JPS6121702B2 - - Google Patents

Info

Publication number
JPS6121702B2
JPS6121702B2 JP56115342A JP11534281A JPS6121702B2 JP S6121702 B2 JPS6121702 B2 JP S6121702B2 JP 56115342 A JP56115342 A JP 56115342A JP 11534281 A JP11534281 A JP 11534281A JP S6121702 B2 JPS6121702 B2 JP S6121702B2
Authority
JP
Japan
Prior art keywords
fibers
catalyst
microns
heat
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56115342A
Other languages
Japanese (ja)
Other versions
JPS5817841A (en
Inventor
Sotoharu Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56115342A priority Critical patent/JPS5817841A/en
Publication of JPS5817841A publication Critical patent/JPS5817841A/en
Publication of JPS6121702B2 publication Critical patent/JPS6121702B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は、耐熱材料製の短繊維からなる触媒担
体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst carrier consisting of short fibers made of a heat-resistant material.

理想的な触媒の条件は、その表面積が無限大で
あること及びその熱容量が最小であることであ
り、この2点が理想的である場合に最高の活性が
得られるものである。しかし、この理想的条件に
合うものは極微細粉末の形態となるものであり、
その結果、空中に散乱し固定することが不可能で
あるため、何等かの担体を利用し、その担体表面
に触媒を担持させる必要がある。
The ideal catalyst conditions are that its surface area is infinite and its heat capacity is minimum, and when these two points are ideal, the highest activity is obtained. However, those that meet this ideal condition are in the form of ultrafine powder,
As a result, it is scattered in the air and cannot be fixed, so it is necessary to use some kind of carrier and to support the catalyst on the surface of the carrier.

従来の触媒担体は、粒状ペレツト(直径3000ミ
クロン)や耐火物ハニカム(厚さ200ミクロン)
などが使用されている。しかし、触媒の表面積に
対する担体の熱容量、すなわち、処理ガスと接触
しない現実的に有効でない部分が多いため、触媒
性能の始動性が悪い欠点が存在する。この点に関
しては、ガラス繊維など耐熱材料からなる繊維を
担体として使用すれば、その直径が小さく(10ミ
クロン以下)、表面積が大きく、しかも熱容量が
小さいので、始動性に優る長所がある。本発明者
等は、この点に着目し、さきに、担体として耐熱
ガラス繊維を使用する触媒を発表し(特公昭53―
38264号)、更に、このガラス繊維の表面に均一な
フイルム状の触媒成分を担持させる方法を発表し
た(特公昭51―21629号)。
Traditional catalyst supports are granular pellets (3000 microns in diameter) and refractory honeycombs (200 microns thick).
etc. are used. However, the heat capacity of the carrier relative to the surface area of the catalyst, that is, there are many parts that do not come into contact with the processing gas and are not actually effective, so there is a drawback that the starting performance of the catalyst is poor. In this regard, the use of fibers made of heat-resistant materials such as glass fibers as carriers has the advantage of superior startability due to their small diameter (10 microns or less), large surface area, and small heat capacity. The present inventors focused on this point and first announced a catalyst using heat-resistant glass fiber as a carrier (Japanese Patent Publication No.
38264), and furthermore, they announced a method for supporting a uniform film-like catalyst component on the surface of this glass fiber (Japanese Patent Publication No. 51-21629).

