JPS61216716A - Treatment of exhaust gas in manufacturing of carbon fiber - Google Patents

Treatment of exhaust gas in manufacturing of carbon fiber

Info

Publication number
JPS61216716A
JPS61216716A JP60057063A JP5706385A JPS61216716A JP S61216716 A JPS61216716 A JP S61216716A JP 60057063 A JP60057063 A JP 60057063A JP 5706385 A JP5706385 A JP 5706385A JP S61216716 A JPS61216716 A JP S61216716A
Authority
JP
Japan
Prior art keywords
water
washing water
exhaust gas
tar
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057063A
Other languages
Japanese (ja)
Inventor
Yukio Nishimoto
幸雄 西本
Hiroyuki Shimoyama
下山 寛之
Hideo Mori
英夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60057063A priority Critical patent/JPS61216716A/en
Publication of JPS61216716A publication Critical patent/JPS61216716A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To efficiently remove a tar component and to reduce the viscosity of washing water, by removing the tar component of the exhaust gas formed in a baking furnace by washing and holding the used washing water to specific temp. or less in a water treatment tank to separate the tar component by flotation. CONSTITUTION:The exhaust gas formed in a process, wherein a flame resistant fiber or carbon fiber is prepared by heating a stock fiber M such as a polyacrilonitrile fiber at 300 deg.C or more in a baking furnace 1 under an inert atmosphere, is sucked from an exhaust pipe 4 and washed by washing water from spray nozzles 9 in the gas-liquid contact chamber 7 of a scrubbing dust collector 5 while the used washing water is treated in a pyrolytic apparatus 10 packed with a platinum catalyst. The washing water from a drain pipe 13 is cooled to 40 deg.C or less by a heat exchanger 18 to be sent to a treatment tank 12 where the tar component in washing water is separated by flotation. The water purified in the treatment tank 12 is supplied to the spray nozzles 9 through a water feed pump 16 and a water feed pipe 17 and recirculated for reuse.

Description

【発明の詳細な説明】 [産業上の利用分野」 本発明は、炭素繊維の製造工程中、特に焼成工採用され
て好適な炭素繊維製造における排ガス処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating exhaust gas in carbon fiber production, which is suitable for use in a carbon fiber production process, particularly in a sintering process.

[従来の技術] 一般に、炭素繊維はポリアクリロニトリル繊維、ピッチ
繊維等の原料繊維(ブレカーサ)を200℃〜300℃
の空気中で加熱しく耐炎化処理、不融化処理)、更に窒
素などの不活性雰囲気下で1000℃〜1500℃まで
加熱しく焼成工程)で炭化、あるいは黒鉛化させること
により製造される。
[Prior art] Carbon fibers are generally produced by heating raw material fibers (brecasa) such as polyacrylonitrile fibers and pitch fibers at 200°C to 300°C.
It is produced by carbonizing or graphitizing it by heating in the air to make it flame resistant (flame-proofing treatment, infusibility treatment), and then heating it in an inert atmosphere such as nitrogen to 1000°C to 1500°C (firing process).

上記焼成工程は、例えば添付の図面に示されるような連
続式焼成炉Iによって行なわれるが、その際に、プレカ
ーサとしてポリアクリロニトリル繊維を使用した場合に
はブレカーサの35〜50wt%が分解生成物として発
生する。この分解生成物は、有毒な)(CNを含む常温
でガス状の物質と、有機高分子物質を含むタール分とか
らなっており、これらをガス状態において焼成炉から吸
引し処理することは、作業環境の衛生管理上、製品の品
質管理上、更には操業の継続のためにも必須条件でとこ
ろが、このタール分は焼成炉出口あるいはそれ以降の配
管内において凝結し付着、堆積しやすく、特に温度の低
下とともにこの傾向が顕著になるので、焼成炉に近いと
ころで早急に除去する必要がある。
The above firing step is carried out, for example, in a continuous firing furnace I as shown in the attached drawing, but at that time, when polyacrylonitrile fiber is used as the precursor, 35 to 50 wt% of the brecaser is decomposed as a decomposition product. Occur. This decomposition product consists of substances that are gaseous at room temperature (including toxic CN) and tar that contains organic polymer substances. However, this tar content is an essential condition for hygiene control of the working environment, product quality control, and even for continued operation, but this tar tends to condense, adhere, and accumulate at the outlet of the kiln or in the piping after that, and is especially This tendency becomes more noticeable as the temperature decreases, so it is necessary to remove it as soon as possible near the firing furnace.

