid). ). Conventionally, in order to treat such alkaline waste liquid for pollution prevention, its alkaline content is neutralized with acid and then dissolved.
An acidic solution (usually pH 3) is used to reduce H 2 S content.
Excess acid is added until the solution reaches ~4), and further stripping is performed, but since there is a trace amount of H 2 S dissolved in this acidic solution, oxidation with an oxidizing agent is necessary to completely render it harmless. It is treated by carrying out methods such as treatment, activated carbon treatment, activated sludge treatment, etc. singly or in combination. On the other hand, H 2 S generated when excessive acid is added can be used for sulfur recovery, sulfuric acid recovery,
Detoxification is being attempted by recovering gypsum, or in some cases by absorbing it into an alkaline solution and recovering it again as sulfide.

このようにアルカリ廃液の公害対策処理は2
次、3次処理が必要となり、処理工程の複雑化を
まねき、結果的に設備費、運転経費の増額につな
がり、関係者らが常にその対策に苦慮しており、
安価にかつ容易な処理方法の確立が望まれてい
る。
In this way, pollution control treatment of alkaline waste liquid is carried out in two ways.
Next, tertiary treatment is required, which complicates the treatment process, resulting in an increase in equipment costs and operating expenses, and those involved are constantly struggling to find countermeasures.
Establishment of an inexpensive and easy treatment method is desired.

また、一部で本発明者らが先に開発したアルカ
リ廃液の活用処理法の工業化によりH2Sガスを吸
収反応させることによつて水硫化アルカリ溶液を
回収する方法(特許第401527号、第418472号、第
638775号、第800401号、第900772号)の実施化で
実効をあげている。
In addition, a method for recovering alkaline hydrosulfide solution by absorbing and reacting H 2 S gas has been developed by industrializing the alkaline waste liquid utilization treatment method previously developed by the present inventors (Patent No. 401527, No. No. 418472, no.
No. 638775, No. 800401, No. 900772) have been effective.

さらに本発明者らは、前述したようなアルカリ
廃液の有効利用として、H2S,CO2含有ガスをア
ルカリ洗浄する際の洗浄薬液にアルカリ廃液を用
いて水硫化アルカリ溶液を回収する技術も提供し
ている(特公開昭55−71604号参照)。
Furthermore, the present inventors have also provided a technique for recovering an alkaline hydrosulfide solution by using the alkaline waste liquid as a cleaning chemical when alkali cleaning gases containing H 2 S and CO 2 are used as an effective use of the alkaline waste liquid as described above. (Refer to Special Publication No. 1971-71604).

これらの方法は、水硫化アルカリを主成分とす
る溶液の回収を目的として、アルカリ廃液の処理
に使用するガス源にH2Sを用い、アルカリ源と
H2Sの反応を助長し、H2Sに同伴するCO2ガスに
よつて代表される酸性ガス類とアルカリ成分との
反応を抑制する方法の研究の結果到達したもので
あるが、本発明はその発想を根本的に転換し、前
記した従来法で不用成分又は防害成分視されてい
たCO2ガスの活用に着眼し、水硫化物と炭酸塩を
同時に回収する可能性を追求する研究に着手し、
その処理条件を発見することによつて完成したも
のである。
These methods use H 2 S as the gas source used to treat alkaline waste liquid, with the aim of recovering solutions whose main component is alkali hydrosulfide.
The present invention was developed as a result of research into a method for promoting the reaction of H 2 S and suppressing the reaction between acidic gases represented by CO 2 gas accompanying H 2 S and alkaline components. is a research project that fundamentally changes that idea and focuses on the use of CO 2 gas, which was considered an unnecessary or harmful component in the conventional method described above, and pursues the possibility of recovering hydrosulfides and carbonates at the same time. started,
It was completed by discovering the processing conditions.

すなわち本発明は、硫化アルカリ、炭酸アルカ
リと、水硫化アルカリ又は苛性アルカリを含有す
るアルカリ廃液の処理にあたり、該廃液に炭酸ガ
ス又は炭酸ガス含有ガスを反応させて水硫化アル
カリ及び炭酸アルカリを主成分とする溶液を回収
することを特徴とするアルカリ廃液の処理方法に
関するものである。
That is, in the treatment of alkaline waste liquid containing alkali sulfide, alkali carbonate, and alkali hydrosulfide or caustic alkali, the waste liquid is reacted with carbon dioxide gas or a gas containing carbon dioxide gas to form alkali hydrosulfide and alkali carbonate as main components. The present invention relates to a method for treating alkaline waste liquid, which is characterized by recovering a solution.

以下、本発明を、完成に至つた経緯と共に説明
する。
Hereinafter, the present invention will be explained along with the circumstances that led to its completion.

本発明者らは、アルカリ廃液を処理するための
酸性ガス源としてH2Sより安価で容易に入手が可
能な酸性ガス源としてCO2を使用し、アルカリ廃
液をCO2ガスによつて処理する実験を行つた結
果、吸収反応の進行とともに系内温度は徐々に上
昇し、やがてピークに達し、その後ゆるやかに低
下し、同時にこの現象変化に対応して反応系内の
成分組成が水硫化アルカリ、炭酸アルカリを主成
分とする状態を経て次第にH2Sを発生する水硫化
アルカリの分解現象へと移行することを確認し
た。
The present inventors use CO 2 as an acid gas source for treating alkaline waste liquid, which is cheaper and more easily available than H 2 S, and treat alkaline waste liquid with CO 2 gas. As a result of the experiment, as the absorption reaction progresses, the temperature inside the system gradually increases, eventually reaches a peak, and then gradually decreases, and at the same time, in response to this change in phenomenon, the component composition within the reaction system changes to alkali hydrosulfide, It was confirmed that after passing through a state in which the main component is alkali carbonate, there is a gradual transition to a decomposition phenomenon of alkali hydrosulfide that generates H 2 S.

