JPS61216493A - Electrostrictive effect element - Google Patents
Electrostrictive effect elementInfo
- Publication number
- JPS61216493A JPS61216493A JP60057808A JP5780885A JPS61216493A JP S61216493 A JPS61216493 A JP S61216493A JP 60057808 A JP60057808 A JP 60057808A JP 5780885 A JP5780885 A JP 5780885A JP S61216493 A JPS61216493 A JP S61216493A
- Authority
- JP
- Japan
- Prior art keywords
- electrostrictive
- layer
- layers
- electrode layer
- internal electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 42
- 239000004020 conductor Substances 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 239000010410 layer Substances 0.000 abstract description 78
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 12
- 239000011241 protective layer Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract 2
- 238000010030 laminating Methods 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電歪効果素子に関し、特に電歪材と内部電極材
とが層状に複数枚一体化形成された積層型の電歪効果素
子に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrostrictive effect element, and more particularly to a laminated electrostrictive effect element in which a plurality of electrostrictive materials and internal electrode materials are integrally formed in a layered manner. It is something.
第2図は従来の電歪効果素子の一例を示す斜視図である
。FIG. 2 is a perspective view showing an example of a conventional electrostrictive effect element.
同図に示すように従来の電歪効果素子は電歪材層lOと
内部電極層22とを複数枚交互に積み重ねて熱圧着一体
化した後、焼結して形成されている。この電歪効果素子
では、電歪材層10と内部電極層22との間の接着力を
大きくするために内部電極層22を構成する導電材に銀
粉末、パラジウム粉末、白金粉末などの金属粉の焼結体
と、複合ペロプスカイト化合物からなる電歪材とを一定
の比率で混合して用いている。これは、内部電極層22
に導電材と電歪材との混合物を用いると、電歪材層10
内の電歪材と内部電極層22内の電歪材とが焼結して接
着力が大幅に増加する現象を利用するためである。As shown in the figure, the conventional electrostrictive effect element is formed by stacking a plurality of electrostrictive material layers lO and internal electrode layers 22 alternately, integrating them by thermocompression, and then sintering them. In this electrostrictive effect element, in order to increase the adhesive force between the electrostrictive material layer 10 and the internal electrode layer 22, a metal powder such as silver powder, palladium powder, platinum powder, etc. is used as a conductive material constituting the internal electrode layer 22. The sintered body and the electrostrictive material made of a composite perovskite compound are mixed at a certain ratio. This is the internal electrode layer 22
When a mixture of a conductive material and an electrostrictive material is used, the electrostrictive material layer 10
This is to take advantage of the phenomenon in which the electrostrictive material inside the inner electrode layer 22 and the electrostrictive material inside the internal electrode layer 22 are sintered and the adhesive force is significantly increased.
金属粉としては白金粉末、パラジウム粉末など負金属の
粉末も使用できるが、電歪効果素子の値段を安くするた
めに通常は銀粉末とパラジウム粉末との金属粉の焼結体
が使用される。Powders of negative metals such as platinum powder and palladium powder can also be used as the metal powder, but in order to reduce the price of the electrostrictive effect element, a sintered body of metal powders of silver powder and palladium powder is usually used.
上述した従来の電歪効果素子は、内部電極層22を構成
する導電材に銀粉末とパラジウム粉末との混合粉末を用
いるが、電歪材層10と内部電極層22との間の接着力
に層ごとにはらつきがあり、かつその接着力が大幅に減
少することが発生する。The conventional electrostrictive effect element described above uses a mixed powder of silver powder and palladium powder as the conductive material constituting the internal electrode layer 22, but the adhesive force between the electrostrictive material layer 10 and the internal electrode layer 22 is It occurs that there is fluctuation from layer to layer and that the adhesion strength is significantly reduced.
この接着力のばらつきの傾向は、電歪効果素子の最外層
の電歪材層10と、それに隣接する内部電極層22との
間の接着力が最も小さく、中間層に位置する内部電極層
22と、それに隣接する電歪材層10との間の接着力が
最も大きい。The tendency of this variation in adhesive force is that the adhesive force between the outermost electrostrictive material layer 10 of the electrostrictive effect element and the internal electrode layer 22 adjacent thereto is the smallest, and the adhesive force between the inner electrode layer 22 located in the middle layer is the lowest. The adhesive force between the electrostrictive material layer 10 and the electrostrictive material layer 10 adjacent thereto is the largest.
この傾向を示す原因は、外層にある内部電極層22がそ
の外側の電歪材層10を介して大気と接しているので、
この外層にある内部電極層22中の銀が蒸発し易く、逆
に中間層にある内部電極層22中の銀は蒸発しにくいか
らである。焼結時に蒸発した銀の跡には気孔が生まれる
ので、内部電極層22と電歪材層10との接着力が低下
する。The reason for this tendency is that the outer internal electrode layer 22 is in contact with the atmosphere via the outer electrostrictive material layer 10.