その方法として従来から行なわれているものに、電気集
塵機による処理、フィルタによる濾過処理、冷却凝縮処
理、スクラバ集塵機による湿式処理及び燃焼処理等があ
るが、タール分が粘着性を有すること及びその量が多い
ことから、湿式処理以外の方法においては、配管詰まり
や目詰まり、機材への付着のための動作不良等が起こり
やすく安定した操業を継続させるに至っていない。
Conventional methods for this purpose include treatment with an electrostatic precipitator, filtration treatment with a filter, cooling condensation treatment, wet treatment with a scrubber dust collector, and combustion treatment. Because of this, methods other than wet processing tend to cause clogging and clogging of pipes, malfunctions due to adhesion to equipment, etc., and stable operations cannot be maintained.

[発明が解決しようとする問題点] 一方、スクラバ集塵機による湿式処理においては上記の
ような詰まりゃ付着などの不具合は解消される乙のの、
洗浄水の処理を行なうことが必要となる。特に、上記の
ような有毒成分を含む水を処理しなければならない場合
には、処理水を循環再使用させるいわゆるクローズドサ
ーキットシステムにすることが、処理量を少なくするた
めにも望ましい。
[Problems to be solved by the invention] On the other hand, in wet processing using a scrubber dust collector, problems such as clogging and adhesion as described above are eliminated.
It is necessary to treat the wash water. Particularly, when water containing toxic components such as those mentioned above must be treated, it is desirable to use a so-called closed circuit system in which the treated water is circulated and reused in order to reduce the amount of treatment.

ところがそのような循環処理を行なう場合には、洗浄水
のタール分含有量が増すにつれて水の粘度が高くなり、
送水ポンプの負荷を増すとともに、スクラバ集塵機にお
ける液−ガス接触の効率を下げてしまい、一方、それを
防ぐために洗浄水量を増やすと処理を必要とする水量も
増加してしまうという問題点があった。
However, when performing such circulation treatment, the viscosity of the water increases as the tar content of the cleaning water increases.
This increases the load on the water pump and reduces the efficiency of liquid-gas contact in the scrubber dust collector.On the other hand, increasing the amount of washing water to prevent this increases the amount of water that needs to be treated. .

[問題点を解決するための手段] 本発明は、上記のような問題点を解決するために繊維状
物質を不活性雰囲気の焼成炉内で300℃以上に加熱し
て、耐炎化繊維もしくは炭素繊維を製造する方法におい
て、上記焼成炉で生成する排ガスを水洗浄して排ガス中
のタール分を除去する工程と、このタール分を含む洗浄
水を水処理槽内において温度40℃以下に保持すること
によりタール分を浮上分離させる工程とを行うようにし
たものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention heats a fibrous material to 300°C or higher in a firing furnace in an inert atmosphere to form flame-resistant fibers or carbon. In the method for producing fibers, the exhaust gas generated in the above-mentioned firing furnace is washed with water to remove tar from the exhaust gas, and the cleaning water containing the tar is maintained at a temperature of 40°C or less in a water treatment tank. This process involves flotation and separation of tar.

以下、本発明の方法を図面を参照して更に詳しく説明す
る。
Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.

図面において、符号lは竪型で連続式の焼成炉であり、
素材繊維Mがロール2.2により連続的に挿通されて焼
成される。炉内は給気パイプ3゜3から供給される窒素
などのガスにより不活性雰囲気に保たれ、また発生した
排ガスは排気パイプ4より排出される。
In the drawing, the symbol l is a vertical continuous firing furnace,
The raw material fiber M is continuously passed through the roll 2.2 and fired. The inside of the furnace is maintained in an inert atmosphere by gas such as nitrogen supplied from the air supply pipe 3.3, and the generated exhaust gas is discharged from the exhaust pipe 4.

