JPS61216140A - Detecting system for eccentric degree of optical disk medium - Google Patents

Detecting system for eccentric degree of optical disk medium

Info

Publication number
JPS61216140A
JPS61216140A JP5728685A JP5728685A JPS61216140A JP S61216140 A JPS61216140 A JP S61216140A JP 5728685 A JP5728685 A JP 5728685A JP 5728685 A JP5728685 A JP 5728685A JP S61216140 A JPS61216140 A JP S61216140A
Authority
JP
Japan
Prior art keywords
light
eccentricity
change
optical disk
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5728685A
Other languages
Japanese (ja)
Other versions
JP2574220B2 (en
Inventor
Junichi Ichihara
市原 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60057286A priority Critical patent/JP2574220B2/en
Publication of JPS61216140A publication Critical patent/JPS61216140A/en
Application granted granted Critical
Publication of JP2574220B2 publication Critical patent/JP2574220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To detect the eccentric degree of a medium in real time and to secure the high positioning accuracy by detecting a shift degree of a variable density degree of the reflected light at a boundary part which is produced by the eccentric movement of an optical disk medium in the form of a change of the quantity of light received by a photodetector. CONSTITUTION:The parallel luminous fluxes reflected from a boundary part 11 straight through a half mirror 14 and is received by a photodetector 15. The change of a variable density image is produced on the photodetecting surface of the detector 15 in response to an information recording area (pregroup processed part) Rg and a non-recording area (pregroup unprocessed part) Rn. For the change of a distribution of the received light quantity and intensity, the position change of the part 11 produced by an eccentric movement can be detected as the change of the received quantity of light having high sensitivity. When the position of the part 11 is moved by the eccentricity, the output of the detector 15 is reduced at the inner side and increased at the outer side to show the relationship between the eccentric degree and the received light quantity. Thus it is possible to obtain the information on eccentricity with high sensitivity.

Description

【発明の詳細な説明】 〔概要〕 光学的ディスク媒体の情報記録領域と非記録領域の境界
部に光を照射し、その反射光の明暗を光電変換して光学
的ディスク媒体の偏心量の検出に利用するものである。
[Detailed Description of the Invention] [Summary] The amount of eccentricity of an optical disc medium is detected by irradiating light onto the boundary between an information recording area and a non-recording area of an optical disc medium, and photoelectrically converting the brightness of the reflected light. It is used for.

〔産業上の利用分野〕[Industrial application field]

本発明は光ディスク装置、光磁気ディスク装置等の光学
的ディスク装置に係り、特に光学的ディスク媒体の偏心
量検出方式に関する。
The present invention relates to an optical disk device such as an optical disk device or a magneto-optical disk device, and more particularly to a method for detecting the amount of eccentricity of an optical disk medium.

近年、電子計算機の高速化と大容量化に伴い、その主要
部である記憶装置も益々高密度で大容量化することを要
求されている。現在は記録再生が容易な磁気ディスク等
の磁気記憶装置が主流を占めているが、光学的に情報の
記録再生を行う光ディスク装置あるいは光磁気ディスク
装置は原理的に現在の磁気ディスクよりも数桁高い記録
密度を得ることができ、磁気ディスクなみのアクセス時
間と磁気テープなみの低ビットコストをもたらし得る可
能性のある記録媒体として注目されている。
In recent years, with the increase in speed and capacity of electronic computers, storage devices, which are the main part of computers, are also required to have higher density and larger capacity. Currently, magnetic storage devices such as magnetic disks, which are easy to record and play back, are the mainstream, but optical disk drives or magneto-optical disk drives that optically record and play back information are, in principle, several orders of magnitude better than current magnetic disks. It is attracting attention as a recording medium that can provide high recording density, access time comparable to magnetic disks, and low bit cost comparable to magnetic tape.

〔従来の技術〕[Conventional technology]

光学的ディスク装置においては、レンズによって形成さ
れた微少光スポットを光学的ディスク媒体(以下11に
媒体と略称する)−にの所要の位置に位置決めする必要
がある。そのために媒体に予め位置決め用の位相構造を
有する溝を形成しておくプリグループ方式を利用して、
所要の情報信号と共にトラックエラー信号を得る方式が
一般的である。
In an optical disc device, it is necessary to position a minute light spot formed by a lens at a predetermined position on an optical disc medium (hereinafter referred to as medium in 11). For this purpose, we use a pre-group method in which grooves with a phase structure for positioning are formed in advance on the medium.
A common method is to obtain a track error signal together with a required information signal.