前述の理想的な触媒条件に従えば、繊維の直径
が小さくなればなるほど、単位重量に対する表面
積が増大し、一方、単位表面積に対する熱容量は
減少するから、この繊維に触媒成分を担持させた
場合、触媒活性が向上する結果となる。しかし、
今日製造されているガラス繊維は、エンドレスの
長繊維の場合、最低が6ミクロン直径のものであ
り(米国では3ミクロンまでのものがあるが、一
般には6ミクロンが限度である。)、人間の皮ふが
刺激を受けない5ミクロン以下には達していな
い。もし5ミクロン以下の細い繊維(0.5〜3ミ
クロン直径)を求めると、その繊維長さが5〜10
mm又はそれ以下という短繊維となつてしまう。そ
してこのような短繊維は、工業的に触媒担体とし
て製品化することが困難となる。
According to the above-mentioned ideal catalyst conditions, the smaller the diameter of the fiber, the more the surface area per unit weight increases, while the heat capacity per unit surface area decreases, so when this fiber supports a catalyst component, This results in improved catalytic activity. but,
Glass fibers manufactured today have a minimum diameter of 6 microns in the form of endless long fibers (6 microns is the general limit, although some in the United States have diameters up to 3 microns), It has not reached 5 microns or less, where the skin will not be irritated. If you want a thin fiber of 5 microns or less (0.5 to 3 micron diameter), the fiber length is 5 to 10
It becomes short fibers of mm or less. Such short fibers are difficult to industrially commercialize as catalyst carriers.

今日、直径3ミクロン以下の耐熱材料からなる
繊維は、ガラス繊維をはじめとし、フアイバー状
のセラミツクスとしてアルミナ、シリカ、チタニ
ン、マグネシア、酸化カルシウムなどを主成分と
するものが数多く生産されているが、何れもその
繊維長さは5〜20mm又はそれ以下である。しか
し、触媒の担体として要求される物理的条件は、
一定流速1〜5m毎秒のガス流に対して、常時安
定に接触し、かつ、圧力損失を与えないことであ
る。そこで、この直径1〜3ミクロンで長さ5〜
20mm又はそれ以下の微小短繊維を如何に安定な形
状となし、上記触媒担体としての要求事項に応ず
るかが最大の問題点である。
Today, many fibers made of heat-resistant materials with a diameter of 3 microns or less are produced, including glass fibers, as well as fiber-shaped ceramics whose main ingredients are alumina, silica, titanine, magnesia, calcium oxide, etc. In either case, the fiber length is 5 to 20 mm or less. However, the physical conditions required for the catalyst support are
It must be able to constantly and stably contact a gas flow with a constant flow rate of 1 to 5 m/sec and not cause pressure loss. Therefore, this diameter is 1 to 3 microns and the length is 5 to 3 microns.
The biggest problem is how to form short, fine fibers of 20 mm or less into a stable shape that meets the requirements for a catalyst carrier.

本発明者は、この問題点を解決し、昭和56年7
月1日付で、“担体として短繊維を使用する触
媒”なる名称の特許出願をなした。該特許出願の
発明の要旨とするところは、直径3ミクロン以下
のシリカ、アルミナ、酸化カルシウム、マグネシ
ア又はチタニアなどを主成分とする耐火性短繊
維、又は耐火性ガラス繊維を、ガラス長繊維又は
金属線に接着せしめ、その表面に公知の触媒成分
をコーテイングしてなることを特徴とする担体と
して短繊維を使用する触媒である。
The present inventor solved this problem and in July 1982
On April 1, 2017, a patent application was filed entitled "Catalyst using short fibers as a carrier." The gist of the invention of the patent application is that refractory short fibers or refractory glass fibers mainly composed of silica, alumina, calcium oxide, magnesia, titania, etc. with a diameter of 3 microns or less, or refractory glass fibers or metal This is a catalyst using short fibers as a carrier, which is bonded to a wire and whose surface is coated with a known catalyst component.

本発明者は、更に上記特許出願で提案した触媒
を改良すべく研究した結果、本発明を完成するに
至つたものであつて、本発明はアルミナ、シリカ
を主成分とする直径3ミクロン以下の短繊維を付
着させたガラス繊維又は金属線を織布した布状又
は網状物からなることを特徴とする排ガス処理用
触媒短繊維担体を要旨とするものである。
The present inventor further conducted research to improve the catalyst proposed in the above patent application, and as a result completed the present invention. The gist of the present invention is a catalyst short fiber carrier for exhaust gas treatment, which is made of a cloth or net-like material woven from glass fibers or metal wires to which short fibers are attached.