符号5はスクラバ集塵機で、隔壁6により下部で連通ず
る気液接触室7と気室8に分離されている。排気パイプ
4より導入された排ガスは、上記気液分離室7でスプレ
ーノズル9から分散された洗浄水により洗われた後、気
室8の上部から導出され、更に熱分解装置IOに導入さ
れて有害成分を除去された後に大気中に放出される。な
お、符号1. tは排ガスを吸引する水封式ポンプであ
る。
Reference numeral 5 denotes a scrubber dust collector, which is separated by a partition wall 6 into a gas-liquid contact chamber 7 and an air chamber 8 which communicate at the bottom. The exhaust gas introduced from the exhaust pipe 4 is washed in the gas-liquid separation chamber 7 with washing water dispersed from the spray nozzle 9, then led out from the upper part of the air chamber 8, and further introduced into the pyrolysis device IO. After harmful components are removed, it is released into the atmosphere. Note that the code 1. t is a water ring pump that sucks exhaust gas.

符号12は、上記スクラバ集塵機5から排水管13を通
って排出された洗浄水を貯め、洗浄水のタール分を浮上
分離させる処理槽であり、上記排水管13の出口と処理
槽12の排水孔14の間にt々補μl:!h舗光19通
七斗スナ、込小櫃1q^Oht÷ム台ている。この処理
槽12で浄化された水は、送水ポンプ16により給水管
17を通ってスクラバ集塵機5のスプレーノズル9に供
給され、循環再使用される。
Reference numeral 12 denotes a treatment tank that stores the cleaning water discharged from the scrubber dust collector 5 through the drain pipe 13 and floats and separates tar in the cleaning water. Between 14 and 50 μl:! H store light 19 times 70 minutes, 1q^Oht÷mu base. The water purified in the treatment tank 12 is supplied to the spray nozzle 9 of the scrubber dust collector 5 through a water supply pipe 17 by a water supply pump 16, and is circulated and reused.

符号I8は循環使用される洗浄水の冷却を行うための熱
交換器であり、上記排水管13の途中に設けられている
。、この熱交換器18は配管詰まりを防ぐために直線的
内管にフィン19が設けられた構造になっている。
Reference numeral I8 is a heat exchanger for cooling the circulating washing water, and is provided in the middle of the drain pipe 13. This heat exchanger 18 has a structure in which fins 19 are provided on a straight inner tube to prevent pipe clogging.

この熱交換器18へ供給される冷却水量は処理槽12内
の水温を40℃以下、好ましくは30℃以下に保つよう
にコントロールされる。これは、水温が40℃以上だと
スカムが溶解するが、40℃以下であればスカムが浮上
して分別されるからである。
The amount of cooling water supplied to the heat exchanger 18 is controlled so as to maintain the water temperature in the treatment tank 12 at 40°C or lower, preferably at 30°C or lower. This is because if the water temperature is above 40°C, the scum will dissolve, but if it is below 40°C, the scum will float to the surface and be separated.

なお、水温のコントロールの具体的な手段としては、例
えば処理槽12内の水温検知手段と連動する流量制御弁
(図示せず)などを設けることなどが考えられる。また
、熱交換器18の取り付は位置や構造は上述のものに限
られず、例えば処理槽12内の洗浄水を直接冷却するよ
うにしても良い。
In addition, as a specific means for controlling the water temperature, it is possible to provide, for example, a flow control valve (not shown) that is interlocked with a water temperature detection means in the processing tank 12. Further, the mounting position and structure of the heat exchanger 18 are not limited to those described above, and for example, the washing water in the processing tank 12 may be directly cooled.

処理槽12でスカム状に浮上分離されたタール分は金網
などですくい取って除去でき、別途焼却その他の方法に
より容易に処理することができる。
The tar component floated and separated in the form of scum in the treatment tank 12 can be removed by scooping with a wire mesh or the like, and can be easily disposed of separately by incineration or other methods.

一方、洗浄水中には排ガス成分のHCN 、 N Hs
などが溶解され、そのイオン濃度が徐々に濃化していく
が操業には支障なく、適当な期間後に抜き取って処理す
れば良い。
On the other hand, the cleaning water contains exhaust gas components HCN and NHs.
etc. are dissolved and the ion concentration gradually increases, but this does not affect operation and can be extracted and processed after an appropriate period of time.

[作用コ 本発明によれば、排ガスを洗浄した洗浄水を冷却して4
0℃以下に保持することにより、洗浄水に溶解あるいは
懸蜀されて含有されているタール分が析出あるいは凝縮
されて浮上分離され、洗浄水の粘度が低下する。
[Operations] According to the present invention, the cleaning water that has been used to clean the exhaust gas is cooled and
By maintaining the temperature at 0° C. or lower, the tar content dissolved or suspended in the washing water is precipitated or condensed and separated by flotation, thereby reducing the viscosity of the washing water.