第5図は従来のトランクエラー信号の原理図を示す。図
において、1は媒体、2は幅1ミクロン程度で深さλ/
8(λはレーザ光の波長)の位置決め用の溝であってト
ランクと称する。トランク2は円板状の媒体1に同心円
状に形成されているが、その同心円の中心に近い方を内
側(innet)、遠い方を外側(outer)と呼称
する。
FIG. 5 shows a principle diagram of a conventional trunk error signal. In the figure, 1 is a medium, 2 is a width of about 1 micron and a depth of λ/
8 (λ is the wavelength of the laser beam) and is called a trunk. The trunk 2 is formed in a concentric circle shape on the disc-shaped medium 1, and the concentric circle that is closer to the center is called the inside (innet) and the one that is farther from the center is called the outside (outer).

3は対物レンズであってレーザ光の微少光スポットを媒
体1−ヒに照射する。4は半導体レーザであって半導体
レーザ4の出射光ばコリメートレンズ5で平行光線とな
り、偏光ビームスプリッタ6で直角に屈折し、対物レン
ズ3を介してトランク2上に微少光スポットを形成する
。その微少光スボソ1〜の1−ラック2」二からの反射
光は対物レンズ3を逆進し、偏光ビームスプリッタ6を
直進し受光レンズ7を介して2分割光検知器8に受光さ
れる。
Reference numeral 3 denotes an objective lens which irradiates the medium 1-A with a minute spot of laser light. Reference numeral 4 denotes a semiconductor laser, and the emitted light from the semiconductor laser 4 is converted into a parallel beam by a collimating lens 5, refracted at a right angle by a polarizing beam splitter 6, and formed into a minute light spot on the trunk 2 via an objective lens 3. The reflected light from the minute light beams 1 through 1-rack 2'2 travels backward through the objective lens 3, straight through the polarizing beam splitter 6, and is received by the two-split photodetector 8 via the light receiving lens 7.

2分割光検知器8の受光面の光分面強度はトラック2の
溝底部と溝淵部との光干渉により、溝底部に弱く溝淵部
に強く投影される。
The optical plane intensity of the light receiving surface of the two-split photodetector 8 is projected weakly on the groove bottom and strongly on the groove edge due to optical interference between the groove bottom and the groove edge of the track 2.

このような光分面強度特性を2分割光検知器8で2分割
して差動アンプ9に入力すると、その出力端子Pには図
示するようなトラックエラー信号の波形が得られる。
When such an optical plane intensity characteristic is divided into two by the two-split photodetector 8 and inputted to the differential amplifier 9, the waveform of the track error signal as shown in the figure is obtained at the output terminal P thereof.

このトラックエラー信号波形は、微少光スポットがトラ
ック2上を1nnerからou terに移動する場合
の波形であって、段部のない零クロス点が各トラックの
中心位置を示している。微少光スポットが1nnerか
らou terに移動する場合の波形は、段部の零クロ
ス点を含む傾斜が逆になって現れる。
This track error signal waveform is a waveform when a minute light spot moves on the track 2 from 1nner to outer, and a zero cross point without a stepped portion indicates the center position of each track. When the minute light spot moves from 1nner to outer, the waveform appears with the slope including the zero cross point of the stepped portion reversed.

したがって、このトラックエラー信号を微少光スポツト
移動装置にフィードバックすれば、媒体偏心に対し常に
目標トラックに追従できる。これが所謂トラソキングザ
ーボである。
Therefore, if this track error signal is fed back to the minute optical spot moving device, it is possible to always follow the target track despite the eccentricity of the medium. This is the so-called trasoking servo.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

媒体を光学的ディスク装置のスピンド′ルに装着して回
転させると、機械的な精度誤差により媒体は偏心回転を
行い、その偏心量は数百ミクロンにも達することがある
。トランクの幅が1ミクロン程度であるから1回転で数
百トラックを横断するようなことになる。
When a medium is mounted on a spindle of an optical disk device and rotated, the medium rotates eccentrically due to mechanical accuracy errors, and the amount of eccentricity can reach several hundred microns. Since the width of the trunk is about 1 micron, it will cross several hundred tracks in one revolution.

このようにトランクの偏心量が大きいため、従来のトラ
ッキングサーボ方式では高速アクセスの場合は、高い位
置決め精度をリアルタイムに得ることが困難である欠点
があった。
Because of the large amount of eccentricity of the trunk, the conventional tracking servo system has the disadvantage that it is difficult to obtain high positioning accuracy in real time in the case of high-speed access.