This is because the silver in the internal electrode layer 22 in the outer layer is easily evaporated, whereas the silver in the internal electrode layer 22 in the intermediate layer is difficult to evaporate. Since pores are created in the traces of silver evaporated during sintering, the adhesive force between the internal electrode layer 22 and the electrostrictive material layer 10 is reduced.
従って導電材(銀粉末、パラジウム粉末)と電歪材の混
合比率が一足な1種類の内部電極層22を用いた従来の
電歪効果素子では、最外層の電歪材410とそれに隣接
する内部電極層22との間の接着力が特に小さくなり、
該電歪効果素子の駆動を行うと、外層にある前記内部電
極層22にクラックが入るという欠点がある。Therefore, in a conventional electrostrictive element using one type of internal electrode layer 22 with a mixing ratio of conductive material (silver powder, palladium powder) and electrostrictive material, the outermost layer electrostrictive material 410 and the adjacent internal The adhesive force between the electrode layer 22 becomes particularly small,
When the electrostrictive element is driven, there is a drawback that cracks occur in the internal electrode layer 22, which is an outer layer.
本発明の電歪効果素子は、導電材と電歪材とからなる内
部電極層と、電歪材層とを交互に複数枚積層させた電歪
効果素子において、前記内部電極層の導電材と電歪材の
配合比率が95=5から50:50の範囲内で異なる2
種以上の内部電極層を含んでいる。The electrostrictive effect element of the present invention is an electrostrictive effect element in which a plurality of internal electrode layers made of a conductive material and an electrostrictive material and a plurality of electrostrictive material layers are alternately laminated. The blending ratio of the electrostrictive material is different within the range of 95=5 to 50:50 2
It contains more than one internal electrode layer.
次に、本発明について第1図を参照して説明する。 Next, the present invention will be explained with reference to FIG.
第1図は本発明の電歪効果素子の一実施例を示す斜視図
である。FIG. 1 is a perspective view showing an embodiment of the electrostrictive effect element of the present invention.
同図において、電歪効果素子(以下単に素子)は2 m
X 3 mm X 9 wmのサイズを有し、該縦方
向9鰭に内部電極層20または21と電歪材層10を交
互に積み重ね、最上層、最下層の電歪材層はそれぞれ保
護層10A 、 10Bをなし、A面およびB面がこの
素子の作用面となっている。In the same figure, the electrostrictive effect element (hereinafter simply referred to as element) is 2 m
It has a size of X 3 mm X 9 wm, and internal electrode layers 20 or 21 and electrostrictive material layers 10 are alternately stacked on the nine longitudinal fins, and the top and bottom electrostrictive material layers each have a protective layer 10A. , 10B, and the A-plane and B-plane are the operational surfaces of this element.
本実施例で用いた電歪材は複合ペロプスカイト化合物で
あるニッケル・ニオブ酸ジルコン酸チタン酸鉛であり、
化学式で表現すると
Pb ((N i 17sNb ys )o、5Zro
、asT io、+s )03である。この電歪材は温
度1120℃で2時間加熱することにより焼結できる。The electrostrictive material used in this example is nickel-niobate zirconate lead titanate, which is a composite perovskite compound.
Expressed in chemical formula, Pb ((N i 17sNb ys ) o, 5Zro
, asT io, +s )03. This electrostrictive material can be sintered by heating at a temperature of 1120° C. for 2 hours.
また、内部電極層20.21を構成する導電材として銀
粉末とパラジウム粉末とをV型混合器などで混合し、そ
れにビヒクルを添加してペースト化したものを使用して
いる。銀粉末とパラジウム粉末は重量比で70=30に
なるように秤量しである。更に、内部電極層20または
21を構成する前記導電材と電歪材の配合比率は重量比
で75:25および8o:20の2種類の混合物を用い
た。Furthermore, as the conductive material constituting the internal electrode layers 20 and 21, silver powder and palladium powder are mixed in a V-type mixer or the like, and a vehicle is added to the mixture to form a paste. The silver powder and palladium powder were weighed so that the weight ratio was 70=30. Further, the mixing ratio of the conductive material and the electrostrictive material constituting the internal electrode layer 20 or 21 was 75:25 and 8:20 by weight.
第1図に示すように、本実施例ではそれぞれ厚さ約5μ
mの内部電極層21(前記環tlと電歪材の配合比率が
重量比で80 :20のもの)を50層有し、その各層
間に浮さ約115μmの電歪材層10が挾まっている。As shown in FIG. 1, in this example, each thickness is about 5 μm.
It has 50 inner electrode layers 21 (the mixing ratio of the ring TL and the electrostrictive material is 80:20 by weight) of 50 m, and a floating electrostrictive material layer 10 of about 115 μm is sandwiched between each layer. ing.