[実施例] 次に、本発明の方法の実施例及びその結果を示す。[Example] Next, examples of the method of the present invention and their results will be shown.

(実施例1) 温度900℃に保たれた焼成炉1において、ポリアクリ
ロニトリル繊維からなる12000フイラメントのトウ
を空気中で耐炎化処理した素材繊維Mを、1時間当たり
35mの速度で供給し熱処理した。焼成炉lへは、給気
パイプ3.3より窒素ガスを毎分400Q供給してその
炉内圧を大気圧より水柱換算で0.5〜10mm高く保
ち、また、排気バイブ4から毎分430Qの排ガスを吸
引した。この排ガスはスクラバ集塵機5の気液接触室7
(直径1m、高さ2m)に導かれ、スプレーノズル9か
ら分散された毎分50ρの洗浄水により洗浄されて気室
8から排出された。この排ガスは、更に空気と混合され
て、白金系触媒が充填された直径500n+a+の円筒
状の熱分解装置IOに導入されて処理された後、水封式
ポンプ11により排出された。処理槽12は高さin、
幅1.5m、長さ15mで、堰15は排水孔14から0
.5mのところに設けられている。洗浄水の全量は1.
4k(2であった。処理槽12内の洗浄水には断水から
2週間操業した後に3800〜4300ppmのCN−
イオン及び約5000 ppmのNH,+イオンが含ま
れていた。この条件において熱交換器18に毎分100
〜121!の冷却水を供給することにより、洗浄水の温
度を処理槽12内で約20℃に保持した。
(Example 1) In a firing furnace 1 maintained at a temperature of 900° C., material fiber M obtained by flame-retardant treatment of 12,000 filament tows made of polyacrylonitrile fibers in air was supplied at a rate of 35 m per hour and heat-treated. . Nitrogen gas is supplied to the firing furnace l from the air supply pipe 3.3 at a rate of 400 Q/min to maintain the furnace internal pressure 0.5 to 10 mm higher than atmospheric pressure in terms of water column. Inhaled exhaust gas. This exhaust gas is transferred to the gas-liquid contact chamber 7 of the scrubber dust collector 5.
(diameter: 1 m, height: 2 m), was washed by washing water at a rate of 50 ρ per minute dispersed from the spray nozzle 9, and was discharged from the air chamber 8. This exhaust gas was further mixed with air, introduced into a cylindrical thermal decomposition device IO with a diameter of 500n+a+ filled with a platinum-based catalyst, and treated, and then discharged by a water ring pump 11. The processing tank 12 has a height of in.
The weir 15 is 1.5 m wide and 15 m long, and the weir 15 is connected from the drainage hole 14 to 0.
.. It is located at a distance of 5m. The total amount of washing water is 1.
The cleaning water in the treatment tank 12 contained 3,800 to 4,300 ppm of CN- after two weeks of operation after the water cutoff.
ions and about 5000 ppm of NH,+ ions. Under these conditions, the heat exchanger 18
~121! The temperature of the washing water was maintained at about 20° C. in the processing tank 12 by supplying cooling water of 20°C.

2週間の操業により約40kgのタール分が回収された
。洗浄水の粘度の上昇はほとんどなく送水ポンプ16の
送水量は変化な(正常に運転された。
Approximately 40 kg of tar was recovered after two weeks of operation. There was almost no increase in the viscosity of the wash water, and the amount of water sent by the water pump 16 did not change (it was operated normally).

(実施例2) 実施例1と冷却水量以外は同じ条件で、熱交換4夏8の
冷却水量を毎分51とした。このときの処理槽12内で
の洗浄水温度は33℃であった。
(Example 2) The conditions were the same as in Example 1 except for the amount of cooling water, and the amount of cooling water for heat exchange 4/summer 8 was set at 51/min. The temperature of the washing water in the treatment tank 12 at this time was 33°C.

2週間の操業により約28kgのタール分が回収され、
洗浄水の粘度上昇はわずかで送水ポンプ16も正常に作
動した。
Approximately 28 kg of tar was recovered after two weeks of operation.
The viscosity of the cleaning water increased only slightly, and the water pump 16 also operated normally.