すなわち、硫化アルカリ、炭酸アルカリ、水硫
化アルカリを含有する溶液とCO2ガスの反応は、
初期段階においては全てのCO2が主として硫化ア
ルカリのみと反応して水硫化アルカリと炭酸アル
カリを生成し、水硫化アルカリとCO2ガスの反応
および炭酸アルカリとCO2ガスとの反応のような
重炭酸塩の生成につながる反応は進行しないか又
は非常に抑制されること、およびこの段階におけ
る反応系は硫化アルカリとCO2ガスとの反応熱に
よつてその温度が著しく上昇するものの、この反
応終結後に進行しはじめる次の反応段階では反応
系の温度上昇は停止又は下降するという現象を示
す。
In other words, the reaction between a solution containing alkali sulfide, alkali carbonate, and alkali hydrosulfide and CO2 gas is
In the initial stage, all CO 2 mainly reacts only with alkali sulfide to produce alkali hydrosulfide and alkali carbonate, and heavy reactions such as the reaction between alkali hydrosulfide and CO 2 gas and the reaction between alkali carbonate and CO 2 gas occur. Although the reaction leading to the formation of carbonate does not proceed or is very suppressed, and the temperature of the reaction system at this stage increases significantly due to the heat of reaction between the alkali sulfide and CO 2 gas, this reaction does not terminate. In the next reaction stage that begins to proceed later, the temperature rise in the reaction system stops or decreases.

そこで本発明者らは、Na2S(15%)、NaSH
(24%)、Na2CO3(20%)の各アルカリ溶液を調
整して、CO2ガスの供給を一定に保ちながらCO2
の吸収反応を試みた。
Therefore, the present inventors used Na2S (15%), NaSH
(24%), Na 2 CO 3 (20%) were adjusted to remove CO 2 while keeping the CO 2 gas supply constant.
The absorption reaction was attempted.

この反応系における反応は一般的に次のような
反応式が想定できる。
The reaction in this reaction system can generally be assumed to have the following reaction formula.

2Na2S+CO2+H2O→2NaSH+Na2CO3 …… NaSH+CO2+H2O→NaHCO3+H2S …… Nb2CO3+CO2+H2O→2NaHCO3 …… このときNa2S溶液では反応式による理論増
加量に近似した約4.1%の重量増加がみられ、系
内温度は13℃上昇し、温度上昇も明確なピーク状
態を示した。また、NaSH溶液およびNa2CO3
液ではそれぞれ0.3%、0.8%の重量増加と系内温
度上昇も1.3℃,1.5℃でどちらも明確なピーク状
態はみられなかつた。
2Na 2 S+CO 2 +H 2 O→2NaSH+Na 2 CO 3 ... NaSH+CO 2 +H 2 O→NaHCO 3 +H 2 S ... Nb 2 CO 3 +CO 2 +H 2 O→2NaHCO 3 ... At this time, in Na 2 S solution, the reaction formula is An increase in weight of approximately 4.1%, which is close to the theoretical increase due to the increase in weight, was observed, and the temperature within the system increased by 13°C, indicating a clear peak in temperature rise. In addition, in the NaSH solution and Na 2 CO 3 solution, the weight increase was 0.3% and 0.8%, and the temperature increase in the system was 1.3°C and 1.5°C, respectively, with no clear peak state observed.

このようにこれらの溶液に対するCO2ガスの吸
収反応は、Na2S溶液と、NaSH,Na2CO3溶液と
の間に反応条件に著しい差があり、反応の初期段
階においてはアルカリ廃液中の硫化アルカリ分と
CO2との反応が優先的にかつ選択的に著しい発熱
をともないつつ急速に進行し、反応系内には水硫
化アルカリと炭酸アルカリが生成増加し、硫化ア
ルカリ分は消費減少する。このことは反応系内温
度最上昇点付近における系内液組成の分析結果に
よつても、その主成分が水硫化アルカリ、炭酸ア
ルカリとなつていることによつて明確である(実
施例1参照)。
As described above, there is a significant difference in the reaction conditions of the CO 2 gas absorption reaction for these solutions between the Na 2 S solution and the NaSH, Na 2 CO 3 solution. Alkaline sulfide and
The reaction with CO 2 preferentially and selectively proceeds rapidly with significant heat generation, increasing the production of alkali hydrosulfide and alkali carbonate in the reaction system, and decreasing consumption of alkali sulfide. This is clear from the analysis of the composition of the liquid in the reaction system near the highest temperature point, which shows that the main components are alkali hydrosulfide and alkali carbonate (see Example 1). ).

さらにアルカリ可溶性有機物を含有したアルカ
リ廃液を処理したときにおける可溶性有機物の挙
動は、系内温度が最高点に達する直前から白濁現
象を伴いつつ最終的に明確に分離する。この現象
は、CO2ガスを吸収反応した系内組成変化と可溶
性有機物自体の成分的変化による不溶化の結果、
水溶液系内から分離が進行したものと推考され
る。いずれにしても現象的にはそのほとんど全量
が分離浮上する(後述の実施例1参照)。
Furthermore, when an alkaline waste liquid containing alkali-soluble organic substances is treated, the behavior of the soluble organic substances is such that the soluble organic substances eventually separate clearly with a clouding phenomenon immediately before the system temperature reaches its maximum point. This phenomenon is the result of a change in the composition of the system due to the absorption and reaction of CO 2 gas and a change in the composition of the soluble organic matter itself, resulting in insolubilization.
It is presumed that the separation proceeded from within the aqueous solution system. In any case, practically the entire amount separates and floats (see Example 1 below).