本発明は上記従来の欠点に鑑み創作されたもので、媒体
の偏心量をリアルタイムで検出して高い位置決め精度が
得られる偏心量検出方式の提供を目的とする。
The present invention was created in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide an eccentricity detection method that can detect the eccentricity of a medium in real time and obtain high positioning accuracy.

〔問題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図を示す。図におい;   
    て、1は光学的ディスク媒体であってその記録
面の情報記録領域Rgと、非記録領域Rnとの境界部1
1に前記光学的ディスク媒体1の予測される最大偏心量
よりやや大きい直径の平行光束をハーフミラ−14を介
して照射する光学系12と、前記境界部11からの反射
光を前記ハーフミラ−14を介して受光する光検出器1
5と、該光検出器15の暗電流を遮断する遮断器16と
から構成されている。
FIG. 1 shows a diagram explaining the principle of the present invention. Figure smell;
Reference numeral 1 denotes an optical disc medium, and a boundary 1 between an information recording area Rg and a non-recording area Rn on its recording surface.
1 includes an optical system 12 that irradiates a parallel light beam with a diameter slightly larger than the predicted maximum eccentricity of the optical disk medium 1 via a half mirror 14; A photodetector 1 that receives light through
5, and a circuit breaker 16 that cuts off the dark current of the photodetector 15.

前記光学的ディスク媒体1の偏心運動に伴って発生する
前記境界部11の反射光の濃淡像の移動量を、前記光検
出器15の受光量の変化として検出することにより、前
記偏心量を検出することができる。
The amount of eccentricity is detected by detecting the amount of movement of the grayscale image of the reflected light from the boundary portion 11 that occurs with the eccentric movement of the optical disk medium 1 as a change in the amount of light received by the photodetector 15. can do.

〔作用〕[Effect]

第2図は本発明における光検出器15の受光量強度分布
を示したものである。第1図における光学的ディスク媒
体1が1nnerに偏心すると、光検出器15の受光量
強度分布は第2図181に示すように暗くなり、光学的
ディスク媒体1に偏心のないときは第2図(b)に示す
ように明暗のバランスがとれ、光学的ディスク媒体1が
ou terに偏心すると、第2図+c)に示すように
明るくなる。したがって平行光束の直径Wを予測される
最大偏心量よりやや大きく設定することにより、境界部
11の位置の変化を高感度の受光量の変化として検出す
ることができる。
FIG. 2 shows the intensity distribution of the amount of light received by the photodetector 15 in the present invention. When the optical disk medium 1 in FIG. 1 is decentered to 1nner, the intensity distribution of the amount of light received by the photodetector 15 becomes dark as shown at 181 in FIG. When the brightness and darkness are balanced as shown in FIG. 2(b) and the optical disk medium 1 is eccentric to the outer side, the light becomes bright as shown in FIG. 2+c). Therefore, by setting the diameter W of the parallel light beam to be slightly larger than the predicted maximum eccentricity, a change in the position of the boundary portion 11 can be detected as a change in the amount of received light with high sensitivity.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、構成、動作の説明を理解し易くするために各図を
1itiシて同一部分には同一符号を付してその重複説
明を省略する。
In order to make the explanation of the configuration and operation easier to understand, each figure is shown in detail, the same parts are given the same reference numerals, and repeated explanation thereof will be omitted.

第1図は本発明の原理図を示す。図において、12は光
学系であって発光素子13(半導体レーザ4でなくとも
よい)と平行光束を作るコリメートレンズ5とから構成
され、ハーフミラ−14を介して光学的ディスク媒体1
」二の情報記録領域Rgと非記録領域Rnとの境界部1
1に平行光束を照射する。
FIG. 1 shows a diagram of the principle of the present invention. In the figure, reference numeral 12 denotes an optical system, which is composed of a light emitting element 13 (not necessarily the semiconductor laser 4) and a collimating lens 5 that produces a parallel beam of light.
” Boundary part 1 between information recording area Rg and non-recording area Rn
1 is irradiated with a parallel beam of light.

その平行光束の直径Wは、光学的ディスク媒体1の予測
される最大偏心量よりやや大きく設定する。
The diameter W of the parallel light beam is set to be slightly larger than the predicted maximum eccentricity of the optical disk medium 1.