本発明において、直径3ミクロン以下の繊維と
限定する理由は、前述したように、繊維の直径が
小さくなる程触媒性能が向上することとなること
及び現在製造されている微小直径を有する耐熱材
料からなる繊維は、その直径が3ミクロン以下で
その長さが5〜20ミリ又はそれ以下の短繊維であ
ることによる。また、本発明において、この短繊
維をガラス繊維又は金属線(この繊維又は線の直
径及び長さは、本発明において任意に選定できる
ものである。)に接着させる接着剤としては、
種々の耐熱接着剤が使用できるが、特にアルミナ
ゾルを主成分とする耐熱接着剤を使用するのが好
適であり、接着手段としては、耐熱接着剤に上記
短繊維を混合し、これをガラス繊維又は金属線表
面に吹付ける手段を採用するのが好ましい。
In the present invention, the reason why fibers are limited to fibers with a diameter of 3 microns or less is that, as mentioned above, the smaller the diameter of the fibers, the better the catalytic performance is, and that The fibers are short fibers with a diameter of 3 microns or less and a length of 5 to 20 mm or less. In addition, in the present invention, the adhesive for bonding the short fibers to glass fibers or metal wires (the diameter and length of the fibers or wires can be arbitrarily selected in the present invention) is as follows:
Although various heat-resistant adhesives can be used, it is particularly preferable to use a heat-resistant adhesive whose main component is alumina sol.As a bonding means, the short fibers mentioned above are mixed with the heat-resistant adhesive, and this is mixed with glass fiber or It is preferable to employ a method of spraying onto the surface of the metal wire.

上記のように耐熱材料からなる短繊維を耐熱接
着剤で付着したガラス繊維又は金属線は、任意な
手段で織布されて布状物又は網状物に形成され
る。
Glass fibers or metal wires to which short fibers made of a heat-resistant material are attached using a heat-resistant adhesive as described above are woven by any means to form a cloth-like article or a net-like article.

このような布状物又は網状物からなる本発明担
体に、触媒成分を均一にコーテイングする手段と
しては、前述したように本発明者らが先に発表し
た方法を採用するのが好ましい。この方法は、触
媒成分となるべき金属の酸とアルコールとのエス
テルを布状物又は網状物に被覆せしめ、このエス
テルを加熱下にゲル化しつゝ上記布状物又は網状
物担体に付着させ、次いでこれを焼成する方法で
ある。(特公昭51―21629号公報参照) 以下に本発明の具体的な例をあげ、本発明をよ
り詳細に説明する。
As a means for uniformly coating the catalyst component on the carrier of the present invention made of such a cloth-like material or a net-like material, it is preferable to employ the method previously disclosed by the present inventors, as described above. This method involves coating a cloth or net-like material with an ester of metal acid and alcohol that is to be a catalyst component, gelling the ester under heating, and adhering it to the cloth-like or net-like support. This is then fired. (Refer to Japanese Patent Publication No. 51-21629.) The present invention will be explained in more detail by giving specific examples below.