前述したように最外層は保護層10A 、 10Bであ
る。ここで50層の内部電極層に上層から順次整数番号
を付し、Pl。As mentioned above, the outermost layers are the protective layers 10A and 10B. Here, integer numbers are sequentially assigned to the 50 internal electrode layers from the top layer, and Pl.
Pl r P 3 +〜!P4B會P 49 + P
5Gと呼称することにする。Pl r P 3 +~! P4B meeting P 49 + P
We will call it 5G.
前述したように、従来の素子ではPlと保護層11A問
およびPSGと保護層11A間の接着力が最も小さくな
ることから、本実施例ではP l * P 2 +P
49 s F 5Gを構成する前記導電材と電歪材の配
合比率を重量比で75:25の内部電極層20に置き換
えである。すなわち各P l + P 2 r P 4
9 + P 5゜の前記配合比率と、それ以外の各層P
3 s〜、P48の内部電極層21の前記配合比率は
異なっている。As mentioned above, in the conventional element, the adhesive force between Pl and the protective layer 11A and between PSG and the protective layer 11A is the smallest, so in this example, P l * P 2 + P
The mixing ratio of the conductive material and electrostrictive material constituting 49s F 5G is replaced by the internal electrode layer 20 in a weight ratio of 75:25. That is, each P l + P 2 r P 4
The above blending ratio of 9 + P 5° and each other layer P
The blending ratios of the internal electrode layers 21 of P48 and P48 are different.
なお、本実施例では上述したように上下共に2層分の内
部電極層だけを内部電極層20に置換したが、置換する
層数および個所は素子に要求される性能により決められ
る。In this example, only the two internal electrode layers on both the upper and lower sides are replaced with the internal electrode layers 20 as described above, but the number of layers and locations to be replaced are determined depending on the performance required of the device.
この素子をJIS−几−1601(ファインセラミック
スの曲げ試験方法)に基づいてサイズ2IX 3 mm
X 9 mmの素子を2個直列にエポキシ樹脂接着剤
で接着したサンプルを用いて曲げ強度試験を実施した。The size of this element is 2IX 3 mm based on JIS-1601 (bending test method for fine ceramics).
A bending strength test was conducted using a sample in which two elements each having a diameter of 9 mm were bonded in series with an epoxy resin adhesive.
その結果を従来例と対比して第1表に示す。The results are shown in Table 1 in comparison with the conventional example.
第1表によれば、従来例の素子では最外層から割れるが
、本実施例の素子ではほぼランダムな個所で割れること
から接着力が均一化され、かつ曲は強度は大幅に増加す
ることが分かる。According to Table 1, the conventional element cracks from the outermost layer, but the element of this example cracks at almost random locations, which makes the adhesive strength uniform and significantly increases the strength of the bend. I understand.
なお、本実施例では導電材と電歪材との配合比率が重量
比で80:20および75:25の2種の内部電極層2
1.20を採用したが、この配合比率は下記の実験結果
により95:5から50:50の範囲内で任意に選択す
ることができる。すなわち、導電材の比率が重量比で9
5チを超えると、中間層にある内部電極層21と電歪材
層lOとの間の接着力が特に弱くなり、また、電歪材の
比率が重量比で50%を超えると内部電極層20゜21
が切れて素子としての特性を示さないからである。In this example, two types of internal electrode layers 2 were used in which the mixing ratio of the conductive material and the electrostrictive material was 80:20 and 75:25 by weight.
Although 1.20 was adopted, this blending ratio can be arbitrarily selected within the range of 95:5 to 50:50 based on the following experimental results. In other words, the ratio of the conductive material is 9 by weight.
If the thickness exceeds 5%, the adhesive force between the internal electrode layer 21 in the intermediate layer and the electrostrictive material layer 1O becomes particularly weak, and if the ratio of the electrostrictive material exceeds 50% by weight, the internal electrode layer 20°21
This is because the film is cut off and does not exhibit any characteristics as an element.
更に16本実施例では導電材として銀粉末とパラジウム
粉末との混合粉を示したが、パラジウム。Furthermore, in this example, a mixed powder of silver powder and palladium powder was used as the conductive material, but palladium.
白金などの金属や導電性セラミックスなどを用いても同
等の効果を得ることができる。Similar effects can be obtained by using metals such as platinum or conductive ceramics.
以上説明したように本発明線、導電材と電歪材との配合
比率が異なる2種類以上の内部電極層を用いるととKよ
り、内部電極層と電歪材層との接着力が均一になる効果
がある。As explained above, when two or more types of internal electrode layers with different mixing ratios of conductive material and electrostrictive material are used in the wire of the present invention, the adhesive force between the internal electrode layer and the electrostrictive material layer is uniform. There is a certain effect.