ここで平行光束を用いるのは、光学的ディスク媒体1の
ウネリ等の影響を小さくするためである。
The reason why the parallel light beam is used here is to reduce the influence of undulation of the optical disk medium 1.

境界部11から反射された平行光束は、ハーフミラ−1
4を直進して光検出器15で受光される。光検出器15
の受光面には、情報記録領域(プリグループ加工部) 
Rgと非記録領域(プリグループ非加工部) Rnに対
応する濃淡像の変化が現れる。
The parallel light beam reflected from the boundary part 11 passes through the half mirror 1
4 and is received by a photodetector 15. Photodetector 15
There is an information recording area (pre-group processing section) on the light receiving surface.
Rg and non-recording area (pre-group non-processed area) Changes in gradation image corresponding to Rn appear.

その受光量強度分布の変化は第2図にて説明した通りで
あって偏心運動に伴って発生する境界部11の位置の変
化を高感度の受光量の変化として検出することができる
The change in the intensity distribution of the amount of received light is as explained in FIG. 2, and the change in the position of the boundary portion 11 that occurs due to the eccentric movement can be detected as a change in the amount of received light with high sensitivity.

第3図は本発明における光検出器の出力特性を示す。図
において、境界部11の位置が偏心に伴って移動すると
図示するように光検出器15の出力は、1nnerで弱
(outerで強く変化し、偏心量と受光量の関係が表
される。
FIG. 3 shows the output characteristics of the photodetector in the present invention. In the figure, when the position of the boundary portion 11 moves with eccentricity, the output of the photodetector 15 changes weakly at 1nner (strongly changes at outer) as shown, and the relationship between the amount of eccentricity and the amount of received light is expressed.

図において、dは暗電流であって偏心情報のみを抽出す
るために、第1図に示す遮断器]6(例えば光学的ディ
スク媒体1の回転周波数よりも低い遮断周波数を有する
高域濾波器)にてカッI・する。
In the figure, d is a dark current, and in order to extract only eccentricity information, the circuit breaker shown in FIG. I'm going to have a good time.

したがって、平行光束の直径Wを光学的ディスク媒体1
の予測される最大偏心量よりやや大きく設定する。換言
すれば光検出器15の受光面の幅Wを、光学的ディスク
媒体lの予測される最大偏心量よりやや大きく設定する
ことにより、高感度の偏心情報が得られる。
Therefore, the diameter W of the parallel light beam is determined by the optical disk medium 1
Set slightly larger than the expected maximum eccentricity. In other words, by setting the width W of the light receiving surface of the photodetector 15 to be slightly larger than the predicted maximum eccentricity of the optical disk medium l, highly sensitive eccentricity information can be obtained.

第4図は本発明の応用実施例を説明するブロック図を示
す。図において、21は光学ヘッドを搭載して光学的デ
ィスク媒体の半径方向に移動するキャリッジの移動距離
測定器であって、アナログ式のものとしては光電式ポテ
ンショメータ、デジタル式のものとしてはスリット板を
用いた方式のものが知られている。
FIG. 4 shows a block diagram illustrating an applied embodiment of the present invention. In the figure, reference numeral 21 denotes a moving distance measuring device for a carriage mounted with an optical head and moving in the radial direction of an optical disk medium.The analog type uses a photoelectric potentiometer, and the digital type uses a slit plate. The method used is known.

22は本発明の偏心量検出器、16は高域濾波器である
。移動距離測定器21の出力と、偏心量検出器22の出
力の偏心情報のみを加算器23で加算することにより、
その出力端子Qにはキャリッジと光学的ディスク媒体の
トランク間の相対位置情報を検出可能となる。
22 is an eccentric amount detector of the present invention, and 16 is a high-pass filter. By adding only the eccentricity information of the output of the moving distance measuring device 21 and the output of the eccentricity amount detector 22 in the adder 23,
At its output terminal Q, relative position information between the carriage and the trunk of the optical disk medium can be detected.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の光学的ディスク媒体
の偏心量検出方式によれば、光学的ディスク装置におい
てより高速なアクセスが可能となる効果がある。
As described above in detail, the optical disk medium eccentricity detection method of the present invention has the effect of enabling faster access in an optical disk device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は本発明における光検出器15の受光量強度分布
、 第3図は本発明における光検出器の出力特性、第4図は
本発明の応用実施例を説明するブロック図、 第5図は従来のトラックエラー信号の原理図を示す。 図において、1は光学的ディスク媒体、11は境界部、
12は光学系、14はハーフミラ−115ば光検出器、
16は遮断器をそれぞれ示す。
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is the intensity distribution of the amount of light received by the photodetector 15 in the present invention, Fig. 3 is the output characteristic of the photodetector in the present invention, and Fig. 4 is an application of the present invention. FIG. 5 is a block diagram illustrating an embodiment of the present invention. FIG. 5 shows a principle diagram of a conventional track error signal. In the figure, 1 is an optical disc medium, 11 is a boundary part,
12 is an optical system, 14 is a half mirror 115 is a photodetector,
16 indicates a circuit breaker, respectively.