次に本発明者らは、本発明の実施化に必要な条
件の一つであるアルカリ廃液組成とCO2量との関
係を明確にするため種々実験を重ねたところ、本
発明に必要なCO2量はアルカリ廃液中の他の成分
に関係なく硫化アルカリ、苛性アルカリ分のみに
相当する理論量が必要で、その実施化にあたつて
は理論量の95〜105%のCO2ガスを吸収反応させ
ることによつて本発明の目的が達成できることを
確認した。
Next, the present inventors conducted various experiments to clarify the relationship between the composition of alkaline waste liquid and the amount of CO2 , which is one of the conditions necessary for implementing the present invention, and found that the amount of CO2 required for the present invention was 2 is a theoretical amount equivalent to only alkali sulfide and caustic alkali, regardless of other components in the alkaline waste liquid, and when implementing this method, it is necessary to absorb 95 to 105% of the theoretical amount of CO 2 gas. It was confirmed that the object of the present invention could be achieved by causing the reaction.

従つて、本発明によるアルカリ廃液の処理を実
施するためには、アルカリ廃液中の硫化アルカ
リ、苛性アルカリ分に相当する量のCO2ガスを吸
収反応させればよく、このことは本発明の方法を
連続式で実施するときに特に留意する必要があ
り、実際的にはアルカリ廃液中の硫化アルカリ、
苛性アルカリ分に対応したCO2を供給するか、又
はCO2分に対応する硫化アルカリ、苛性アルカリ
量を含むアルカリ廃液を供給することによつて容
易に調節できることとなり、その手段は既設プラ
ントあるいは公知の方法によつても容易に実施で
きるためその効果は実に多大である。
Therefore, in order to carry out the treatment of alkaline waste liquid according to the present invention, it is sufficient to absorb and react CO 2 gas in an amount corresponding to the alkali sulfide and caustic alkali content in the alkaline waste liquid. Particular attention must be paid when carrying out the process continuously.In practice, alkali sulfide,
This can be easily adjusted by supplying CO 2 corresponding to the amount of caustic alkali, or by supplying alkaline waste liquid containing the amount of alkali sulfide or caustic alkali corresponding to the amount of CO 2. This can be done by using existing plants or known methods. It can be easily carried out by the method described above, and its effects are truly great.

なお、アルカリ廃液中に苛性アルカリ分が多量
に存在する場合は、CO2ガス処理によつて炭酸ア
ルカリの生成が多く、系内に多量の炭酸アルカリ
の結晶析出がみられ、反応系内での固液分離操作
あるいは反応完了後の固液分離を著しく困難とす
るため、あらかじめアルカリ廃液へ本発明の方法
によつて処理回収した水硫化アルカリ、又は他の
方法によつて生産された水硫化アルカリを苛性ア
ルカリ分相当量又はそれ以上添加混合して、苛性
アルカリ分を硫化アルカリに転化させた後、CO2
ガス処理することによつて処理液を溶液状に保ち
つつ反応を進行させることが望ましい。
In addition, when a large amount of caustic alkali exists in the alkaline waste liquid, a large amount of alkali carbonate is generated by CO 2 gas treatment, and a large amount of alkali carbonate crystals are deposited in the reaction system. In order to make the solid-liquid separation operation or the solid-liquid separation after the completion of the reaction extremely difficult, alkali hydrosulfide which has been treated and recovered from alkaline waste liquid in advance by the method of the present invention, or alkali hydrosulfide produced by other methods. After adding and mixing the caustic alkali in an amount equivalent to or more than the caustic alkali to convert the caustic alkali into alkali sulfide, CO 2
It is desirable to allow the reaction to proceed while keeping the treatment liquid in a solution state by gas treatment.

また、系内に炭酸アルカリ(重炭酸アルカリと
の混合物を含む)のスラリーが生成した場合ある
いは予想される場合には、アルカリ廃液、水硫化
アルカリを事前に又はその都度添加することによ
つて容易に対応できることは勿論、加温、希釈な
どの一般的な手段によつても簡単に対処すること
ができる。
In addition, if a slurry of alkali carbonate (including a mixture with alkali bicarbonate) is generated in the system or is expected, it can be easily treated by adding alkali waste liquid or alkali hydrosulfide in advance or each time. Not only can it be handled easily, but it can also be easily handled by common means such as heating and dilution.

すなわち、硫化アルカリ、炭酸アルカリと、水
硫化アルカリ又は苛性アルカリを含有するアルカ
リ廃液から水硫化アルカリと炭酸アルカリの回収
をするにあたり、CO2ガスの吸収反応をバツチ式
で行う場合、系内温度上昇がピーク付近において
その液組成は水硫化アルカリ、炭酸アルカリが主
成分となり、硫化アルカリ分は皆無もしくはごく
わずかに存在する組成になつて、CO2ガスによる
吸収反応が苛性アルカリ、硫化アルカリと優先的
に又は選択的に進行し、しかもその反応が硫化ア
ルカリ分のほとんどが消費するまでかなりの発熱
をともなつて進行する。
In other words, when recovering alkali hydrosulfide and alkali carbonate from alkaline waste liquid containing alkali sulfide, alkali carbonate, and alkali hydrosulfide or caustic alkali, if the absorption reaction of CO 2 gas is carried out in batches, the temperature in the system will rise. Near the peak, the liquid composition becomes a composition in which alkali hydrosulfide and alkali carbonate are the main components, and there is no or very little alkali sulfide, and the absorption reaction by CO 2 gas takes precedence over caustic alkali and alkali sulfide. The reaction proceeds selectively and with considerable heat generation until most of the alkali sulfide is consumed.

また系内における吸取反応を温度上昇がピーク
になつた後も続行した場合、系内温度の上昇は停
止し、つづいて放熱による温度低下現象もみら
れ、一方系内には前記した初期反応に比し著るし
い変化が生じる。
Furthermore, if the absorption reaction in the system continues even after the temperature rise reaches its peak, the temperature in the system stops rising and then a temperature decrease phenomenon due to heat radiation is observed, while the temperature in the system is compared to the initial reaction described above. A marked change occurs.

炭酸塩が多量に結晶析出し、スラリーを分離し
た残液組成を分析試験に供したところ炭酸アルカ
リ分も減少している事実が確認された。
A large amount of carbonate was crystallized, and when the residual liquid composition of the slurry was subjected to an analytical test, it was confirmed that the alkaline carbonate content had also decreased.