第1図は本発明の電歪効果素子の一実施例を示す斜視図
、第2図は従来の電歪効果素子の一例を示す斜視図であ
る。
1o・・・・・・電歪材層、IOA、IOB・・・・・
・保諌層、20.21.22・・・・・・内部電極層。FIG. 1 is a perspective view showing an embodiment of an electrostrictive effect element of the present invention, and FIG. 2 is a perspective view showing an example of a conventional electrostrictive effect element. 1o... Electrostrictive material layer, IOA, IOB...
- Protection layer, 20.21.22... Internal electrode layer.
Claims (1)
交互に複数枚積層させた電歪効果素子において、前記内
部電極層の導電材と電歪材の配合比率が95:5から5
0:50の範囲内で異なる2種以上の内部電極層を含む
ことを特徴とする電歪効果素子。In an electrostrictive effect element in which a plurality of internal electrode layers made of a conductive material and an electrostrictive material and a plurality of electrostrictive material layers are alternately laminated, the blending ratio of the conductive material and the electrostrictive material in the internal electrode layer is 95: 5 to 5
An electrostrictive effect element comprising two or more types of internal electrode layers that differ within a range of 0:50.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60057808A JPS61216493A (en) | 1985-03-22 | 1985-03-22 | Electrostrictive effect element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60057808A JPS61216493A (en) | 1985-03-22 | 1985-03-22 | Electrostrictive effect element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61216493A true JPS61216493A (en) | 1986-09-26 |
Family
ID=13066220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60057808A Pending JPS61216493A (en) | 1985-03-22 | 1985-03-22 | Electrostrictive effect element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61216493A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5126617A (en) * | 1987-11-09 | 1992-06-30 | Texas Instruments Incorporated | Cylinder pressure sensor for an internal combustion engine |
JPH04299588A (en) * | 1991-03-28 | 1992-10-22 | Nec Corp | Electrostriction effect element |
US6172447B1 (en) * | 1996-07-12 | 2001-01-09 | Taiheiyo Cement Corporation | Piezoelectric transformer device |
US6329741B1 (en) * | 1999-04-30 | 2001-12-11 | The Trustees Of Princeton University | Multilayer ceramic piezoelectric laminates with zinc oxide conductors |
-
1985
- 1985-03-22 JP JP60057808A patent/JPS61216493A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5126617A (en) * | 1987-11-09 | 1992-06-30 | Texas Instruments Incorporated | Cylinder pressure sensor for an internal combustion engine |
JPH04299588A (en) * | 1991-03-28 | 1992-10-22 | Nec Corp | Electrostriction effect element |
US5196757A (en) * | 1991-03-28 | 1993-03-23 | Nec Corporation | Multilayer piezoelectric ceramic actuator |
US6172447B1 (en) * | 1996-07-12 | 2001-01-09 | Taiheiyo Cement Corporation | Piezoelectric transformer device |
US6329741B1 (en) * | 1999-04-30 | 2001-12-11 | The Trustees Of Princeton University | Multilayer ceramic piezoelectric laminates with zinc oxide conductors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100450075B1 (en) | Monolithic multilayer piezoelectric actuator and its process of production | |
JPH03248483A (en) | Laminated displacing element | |
JPH0412678A (en) | Manufacturing method of piezoelectric/electrostrictive membrane actuator | |
JPH04299588A (en) | Electrostriction effect element | |
US6172447B1 (en) | Piezoelectric transformer device | |
JPH01161709A (en) | Laminated ceramic component | |
JP2005512317A (en) | Electrical device with negative temperature coefficient | |
JPS62208680A (en) | Laminar bymorph | |
JP4590868B2 (en) | Multilayer piezoelectric element and method for manufacturing the same | |
US20120112607A1 (en) | Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same | |
US5120377A (en) | Method of manufacturing laminated ceramic material | |
JPS61216493A (en) | Electrostrictive effect element | |
JP4302054B2 (en) | PTC component and manufacturing method thereof | |
JPS6197877A (en) | Electrostrictive effect element | |
JPS62165380A (en) | Laminated piezoelectric device | |
JP4992234B2 (en) | Multilayer piezoelectric ceramic element and manufacturing method thereof | |
JP2892672B2 (en) | Stacked displacement element | |
JPH04274378A (en) | Piezoelectric/electrostrictive effect element | |
KR20160050369A (en) | Multi-layered piezoelectric ceramic, multi-layered piezoelectric device and piezoelectric vibration module including the same | |
JPH0513529B2 (en) | ||
JPS62133777A (en) | Lamination-type piezoelectric element and manufacture thereof | |
JP4276231B2 (en) | Varistor element | |
JP5028834B2 (en) | Manufacturing method of multilayer piezoelectric element | |
JPS63136507A (en) | Ceramic capacitor | |
JPH06120073A (en) | Chip-type laminated ceramic capacitor |