実施例 1 第1図は、ガラス繊維表面に耐熱材料からなる
短繊維を接着させる装置であり、図中Aはガラス
溶融部、Bは紡糸部分、Cは耐熱接着剤と耐熱材
料からなる短繊維との混合物を吹き付ける部分、
Dは乾燥炉を示す。〔なお、この第1図はガラス
繊維を製造する従来装置と同じであるが、ただ異
なる点は、従来装置では、Cの部分がサイジング
剤(表面処理剤)吹き付け部分であり、本発明で
は、このC部分を耐熱接着剤と耐熱材料からなる
短繊維との混合物を吹き付ける部分とするように
かえただけのものである。〕第1図の装置で、自
明の方法で9ミクロン直径のガラス繊維を紡糸す
る。一方アルミナゾルを主成分とする耐熱接着剤
に、A2O3 50%、SiO2 50%からなる繊維径1
〜3ミクロンの短繊維(セラミツクスフアイバ
ー)を混合し、この混合物をC部分から吹き付
け、乾燥させる。このようにして得られたガラス
繊維(9ミクロン直径のもの)は、第2図に示す
ように、ガラスフイラメントEの表面に耐熱材料
からなる短繊維Fが接着した構造となつている。
Example 1 Figure 1 shows an apparatus for bonding short fibers made of a heat-resistant material to the surface of glass fibers. In the figure, A is a glass melting part, B is a spinning part, and C is a short fiber made of a heat-resistant adhesive and a heat-resistant material. The part where you spray the mixture with,
D indicates a drying oven. [This figure 1 is the same as the conventional apparatus for producing glass fibers, but the only difference is that in the conventional apparatus, the part C is the part where the sizing agent (surface treatment agent) is sprayed, whereas in the present invention, This C part is simply changed to a part to which a mixture of heat-resistant adhesive and short fibers made of heat-resistant material is sprayed. ] Glass fibers having a diameter of 9 microns are spun using the apparatus shown in FIG. 1 in a self-evident manner. On the other hand, fiber diameter 1 consisting of 50% A 2 O 3 and 50% SiO 2 was added to the heat-resistant adhesive mainly composed of alumina sol.
~3 micron short fibers (ceramic fibers) are mixed, and this mixture is sprayed from part C and dried. The glass fiber thus obtained (having a diameter of 9 microns) has a structure in which short fibers F made of a heat-resistant material are adhered to the surface of a glass filament E, as shown in FIG.

上記方法で製造された短繊維を表面に接着した
直径9ミクロンのガラス繊維(フイラメント)を
集合して糸となし、フイラメントの本数を2400本
とした細い糸と、7200本とした太い糸を用いて、
第3図に示すような平織の網状布を形成した。
Glass fibers (filaments) with a diameter of 9 microns are assembled into threads by bonding the short fibers produced by the above method to the surface, and a thin thread with 2,400 filaments and a thick thread with 7,200 filaments are used. hand,
A plain weave net-like cloth as shown in FIG. 3 was formed.

本布は、タイラー標準スクリーンの篩目14メツ
シユで、太い糸(a)2本の間に細い糸(b)5本の割合
で混紡した平織の網状布で、本布は重ねて使用し
た時、太い糸がスペーサーの役割を果し、圧力損
失を低減したり、偏流を防止する役割を果すもの
である。このようにして得られた網状布の表面に
触媒成分をコーテイングさせる。これは、20モル
%のクロム酸水溶液500部(重量比、以下同じ)
に20モル%の醋酸ニツケル水溶液500部を混合
し、更にプロピレングリコール250部を混合して
1時間エステル化反応を行わしめ、安定したエス
テル中間体を得る。この中間体1250部に塩化パラ
ジウム0.1モル%水溶液100部を加えた溶液1350部
を、前記網状布2700部に浸漬塗布し、200℃で1
時間乾燥後、600℃で1時間焼成してエステル分
解を完了し、短繊維担体表面に活性金属酸化物触
媒を0.1〜0.2ミクロン厚さのフイルム状に接着担
持せしめ、更に、水素を含む還元性ガス雰囲気内
で600℃1時間の活性化処理を行わせる。
This fabric is a plain weave net-like fabric that has a Tyler standard screen mesh of 14 mesh and is a blend of 2 thick threads (a) and 5 thin threads (b), and when used in layers. The thick thread acts as a spacer, reducing pressure loss and preventing drift. The surface of the thus obtained reticulated cloth is coated with a catalyst component. This is 500 parts of a 20 mol% chromic acid aqueous solution (weight ratio, same below)
500 parts of a 20 mol% nickel acetate aqueous solution was mixed with the mixture, followed by 250 parts of propylene glycol, and an esterification reaction was carried out for 1 hour to obtain a stable ester intermediate. 1,350 parts of a solution prepared by adding 100 parts of a 0.1 mol% palladium chloride aqueous solution to 1,250 parts of this intermediate were dip-coated onto 2,700 parts of the reticulated cloth, and the mixture was coated at 200°C for 10 minutes.
After drying for 1 hour, ester decomposition is completed by baking at 600℃ for 1 hour, and an active metal oxide catalyst is adhered to the surface of the short fiber carrier in the form of a film with a thickness of 0.1 to 0.2 microns. Activation treatment is performed at 600°C for 1 hour in a gas atmosphere.