(比較例) 実施例1及び実施例2と冷却水量以外は同じ条件で、熱
交換器18の冷却水量を毎分30σで運転した結果、粘
度上昇のため熱交換器18にスケールが付着し、熱交換
器18の能力が低下し、洗浄水温度は処理槽12内で約
60℃であった。1週間の操業においてもタール分の回
収量は1kg未再開時に過負荷のため送水ポンプ16の
起動ができなくなり、洗浄水を入れ替えなければならな
くなった。
(Comparative Example) As a result of operating the heat exchanger 18 at a cooling water rate of 30σ per minute under the same conditions as in Examples 1 and 2 except for the amount of cooling water, scale adhered to the heat exchanger 18 due to increased viscosity. The capacity of the heat exchanger 18 was reduced, and the temperature of the washing water in the treatment tank 12 was about 60°C. Even after one week of operation, the amount of tar recovered was 1 kg.When the system was not restarted, the water pump 16 could not be started due to overload, and the washing water had to be replaced.

[発明の効果] 本発明は繊維状物質を不活性雰囲気の焼成炉内で300
℃以上に加熱して耐炎化繊維もしくは炭素繊維を製造す
る方法において、上記焼成炉で生成する排ガスを水洗浄
して排ガス中のタール分を除去する工程と、このタール
分を含む洗浄水を水処理槽内において温度40℃以下に
保持することによりタール分を浮上分離させる工程とを
行うようにしたので、洗浄水のタール分除去を効率良く
行うことができる。従って、洗浄水の粘度を下げること
ができ、循環再使用のシステムが比較的少量の洗浄水に
よって行えるので洗浄水の後処理も容易である。
[Effects of the Invention] The present invention provides fibrous materials in a firing furnace with an inert atmosphere.
In the method of producing flame-resistant fibers or carbon fibers by heating to temperatures above ℃, there is a step of washing the exhaust gas generated in the above-mentioned firing furnace with water to remove tar from the exhaust gas, and washing the cleaning water containing the tar with water. Since the step of flotation-separating the tar content by maintaining the temperature within the treatment tank at 40° C. or lower is performed, the tar content of the washing water can be efficiently removed. Therefore, the viscosity of the washing water can be lowered, and the system of circulation and reuse can be carried out with a relatively small amount of washing water, making it easy to post-process the washing water.

そして、湿式洗浄法の有効性を増すことにより、炭素繊
維の製造を安定的に行わしめるという優れた効果を奏す
る。
In addition, by increasing the effectiveness of the wet cleaning method, the excellent effect of stably producing carbon fibers is achieved.

添付の図面は本発明の方法の一実施例の概略を示したも
のである。
The accompanying drawings schematically depict one embodiment of the method of the invention.

1・・・・・焼成炉、  5・・・・・・スクラバ集塵
機、10・・・・熱分解装置、11・・・・・・水封式
真空ポンプ、!2・・・・・処理槽、  16・・・・
・・送水ポンプ、18・・・・熱交換器。
1...Calcination furnace, 5...Scrubber dust collector, 10...Pyrolysis device, 11...Water ring vacuum pump,! 2...processing tank, 16...
...Water pump, 18...Heat exchanger.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維状物質を不活性雰囲気の焼成炉内で300℃
以上に加熱して、耐炎化繊維もしくは炭素繊維を製造す
る方法において、上記焼成炉で生成する排ガスを水洗浄
して排ガス中のタール分を除去する工程と、このタール
分を含む洗浄水を水処理槽内において温度40℃以下に
保持することによりタール分を浮上分離させる工程とを
行うことを特徴とする炭素繊維製造における排ガス処理
方法。
(1) Fibrous material is heated to 300°C in a firing furnace in an inert atmosphere.
In the method of manufacturing flame-resistant fibers or carbon fibers by heating to the above temperature, the exhaust gas generated in the above-mentioned firing furnace is washed with water to remove tar from the exhaust gas, and the cleaning water containing the tar is washed with water. 1. A method for treating exhaust gas in the production of carbon fibers, comprising a step of floating and separating tar by maintaining the temperature at 40° C. or lower in a treatment tank.
(2)洗浄水を循環使用することを特徴とする特許請求
の範囲第1項記載の方法。
(2) The method according to claim 1, characterized in that the washing water is recycled.
JP60057063A 1985-03-20 1985-03-20 Treatment of exhaust gas in manufacturing of carbon fiber Pending JPS61216716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057063A JPS61216716A (en) 1985-03-20 1985-03-20 Treatment of exhaust gas in manufacturing of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057063A JPS61216716A (en) 1985-03-20 1985-03-20 Treatment of exhaust gas in manufacturing of carbon fiber