これらの実験結果から本発明の目的である水硫
化アルカリと炭酸アルカリの混合処理液を得るた
めには(炭酸塩スラリーの析出は吸収反応工程の
操作を困難にする)、反応系の条件を前記反応式
の反応を主反応として,の反応を抑制する
手段を構じることが重要である(バツチ式の吸収
反応ではそれほど厳密に調整する必要はない)。
From these experimental results, in order to obtain a mixed treatment solution of alkali hydrosulfide and alkali carbonate, which is the objective of the present invention (precipitation of carbonate slurry makes operation of the absorption reaction step difficult), the conditions of the reaction system must be adjusted as described above. It is important to take the reaction in the reaction formula as the main reaction and provide a means to suppress the reaction in (batch-type absorption reactions do not require such strict adjustment).

従つてこれらアルカリ廃液に対するCO2ガスの
吸収反応はその採用する方式によつて、例えばバ
ツチ式の場合、系内温度連続測定のような簡単な
計装を準備することで容易にその目的に合致した
処理を実施することができ、また連続式の場合、
アルカリ廃液中の硫化アルカリ、苛性アルカリ分
に対応したCO2ガスを計算供給するかあるいは
CO2ガス分に対応する硫化アルカリ、苛性アルカ
リ分に相当したアルカリ廃液を計量供給する手段
によつて本発明の目的とする水硫化アルカリと炭
酸アルカリを主成分とする混合溶液(少量の炭酸
塩スラリーを含有することがある)を容易に回収
することができる。
Therefore, depending on the method adopted for the CO 2 gas absorption reaction for these alkaline waste liquids, for example, in the case of a batch type, it is easy to meet the purpose by preparing simple instrumentation such as continuous temperature measurement within the system. In the case of continuous processing,
Calculate and supply CO 2 gas corresponding to alkali sulfide and caustic alkali content in alkaline waste liquid, or
A mixed solution containing alkali hydrosulfide and alkali carbonate as the main components (a small amount of carbonate (which may contain slurry) can be easily recovered.

次に本発明の方法に用いられるCO2ガス源には
工業用CO2はもちろんCO2分を少なくとも5%以
上好ましくは10%以上含有したガス、例えば
LPG、都市ガス、灯軽油、重油などの燃焼排ガ
ス、分解ガスなどが充分使用できるためガス源の
確保は非常に容易である。また、これらのCO2
有ガスに共存するSO2,SO3などの共存ガスの影
響についてはその含有量によつて左右されるとは
いえ、一般的な燃焼ガスの場合、水硫化アルカ
リ、炭酸アルカリの収率に影響は認められるが、
吸収反応におよぼす影響は僅少であることを確認
している。またH2Sを共存しているCO2含有ガス
を用いるときにはH2S分に相当するCO2分使用量
を減少することで容易に対応できることも確認し
ている。
Next, the CO 2 gas source used in the method of the present invention includes not only industrial CO 2 but also gas containing at least 5% or more preferably 10% or more of CO 2 , such as
It is very easy to secure a gas source because combustion exhaust gas such as LPG, city gas, kerosene, diesel oil, and heavy oil, as well as cracked gas, can be used. In addition, although the influence of coexisting gases such as SO 2 and SO 3 that coexist with these CO 2 -containing gases depends on their content, in the case of general combustion gases, alkali hydrosulfide and carbonate Although there is an impact on the alkali yield,
It has been confirmed that the effect on the absorption reaction is minimal. It has also been confirmed that when using a CO 2 -containing gas that coexists with H 2 S, this can be easily achieved by reducing the amount of CO 2 used corresponding to the amount of H 2 S.

以上の説明で明らかなように本発明にともなう
吸収反応条件(処理条件)は反応系の吸収段階に
おける反応条件の設定調節分野をのぞいて一般的
な気液接触装置およびガス吸収反応装置の使用が
可能で、その運転条件も常温常圧あるいは加熱加
圧下においても容易に実施できるなど平易な条件
で実施できる。
As is clear from the above explanation, the absorption reaction conditions (processing conditions) according to the present invention can be achieved by using general gas-liquid contact equipment and gas absorption reaction equipment, except for the setting and adjustment of reaction conditions in the absorption stage of the reaction system. It is possible to carry out the process under simple operating conditions, such as at room temperature and pressure, or under heating and pressurization.

さらに本発明の実施化に際しては、前述したよ
うな系内温度の変化および/又はアルカリ廃液中
の硫化アルカリ分および苛性アルカリ分を基準に
CO2ガスの供給量を調整するか、又はCO2ガス分
を基準にアルカリ廃液の供給量(硫化アルカリ又
は/および苛性アルカリ分)を調整することによ
つて容易に調節でき、実施化にあたつての装置お
よび計装を簡略化することができる。
Furthermore, when implementing the present invention, it is necessary to take into account the changes in system temperature and/or the alkali sulfide content and caustic alkali content in the alkaline waste liquid as described above.
It can be easily adjusted by adjusting the supply amount of CO 2 gas or the supply amount of alkaline waste liquid (alkali sulfide and/or caustic alkali content) based on the CO 2 gas content, and can be adjusted depending on the implementation. The existing equipment and instrumentation can be simplified.

本発明の方法によつて処理されたアルカリ廃液
は水硫化アルカリ、炭酸アルカリを主成分とした
溶液、又は炭酸アルカリ塩、重炭酸アルカリ塩が
単独又は混合したスラリーを共存した水硫化アル
カリと炭酸アルカリの溶液となつて回収され、後
者の場合必要に応じてスラリー分を常法によつて
分離し、それぞれの溶液は常法にしたがつて濃縮
する。濃縮中に炭酸アルカリが析出した場合には
適時析出物(主として炭酸塩)を分離し、炭酸ア
ルカリ分の少ない水硫化アルカリ溶液として回収
される。一方分離された炭酸アルカリ塩は少量の
水硫化アルカリ分が付着しているため温水洗浄乾
燥等常法の手段によつて炭酸アルカリとして回収
される。
The alkaline waste liquid treated by the method of the present invention is a solution mainly composed of alkali hydrosulfide or alkali carbonate, or a slurry of alkali carbonate or alkali bicarbonate alone or in combination. In the latter case, if necessary, the slurry is separated by a conventional method, and each solution is concentrated by a conventional method. If alkali carbonate is precipitated during concentration, the precipitate (mainly carbonate) is separated in a timely manner and recovered as an alkali hydrosulfide solution with a low alkali carbonate content. On the other hand, since the separated alkali carbonate has a small amount of alkali hydrosulfide attached thereto, it is recovered as an alkali carbonate by a conventional method such as washing with warm water and drying.