このようにして得られた触媒を、第4図に示す
如き排ガス処理装置に於いて、打抜鋼板(パワチ
ングメタル)で作られた円筒(インナコア)Aの
表面に本布10層を巻きつけ(B)、内側から外側
へ向つて合成排ガスを送り込んだ。
The catalyst obtained in this way is wrapped in 10 layers of this cloth around the surface of a cylinder (inner core) A made of a punched steel plate (powering metal) in an exhaust gas treatment device as shown in Fig. 4. (B) Synthetic exhaust gas was sent from the inside to the outside.

一酸化炭素濃度2.4パーセント、炭化水素
375ppm、残空気を空間速度100,000毎時の割合
で通過させ、入口ガス温度175℃の条件で、CO除
去率95.5バーセント、炭化水素除去率92.7パーセ
ントの結果を得た。
Carbon monoxide concentration 2.4 percent, hydrocarbons
375 ppm, residual air was passed through at a space velocity of 100,000 per hour, and the inlet gas temperature was 175°C, resulting in a CO removal rate of 95.5 percent and a hydrocarbon removal rate of 92.7 percent.

実施例 2 直径0.1ミリメートルの鉄クローム線の表面
に、アルミナゾルを主成分とする耐熱接着剤の水
溶液と、A2O3 80%、SiO2 20%からなる繊維
径1〜3ミクロンの短繊維(高アルミナ質ムライ
ト繊維)との混合物を吹き付け、乾燥させ、次い
で、この金属線を加工して第5図に示す網状のシ
ートとなし、厚さ5ミリメートル、巾70ミリメー
トル、見掛け比重0.4の波形のフイルターエレメ
ントを成形した。
Example 2 An aqueous solution of a heat-resistant adhesive mainly composed of alumina sol and short fibers (1 to 3 microns in diameter) made of 80% A 2 O 3 and 20% SiO 2 were applied to the surface of an iron-chrome wire with a diameter of 0.1 mm. This metal wire is then processed into a mesh sheet as shown in Figure 5, with a corrugated shape of 5 mm thick, 70 mm wide, and with an apparent specific gravity of 0.4. The filter element was molded.

このエレメントに実施例1の方法で触媒コーテ
イングを施したる後、第6図に示す排ガス処理装
置を形成した。Eはそのエレメントを示す。この
装置に実施例1と同組成の合成排ガス(CO2.4
%、炭化水素375ppm、残空気)を空間速度40,
000毎時の割合で通過せしめ、入口ガス温度200℃
の条件で、CO除去率91.2%、炭化水素除去率
87.4%の結果を得た。
After applying a catalyst coating to this element by the method of Example 1, an exhaust gas treatment device shown in FIG. 6 was formed. E indicates the element. A synthetic exhaust gas (CO2.4
%, hydrocarbons 375ppm, residual air) space velocity 40,
000 per hour, inlet gas temperature 200℃
Under the conditions, CO removal rate was 91.2%, hydrocarbon removal rate was
Obtained a result of 87.4%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例であるガラス繊維
表面に、耐熱材料からなる短繊維を接着させる装
置であり、第2図は、ガラス繊維に耐熱材料から
なる短繊維が接着されている状態を示す図であ
る。第3図及び第5図は本発明触媒担体の網状布
及び網状シートを示し、第4図及び第6図は実機
に本発明触媒担体を用いて調製した触媒を適用し
た態様を示す。
FIG. 1 shows an apparatus for bonding short fibers made of a heat-resistant material to the surface of glass fiber, which is an embodiment of the present invention, and FIG. 2 shows a device in which short fibers made of a heat-resistant material are bonded to glass fibers. It is a figure showing a state. Figures 3 and 5 show the reticulated cloth and reticulated sheet of the catalyst carrier of the present invention, and Figures 4 and 6 show embodiments in which the catalyst prepared using the catalyst carrier of the present invention is applied to an actual machine.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ、シリカを主成分とする直径3ミク
ロン以下の短繊維を付着させたガラス繊維又は金
属線を織布した布状又は網状物からなることを特
徴とする排ガス処理用触媒短繊維担体。
1. A catalytic short fiber carrier for exhaust gas treatment, characterized in that it is made of a cloth or net-like material woven from glass fibers or metal wires to which short fibers with a diameter of 3 microns or less and which are mainly composed of alumina or silica are attached.
JP56115342A 1981-07-24 1981-07-24 Catalyst with short fiber carrier for treatment of gas Granted JPS5817841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115342A JPS5817841A (en) 1981-07-24 1981-07-24 Catalyst with short fiber carrier for treatment of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115342A JPS5817841A (en) 1981-07-24 1981-07-24 Catalyst with short fiber carrier for treatment of gas