Claims (1)

【特許請求の範囲】 光学的ディスク媒体(1)の情報記録領域と非記録領域
の境界部(11)に、前記光学的ディスク媒体(1)の
偏心量より大きい直径の平行光束を照射する光学系(1
2)と、前記境界部(11)からの反射光を受光する光
検出器(15)を含んでなる光ディスク装置において、 前記光学的ディスク媒体(1)の偏心に伴って発生する
前記境界部(11)の移動量を前記光検出器(15)の
受光量の変化として検出することにより、前記偏心量を
検出することを特徴とする光学的ディスク媒体の偏心量
検出方式。
[Claims] An optical system that irradiates a boundary (11) between an information recording area and a non-recording area of an optical disc medium (1) with a parallel light beam having a diameter larger than the eccentricity of the optical disc medium (1). System (1
2) and a photodetector (15) that receives reflected light from the boundary portion (11), the boundary portion (11) occurring due to eccentricity of the optical disk medium (1). 11) A method for detecting the amount of eccentricity of an optical disk medium, characterized in that the amount of eccentricity is detected by detecting the amount of movement of the photodetector (15) as a change in the amount of light received by the photodetector (15).
JP60057286A 1985-03-20 1985-03-20 Device for detecting the amount of eccentricity of an optical disk medium Expired - Lifetime JP2574220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057286A JP2574220B2 (en) 1985-03-20 1985-03-20 Device for detecting the amount of eccentricity of an optical disk medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057286A JP2574220B2 (en) 1985-03-20 1985-03-20 Device for detecting the amount of eccentricity of an optical disk medium

Publications (2)

Publication Number Publication Date
JPS61216140A true JPS61216140A (en) 1986-09-25
JP2574220B2 JP2574220B2 (en) 1997-01-22

Family

ID=13051298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057286A Expired - Lifetime JP2574220B2 (en) 1985-03-20 1985-03-20 Device for detecting the amount of eccentricity of an optical disk medium

Country Status (1)

Country Link
JP (1) JP2574220B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127239A (en) * 1983-01-12 1984-07-23 Canon Inc Information recording and reproducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127239A (en) * 1983-01-12 1984-07-23 Canon Inc Information recording and reproducing device

Also Published As

Publication number Publication date
JP2574220B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US4787076A (en) Optical disc tracking system with switching of tracking error signals at boundary between track guide and track address
EP0012603B1 (en) Method and apparatus for tracking an optically readable information track
JPS618744A (en) Focus error detector of optical disc device
JP3145099B2 (en) Apparatus for recording information on a record carrier having a radiation-sensitive layer
US4428069A (en) Apparatus for preformatting an optical disk
US5287338A (en) Error signal generation for light beam reflected from optical disk with plurality of light detecting elements
JPS61234304A (en) Position detector
US5260930A (en) Optical information recording medium and reproducing apparatus for reproducing information from the medium
US4843603A (en) Concentric photodetector arrangement for focusing and tracking
JP3260771B2 (en) Optical focus detection apparatus and method for detecting focus of light beam
JP2574220B2 (en) Device for detecting the amount of eccentricity of an optical disk medium
JP2606492B2 (en) Optical recording / reproducing device
JPS61198436A (en) Detector of position of objective lens
JPH07101517B2 (en) Photo detector
JPS59207035A (en) Position error detector of optical disc
JPS61931A (en) Optical recording and reproducing device
JP2650267B2 (en) optical disk
JP2650118B2 (en) Optical head device
JPS6113289B2 (en)
JPS61216139A (en) Detecting system for eccentric degree of optical disk medium
JP2709819B2 (en) Optical disk recording / reproducing device
JPH0656665B2 (en) Focus control device
JPH02154317A (en) Magnetic recording device
JPH0339335B2 (en)
JPH02210625A (en) Optical pickup