よつて本発明は石油精製、石油化学、バリウム
塩、セロハン、レーヨン製造などの化学工場から
発生するアルカリ廃液、すなわち硫化アルカリ、
炭酸アルカリと、水硫化アルカリ又は苛性アルカ
リを含有する廃液をCO2ガス又はLPG、灯軽油、
重油などの燃焼排ガス、分解ガスなどのような
CO2含有ガスを活用して処理し、水硫化アルカ
リ、炭酸アルカリを主成分とした溶液又は主に炭
酸アルカリからなるスラリーを共存した水硫化ア
ルカリ、炭酸アルカリを主成分とした溶液を回収
することを可能にした新規で軽済的なアルカリ廃
液の処理方法ということができる。さらに回収溶
液の処理方法によつて高純度の水硫化アルカリ溶
液又はフレーク状(固型物を含む)高純度工業薬
品としての水硫化アルカリの回収および炭酸塩の
同時回収もできるため、その実施効果は公害対策
面および経済面、資源利用面等重複した効果を期
待できるアルカリ廃液の処理方法ということがで
きる。
Therefore, the present invention deals with alkaline waste liquid generated from chemical factories such as petroleum refining, petrochemical, barium salt, cellophane, and rayon manufacturing, that is, alkali sulfide,
Waste liquid containing alkali carbonate, alkali hydrosulfide or caustic alkali is converted into CO 2 gas or LPG, kerosene, diesel oil,
Such as combustion exhaust gas such as heavy oil, cracked gas, etc.
To recover a solution mainly composed of alkali hydrosulfide or alkali carbonate, or a solution mainly composed of alkali hydrosulfide or alkali carbonate with a slurry mainly composed of alkali carbonate, by processing using CO2- containing gas. It can be said that this is a new and economical method for treating alkaline waste liquid that has made it possible. Furthermore, depending on the treatment method of the recovered solution, it is possible to recover alkali hydrosulfide as a high-purity alkali hydrosulfide solution or flake-like (including solids) high-purity industrial chemicals, and to simultaneously recover carbonates. This can be said to be a method for treating alkaline waste liquid that can be expected to have multiple effects in terms of pollution control, economy, and resource utilization.

次に本発明を実施例を用いて具体的に説明す
る。
Next, the present invention will be specifically explained using examples.

実施例 1 表1に示すような石油精製工場から発生するア
ルカリ廃液2.0Kgを採取し、バツチ式処理によつ
て圧力0.5Kg/cm2G、常温下において高純度炭酸
ガス(市販の液化炭酸ガスを気化)を吹込み、系
内温度上昇が最高になつたところで(図の系内温
度の変化参照)炭酸ガスの送入を止め、静置法に
よつて有機物を分離して表2に示すような水硫化
アルカリ、炭酸アルカリを主成分とした処理液約
2.1Kgを回収した。
Example 1 2.0 kg of alkaline waste liquid generated from an oil refinery as shown in Table 1 was collected, and subjected to batch processing at a pressure of 0.5 kg/cm 2 G and at room temperature to high-purity carbon dioxide gas (commercially available liquefied carbon dioxide gas). When the temperature rise in the system reached its maximum (see the change in system temperature in the figure), the supply of carbon dioxide gas was stopped, and the organic matter was separated by the standing method, as shown in Table 2. Processing liquids mainly composed of alkali hydrosulfide and alkali carbonate, such as
2.1Kg was recovered.

表1 アルカリ廃液組成 NaSH 7.66% Na2S 12.79% Na2CO3 1.45% Na2SO3 0.35% Na2S2O3 0.20% 有機物 0.06% 表2 処理液組成 NaSH 14.90% Nba2S 1.32% Na2CO3 8.62% Na2SO3 0.55% Na2S2O3 0.48% 有機物 Trace この処理液を常法によつて中間濃縮し、析出し
た炭酸アルカリを過し、表3に示すような水硫
化アルカリ溶液がえられた。この水硫化アルカリ
をさらに濃縮し固型化したものは表4に示すよう
な組成であつた。これら水硫化アルカリ液、固型
物は市販の工業薬品としての水硫化アルカリ液、
固型物(その組成を表5,6に示す)に比べて何
等損色のないものであつた。
Table 1 Alkaline waste liquid composition NaSH 7.66% Na 2 S 12.79% Na 2 CO 3 1.45% Na 2 SO 3 0.35% Na 2 S 2 O 3 0.20% Organic matter 0.06% Table 2 Treated liquid composition NaSH 14.90% Nba 2 S 1.32% Na 2 CO 3 8.62% Na 2 SO 3 0.55% Na 2 S 2 O 3 0.48% Organic matter Trace This treated solution is intermediately concentrated by a conventional method, the precipitated alkali carbonate is filtered out, and the hydrosulfurization is performed as shown in Table 3. An alkaline solution was obtained. This alkali hydrosulfide was further concentrated and solidified, and the composition was as shown in Table 4. These alkaline hydrosulfide liquids and solid substances are commercially available alkaline hydrosulfide liquids as industrial chemicals.
Compared to solid products (the compositions of which are shown in Tables 5 and 6), there was no color loss.

さらに過回収した炭酸アルカリを温水で洗浄
し、約120℃で乾燥して約97%純度の炭酸アルカ
リの粉末がえられた。
Furthermore, the over-recovered alkali carbonate was washed with warm water and dried at about 120°C, yielding an alkali carbonate powder with a purity of about 97%.