Publications (2)

Publication Number Publication Date
JPS5817841A JPS5817841A (en) 1983-02-02
JPS6121702B2 true JPS6121702B2 (en) 1986-05-28

Family

ID=14660162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115342A Granted JPS5817841A (en) 1981-07-24 1981-07-24 Catalyst with short fiber carrier for treatment of gas

Country Status (1)

Country Link
JP (1) JPS5817841A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504795C2 (en) * 1995-07-05 1997-04-28 Katator Ab Network-based combustion catalyst and production thereof
US6787497B2 (en) 2000-10-06 2004-09-07 Akzo Nobel N.V. Chemical product and process
EP1195196A1 (en) * 2000-10-06 2002-04-10 Akzo Nobel N.V. Catalyst carrier comprising a fibre paper impregnated with micro fibres, process for its production and its uses
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
JP5140243B2 (en) * 2005-08-29 2013-02-06 バブコック日立株式会社 Catalyst base material, catalyst, and production method thereof

Also Published As

Publication number Publication date
JPS5817841A (en) 1983-02-02

Similar Documents

Publication Publication Date Title
US4761323A (en) Method and article for the production of porous fiber bats
WO2001036097A1 (en) Catalyst and method for preparation thereof
JPS62155937A (en) Production of catalytic body carrying gold and gold composite oxide
CN112166213A (en) Activated porous fibers and products including the same
US4038214A (en) Impregnated fibrous catalyst for treating exhaust gas of an internal combustion engine and process for making same
JPS6121702B2 (en)
JPS59145048A (en) Catalyst, preparation and use thereof
JPH0620559B2 (en) Catalyst for catalytic combustion reaction and method for producing the same
JPH11183728A (en) Gas treatment apparatus and gas treatment filter
JPH03221146A (en) Catalyst filter base material for treating combustion exhaust gas
JPS583642A (en) Catalyst using short fiber as carrier
JPS6319220B2 (en)
US3951866A (en) Process for preparing catalysts
JPS60212235A (en) Preparation of catalyst
JP4661437B2 (en) Method for producing exhaust gas purification catalyst
JP2908812B2 (en) Catalyst for removing nitrogen oxides and method for producing the same
JP2972231B2 (en) DeNOx catalyst and method for producing the same
JPH04110045A (en) Catalyst body for purification of exhaust gas and its production
JPS6234586Y2 (en)
JPS6147575B2 (en)
JPH04145946A (en) Catalyst for purification of exhaust gas
JPH03296438A (en) Catalyst for waste gas purification
JPS6051546A (en) Catalytic filter for kerosene space heater
JPS61230747A (en) Catalyst carrier for purifying exhaust gas
JPH0699077A (en) Laminated corrugated catalyst carrier