Publications (1)

Publication Number Publication Date
JPS61216716A true JPS61216716A (en) 1986-09-26

Family

ID=13044981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057063A Pending JPS61216716A (en) 1985-03-20 1985-03-20 Treatment of exhaust gas in manufacturing of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61216716A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044303A (en) * 2001-02-02 2001-06-05 장금희 A method for elimination Harmful component form waste gas and the system thereof
KR100856055B1 (en) 2008-03-17 2008-09-02 주식회사 시원기업 Heat-exchange type scrubbing apparatus for exhaust gas
US7655071B2 (en) * 2005-12-16 2010-02-02 Shell Oil Company Process for cooling down a hot flue gas stream
CN102954700A (en) * 2012-10-23 2013-03-06 金发科技股份有限公司 Comprehensive treatment utilization method of waste gas produced by carbon fibre

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044303A (en) * 2001-02-02 2001-06-05 장금희 A method for elimination Harmful component form waste gas and the system thereof
US7655071B2 (en) * 2005-12-16 2010-02-02 Shell Oil Company Process for cooling down a hot flue gas stream
KR100856055B1 (en) 2008-03-17 2008-09-02 주식회사 시원기업 Heat-exchange type scrubbing apparatus for exhaust gas
CN102954700A (en) * 2012-10-23 2013-03-06 金发科技股份有限公司 Comprehensive treatment utilization method of waste gas produced by carbon fibre
CN102954700B (en) * 2012-10-23 2014-10-29 金发科技股份有限公司 Comprehensive treatment utilization method of waste gas produced by carbon fibre

Similar Documents

Publication Publication Date Title
US3944650A (en) Process for removing oxides of sulfur, dust and mist from combustion waste gas
KR100847915B1 (en) Effluent gas stream treatment device and method having utility for oxidation treatment of semiconductor manufacturing effluent gases
US3763915A (en) Evaporative treatment of liquids by submerged combustion
DK157662B (en) PROCEDURE AND APPARATUS FOR THE CLEANING OF ROEGGAS FOR WATER SOLUBLE SUBSTANCES ON CONTACT WITH FINALLY DISTRIBUTED WATER
US2997132A (en) Method for the ventilating of plants for the manufacture of aluminium or similar products
JP2012245467A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JPS61216716A (en) Treatment of exhaust gas in manufacturing of carbon fiber
CN216472341U (en) Harmless resourceful processing apparatus of high salt high concentration organic waste water that contains
US3518812A (en) Process for removing dust from hot dust-laden gases
US1908782A (en) Apparatus for the treatment of flue gases and the like
US1413877A (en) Process and apparatus for collecting suspended material from furnace gases
CN113979507B (en) Harmless recycling treatment process and system for high-salt-content high-concentration organic wastewater
US4908191A (en) Removing arsine from gaseous streams
CN104528974A (en) Oil removal process for quality improving sewage of coal
US5994261A (en) Method of producing activated carbon fiber
CN112158840B (en) System and method for high-sulfur high-oxygen smelting flue gas tempering and carbon material activation
US1687229A (en) Apparatus for utilizing impure gases or exhaust gases containing carbon dioxide
WO2022219978A1 (en) Method for producing glass article and device for producing glass article
CN206843232U (en) Refuse pyrolysis water circulation purifier
JP2002088588A (en) Apparatus for producing activated carbon fiber
CN205500820U (en) High concentration contains environmental protection of salt waste water dry process and handles solid -state salt system of recovery
KR100794744B1 (en) Degasing method of ammonia gas in ammonia-removed water
CN108815997A (en) A kind of desorption tail gas purifying treatment method of indirect thermal containing mercury contaminated soil
JP3263427B2 (en) Method for producing activated carbon fiber and apparatus for producing activated carbon fiber
CN219355740U (en) Drying rotary kiln