この炭酸アルカリは排煙脱硫用のアルカリ源、
酸性廃水の中和剤および高純度炭酸アルカリの原
料などに十分使用可能なものであつた。
This alkali carbonate is an alkali source for flue gas desulfurization.
It was found to be fully usable as a neutralizing agent for acidic wastewater and as a raw material for high-purity alkali carbonate.

表3 水硫化アルカリ液組成 NaSH 34.13% Na2S 1.92% Na2CO3 0.37% Na2SO3 0.46% Na2S2O3 0.31% 表4 固型物組成 NaSH 67.72% Na2S 3.89% Na2CO3 0.67% Na2SO3 0.54% Na2S2O3 0.51% 表5 市販水硫化アルカリ液組成 NaSH 28.77% Na2S 1.58% Na2CO3 0.78% Na2SO3 0.48% Na2S2O3 0.29% 表6 市販固型物組成 NaSH 67.42% Na2S 4.29% Na2CO3 0.85% Na2SO3 0.63% Na2S2O3 0.49% 実施例 2 表7に示すような石油化学工場から発生するア
ルカリ廃液2.0Kgを採取し、常温常圧下バツチ式
処理で、表8に示す重油ボイラー燃焼排ガスを常
温まで冷却し、水分の凝縮、除塵をしたCO2含有
ガスによつて処理し、系内温度が最高になつた
後、低下が認められるまで吸収反応を行い、実施
例1と同様の静置法で有機物を分離して表9に示
すような炭酸アルカリ、水硫化アルカリ分が主成
分の溶液約2.1Kgを回収した。
Table 3 Hydrosulfide alkaline liquid composition NaSH 34.13% Na 2 S 1.92% Na 2 CO 3 0.37% Na 2 SO 3 0.46% Na 2 S 2 O 3 0.31% Table 4 Solid matter composition NaSH 67.72% Na 2 S 3.89% Na 2 CO 3 0.67% Na 2 SO 3 0.54% Na 2 S 2 O 3 0.51% Table 5 Composition of commercially available alkaline hydrosulfide solution NaSH 28.77% Na 2 S 1.58% Na 2 CO 3 0.78% Na 2 SO 3 0.48% Na 2 S 2 O 3 0.29% Table 6 Composition of commercial solids NaSH 67.42% Na 2 S 4.29% Na 2 CO 3 0.85% Na 2 SO 3 0.63% Na 2 S 2 O 3 0.49% Example 2 Petroleum as shown in Table 7 2.0 kg of alkaline waste liquid generated from a chemical factory was collected and treated in a batch process at room temperature and pressure using CO 2 -containing gas, which was obtained by cooling the heavy oil boiler combustion exhaust gas shown in Table 8 to room temperature, condensing water, and removing dust. After the temperature inside the system reached its maximum, the absorption reaction was carried out until a decrease was observed, and the organic matter was separated by the same standing method as in Example 1, and the alkali carbonate and alkali hydrosulfide components as shown in Table 9 were obtained. Approximately 2.1 kg of the main component solution was recovered.

表7 アルカリ廃液組成 Na2S 15.78% NaOH 1.15% Na2CO3 1.25% Na2SO3 0.41% Na2S2O3 0.20% 表8 燃焼排ガス組成 CO2 9.9Vol% O2 4.7Vol% 水分 10.5Vol% SOX 840ppm NOx 130ppm 有機物 0.06% N2 残 表9 処理液組成 NaSH 10.13% Na2S 0.95% Na2CO3 11.04% Na2SO3 0.49% Na2S2O3 0.35% 有機物 Trace この処理液を実施例1と同様の処理方法によつ
て濃縮過した液は実施例1と同等品質の水硫化
アルカリ液であり、過回収した炭酸アルカリも
実施例1と同様の処理によつて同程度の品質の炭
酸アルカリを回収することができた。
Table 7 Alkaline waste liquid composition Na 2 S 15.78% NaOH 1.15% Na 2 CO 3 1.25% Na 2 SO 3 0.41% Na 2 S 2 O 3 0.20% Table 8 Combustion exhaust gas composition CO 2 9.9Vol% O 2 4.7Vol% Moisture 10.5 Vol% SOX 840ppm NOx 130ppm Organic matter 0.06% N 2 remaining Table 9 Treatment solution composition NaSH 10.13% Na 2 S 0.95% Na 2 CO 3 11.04% Na 2 SO 3 0.49% Na 2 S 2 O 3 0.35% Organic matter Trace This treatment solution The liquid concentrated and filtered by the same treatment method as in Example 1 is an alkali hydrosulfide solution of the same quality as in Example 1, and the over-recovered alkali carbonate is also concentrated by the same treatment method as in Example 1. We were able to recover quality alkali carbonate.

実施例 3 表10に示すようなアルカリ廃液の市販炭酸ガス
による処理を次の要領により行つた。
Example 3 The alkaline waste liquid shown in Table 10 was treated with commercially available carbon dioxide gas in the following manner.

内径70〜71mm、長さ1500mmのガラスチユーブに
内径5mm長さ10〜15mmのガラス管でつくつたラツ
シヒリングを約700mmチユーブの中央に充填した
気液接触部と下部にガス導入口、液溜、循環ポン
プ、液排出口、上部に循環液入口、洗浄ガス出
口、さらに循環ラインへの洗浄液導入口を備えた
炭酸ガス吸収反応塔を使用して、下部ガス導入口
より炭酸ガスを500Nml/分で供給し、炭酸ガス
に相当する量のアルカリ廃液を作動している循環
系へ供給しつつ、気液接触部においてアルカリ廃
液と炭酸ガスの吸収反応を行い、下部液排出口よ
り表11に示すような処理液約1.5/Hrを回収し
た。
A glass tube with an inner diameter of 70 to 71 mm and a length of 1500 mm is filled with a Lutschig ring made from a glass tube with an inner diameter of 5 mm and a length of 10 to 15 mm in the center of the approximately 700 mm tube, and a gas inlet at the bottom, liquid reservoir, and circulation. Using a carbon dioxide absorption reaction tower equipped with a pump, a liquid discharge port, a circulating liquid inlet at the top, a cleaning gas outlet, and a cleaning liquid inlet to the circulation line, carbon dioxide is supplied from the bottom gas inlet at a rate of 500 Nml/min. Then, while supplying an amount of alkaline waste liquid equivalent to carbon dioxide gas to the operating circulation system, an absorption reaction between the alkaline waste liquid and carbon dioxide gas is carried out in the gas-liquid contact part, and the liquid is discharged from the lower liquid outlet as shown in Table 11. Approximately 1.5/hr of treatment solution was collected.

表10 アルカリ廃液組成 NaSH 6.04% Na2S 12.44% Na2CO3 1.63% Na2SO3 0.32% Na2S2O3 0.26% 表11 処理液組成 NaSH 14.05% Na2S 0.12% Na2CO3 9.04% Na2SO3 0.54% Nba2S2O3 0.35% これら実施例は本発明を具体的に説明するため
の一例にすぎず、本発明の技術思想は限度内で多
くの変更改良の要素を含んでいることは勿論であ
り、本発明の技術的範囲をいささかも拘束するも
のではない。
Table 10 Alkaline waste liquid composition NaSH 6.04% Na 2 S 12.44% Na 2 CO 3 1.63% Na 2 SO 3 0.32% Na 2 S 2 O 3 0.26% Table 11 Treated liquid composition NaSH 14.05% Na 2 S 0.12% Na 2 CO 3 9.04% Na 2 SO 3 0.54% Nba 2 S 2 O 3 0.35% These examples are merely examples for specifically explaining the present invention, and the technical idea of the present invention can be modified and improved within the limits. Of course, this does not restrict the technical scope of the present invention in any way.

以上説明したように本発明は石油精製、石油化
学、バリウム塩、セロハン、レーヨン等製造する
化学工場から発生するアルカリ廃液、すなわち硫
化アルカリ、炭酸アルカリと、水硫化アルカリ又
は苛性アルカリを含有する廃液の処理を、炭酸ガ
ス又はLPG、都市ガス、灯軽油、重油等の燃焼ガ
ス、分解ガスのような炭酸ガス含有ガスを用い
て、バツチ式又は連続式で行い、必要に応じて有
機物を静置法で分離し、次に過するか過しな
いで水硫化アルカリ、炭酸アルカリが主成分の溶
液を回収するアルカリ廃液の処理方法である。
As explained above, the present invention is applicable to alkaline waste liquids generated from petroleum refining, petrochemical, chemical factories producing barium salt, cellophane, rayon, etc., that is, waste liquids containing alkali sulfide, alkali carbonate, alkali hydrosulfide, or caustic alkali. Treatment is carried out in a batch or continuous manner using carbon dioxide gas or combustion gas such as LPG, city gas, kerosene, diesel oil, heavy oil, etc., or carbon dioxide-containing gas such as cracked gas, and if necessary, the organic matter is left standing. This is a method for treating alkaline waste liquid, in which a solution containing alkali hydrosulfide and alkali carbonate as the main components is recovered by separating the liquid by filtration, and then recovering a solution containing alkali hydrosulfide and alkali carbonate as the main components.

本発明の方法を実施した場合次のような効果を
期待することができる。
When the method of the present invention is implemented, the following effects can be expected.

実施のための設備機構が簡単であるため設備
の建設費が安価であるばかりでなく、装置の操
作も容易に調節できるため操作工程も単純で運
転経費も安く経済的相乗効果は多大である。
Since the equipment structure for implementation is simple, the construction cost of the equipment is not only low, but also because the operation of the equipment can be easily adjusted, the operation process is simple and the operating cost is low, resulting in great economic synergy.

水硫化アルカリ、炭酸アルカリが回収できて
再利用することが可能で貴重なアルカリ資源の
損失を防ぐことになり公害防止対策効果と合わ
せてその経済的効果は著しいものである。
Alkali hydrosulfide and alkali carbonate can be recovered and reused, preventing the loss of valuable alkali resources, and the economic effects are significant, along with the effects of pollution prevention measures.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はアルカリ廃液のCO2ガス処理におけ
る系内温度の変化の一例である。
The attached drawing shows an example of the change in system temperature during CO 2 gas treatment of alkaline waste liquid.

Claims (1)

【特許請求の範囲】 1 硫化アルカリ、炭酸アルカリと、水硫化アル
カリ又は苛性アルカリを含有するアルカリ廃液を
バツチ式で処理するにあたり、該廃液に炭酸ガス
又は炭酸ガス含有ガスを、系内温度が上昇し一定
化するまで、又は炭酸アルカリ或は炭酸アルカリ
と重炭酸アルカリの少量混晶物が析出する初期段
階まで反応させて水硫化アルカリ及び炭酸アルカ
リを主成分とする溶液を回収することを特徴とす
るアルカリ廃液の処理方法。 2 アルカリ廃液がアルカリ可溶性有機物を溶存
することを特徴とする特許請求の範囲1の方法。 3 苛性アルカリ分を含有するアルカリ廃液と炭
酸ガス又は炭酸ガス含有ガスとの吸収反応にあた
り、その苛性アルカリ分相当量又はそれ以上の水
硫化アルカリを添加することによつて苛性アルカ
リ分を硫化アルカリに転化することを特徴とする
特許請求の範囲1又は2の方法。 4 硫化アルカリ、炭酸アルカリと、水硫化アル
カリ又は苛性アルカリを含有するアルカリ廃液を
連続式で処理するにあたり、該廃液に炭酸ガス又
は炭酸ガス含有ガスを該廃液中の硫化アルカリお
よび/又は苛性アルカリ分が炭酸塩生成に必要と
する量の95%〜105%量に調節して供給し、該廃
液と炭酸ガス又は炭酸ガス含有ガスとを反応させ
て水硫化アルカリ及び炭酸アルカリを主成分とす
る溶液を回収することを特徴とするアルカリ廃液
の処理方法。 5 アルカリ廃液がアルカリ可溶性有機物を溶存
することを特徴とする特許請求の範囲4の方法。 6 苛性アルカリ分を含有するアルカリ廃液と炭
酸ガス又は炭酸ガス含有ガスとの吸収反応にあた
り、その苛性アルカリ分相当量又はそれ以上の水
硫化アルカリを添加することによつて苛性アルカ
リ分を硫化アルカリに転化することを特徴とする
特許請求の範囲4又は5の方法。
[Scope of Claims] 1. When alkaline waste liquid containing alkali sulfide, alkali carbonate, and alkali hydrosulfide or caustic alkali is treated in a batch manner, carbon dioxide gas or carbon dioxide gas-containing gas is added to the waste liquid so that the temperature inside the system increases. The method is characterized by recovering a solution containing alkali hydrosulfide and alkali carbonate as main components by reacting until the mixture becomes constant or until a small amount of alkali carbonate or a small amount of mixed crystals of alkali carbonate and alkali bicarbonate are precipitated. A method for treating alkaline waste liquid. 2. The method according to claim 1, wherein the alkaline waste liquid dissolves alkali-soluble organic substances. 3. During the absorption reaction between alkaline waste liquid containing caustic alkali and carbon dioxide gas or gas containing carbon dioxide, the caustic alkali is converted into alkali sulfide by adding an amount of alkali hydrosulfide equivalent to or more than the caustic alkali. 3. The method according to claim 1 or 2, characterized in that the method comprises converting. 4 When continuously treating alkaline waste liquid containing alkali sulfide, alkali carbonate, and alkali hydrosulfide or caustic alkali, carbon dioxide or carbon dioxide-containing gas is added to the waste liquid to remove the alkali sulfide and/or caustic alkali content in the waste liquid. is adjusted to 95% to 105% of the amount required for carbonate production, and the waste liquid is reacted with carbon dioxide gas or carbon dioxide-containing gas to create a solution whose main components are alkali hydrosulfide and alkali carbonate. A method for treating alkaline waste liquid, characterized by recovering. 5. The method according to claim 4, wherein the alkaline waste liquid dissolves alkali-soluble organic substances. 6. During the absorption reaction between alkaline waste liquid containing caustic alkali and carbon dioxide gas or gas containing carbon dioxide, the caustic alkali is converted into alkali sulfide by adding alkali hydrosulfide in an amount equivalent to or more than the caustic alkali. The method according to claim 4 or 5, characterized in that the method comprises converting.
JP57175317A 1982-10-07 1982-10-07 Treatment of alkali waste liquid Granted JPS5969192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175317A JPS5969192A (en) 1982-10-07 1982-10-07 Treatment of alkali waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175317A JPS5969192A (en) 1982-10-07 1982-10-07 Treatment of alkali waste liquid

Publications (2)

Publication Number Publication Date
JPS5969192A JPS5969192A (en) 1984-04-19
JPS6121718B2 true JPS6121718B2 (en) 1986-05-28

Family

ID=15993973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175317A Granted JPS5969192A (en) 1982-10-07 1982-10-07 Treatment of alkali waste liquid

Country Status (1)

Country Link
JP (1) JPS5969192A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004213273B2 (en) * 2003-02-21 2008-06-12 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP4523786B2 (en) * 2004-03-29 2010-08-11 コスモ石油株式会社 How to remove nitrogen from wastewater
JP5160215B2 (en) * 2007-12-27 2013-03-13 株式会社ユニックス Method for treating sodium hydroxide waste solution of aluminum material

Also Published As

Publication number Publication date
JPS5969192A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
CN101745309B (en) Flue gas desulfurization (FGD) and comprehensive utilization method for flyash pudding blast furnace slag
US3944649A (en) Multistage process for removing sulfur dioxide from stack gases
CA1090534A (en) Production of h.sub.2s from so.sub.2 obtained from flue gas
US3959452A (en) Process for removing hydrogen sulfide from contaminated gas
CN102284238A (en) Bialkali-method flue-gas desulphurization process
JPS593207B2 (en) Gasly Yukara Sankaiou O Jiyokyosuru Hohou
US3331732A (en) Method of removing hydrogen sulfide from an aqueous solution of alkali sulfide
JPH11509586A (en) Separation of impurities from lime and lime sludge, and two-stage causticization of green liquor containing impurities such as silicon
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
CN105271132A (en) SWSR-6 sulfur recovery technology and apparatus thereof
JPS6121718B2 (en)
CN108211761B (en) Method for cooperatively treating pollutants in coking desulfurization waste liquid, calcium-based solid waste and industrial flue gas
US4021202A (en) Apparatus for removing sulfur dioxide from stack gases
CN109110859A (en) A kind of coking desulfurization waste liquor advanced treatment process
CN109939550B (en) Method and device for treating FCC (fluid catalytic cracking) regenerated flue gas
US4255388A (en) Apparatus for the production of H2 S from SO2 obtained from flue gas
CN218358392U (en) Comprehensive hazardous waste incineration flue gas treatment system
CN104826464A (en) Novel acidic gas treating process and apparatus
CN108341400A (en) A kind of sulphur recovery and exhaust gas processing device shut-down process for cleanly preparing
CN209721679U (en) A kind of sodium citrate parses the device of lean solution purification and its by-product gypsum whisker
CN108557777B (en) Production process of sodium sulfite
KR820001196B1 (en) Process for production of h s from so obtained from flue gas
CN108970353B (en) Comprehensive desulfurization and denitrification method for catalytic flue gas and ammonia-containing acid gas
JPS60255617A (en) Treatment of alkaline waste liquid containing sulfide
CN110127641B (en) Method for recovering nitrite from desulfurization and denitrification waste liquid