JPS6121612Y2 - - Google Patents

Info

Publication number
JPS6121612Y2
JPS6121612Y2 JP17126081U JP17126081U JPS6121612Y2 JP S6121612 Y2 JPS6121612 Y2 JP S6121612Y2 JP 17126081 U JP17126081 U JP 17126081U JP 17126081 U JP17126081 U JP 17126081U JP S6121612 Y2 JPS6121612 Y2 JP S6121612Y2
Authority
JP
Japan
Prior art keywords
electromagnet
sensor
stator
magnetic bearing
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17126081U
Other languages
Japanese (ja)
Other versions
JPS5874621U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17126081U priority Critical patent/JPS5874621U/en
Publication of JPS5874621U publication Critical patent/JPS5874621U/en
Application granted granted Critical
Publication of JPS6121612Y2 publication Critical patent/JPS6121612Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【考案の詳細な説明】 本考案は磁気軸受のステイターに関するもので
電磁石の体積がステイターの体積に占める割合を
大きくして、磁気軸受の負荷能力対体積の比を改
善することと電磁石から発生する熱の放散を効率
的に行なうステイターを提供することを目的とす
る。
[Detailed description of the invention] The present invention relates to a stator of a magnetic bearing, and the ratio of the volume of the electromagnet to the volume of the stator is increased to improve the ratio of load capacity to volume of the magnetic bearing. The purpose is to provide a stator that efficiently dissipates heat.

磁気軸受は、電磁石の吸引力を制御して回転体
を空中に浮かせて回転させるため摩擦抵抗が機械
軸受と比較して極めて小さいことから高速回転機
械に用いられている。しかし軸受の負荷能力対体
積の比が小さく。換言すれば軸受が大型になるた
め小型の磁気軸受を可能とする構造の出現が望ま
れていた。
Magnetic bearings are used in high-speed rotating machines because they control the attractive force of electromagnets to suspend and rotate a rotating body in the air, so the frictional resistance is extremely small compared to mechanical bearings. However, the ratio of the bearing's load capacity to volume is small. In other words, since bearings are becoming larger, there has been a desire for a structure that allows for smaller magnetic bearings.

第1図は、従来より提案されている磁気軸受の
ステイターの構造である。
FIG. 1 shows the structure of a stator of a magnetic bearing that has been proposed in the past.

図面において1は回転体で、半径方向および軸
方向に配置した電磁石2,3により吸引される。
4は変位センサーで回転体1の位置を検出して信
号を図示してない制御装置に供給する。電磁石
2,3の吸引力は制御装置により変位センサーと
回転体の位置関係が一定となるように制御され
る。5,6,7,8はスペイサーで電磁石および
センサーを所定の間隔に保つためのものである。
9はスリーブで電磁石、センサー、スペイサーを
収納すると共に両端のカバー10,11とネジ1
0で固定する。
In the drawing, reference numeral 1 denotes a rotating body, which is attracted by electromagnets 2 and 3 arranged in the radial and axial directions.
A displacement sensor 4 detects the position of the rotating body 1 and supplies a signal to a control device (not shown). The attractive forces of the electromagnets 2 and 3 are controlled by a control device so that the positional relationship between the displacement sensor and the rotating body is constant. 5, 6, 7, and 8 are spacers for keeping the electromagnet and the sensor at a predetermined distance.
9 is a sleeve that houses the electromagnet, sensor, and spacer, as well as covers 10 and 11 on both ends and screw 1.
Fixed at 0.

以上のような構造の磁気軸受のステイターにお
いて、体積を現状のまま、換言すれば直径と長さ
を現状のまま負荷能力を高めるためにコイル13
の巻数を多くすることと、コイル13に流す電流
を大きくすることが効果的である。しかしコイル
に流せる電流は、コイルの線径で自から制限され
るためにコイルの巻数を増やす方法を選択するこ
とになる。しかしながら本構造においては、スペ
イサー5,7が存在するためコイル13の巻数は
スペイサーの内径寸法で制限されてしまう欠点が
あつた。また電磁石の発生する熱を放熱するため
にスリーブ9にフイン14を設けているが、電磁
石とスリーブの接触が不完全なため熱抵抗が大き
く電磁石の熱がスリーブに効率良く伝わらず放熱
が不十分となる欠点があつた。
In the stator of the magnetic bearing having the above structure, the coil 13 is used to increase the load capacity while keeping the volume as it is, in other words, the diameter and length as they are.
It is effective to increase the number of turns of the coil 13 and to increase the current flowing through the coil 13. However, the current that can be passed through the coil is limited by the wire diameter of the coil, so a method of increasing the number of turns of the coil is chosen. However, this structure has the disadvantage that the number of turns of the coil 13 is limited by the inner diameter of the spacer due to the presence of the spacers 5 and 7. In addition, fins 14 are provided on the sleeve 9 to dissipate the heat generated by the electromagnet, but since the contact between the electromagnet and the sleeve is incomplete, the thermal resistance is large and the heat of the electromagnet is not efficiently transferred to the sleeve, resulting in insufficient heat dissipation. There was a drawback.

本考案は上記の欠点を改善し、電磁石のコイル
の巻数を増やして軸受の負荷能力対体積の比を改
善すると共に電磁石から発生する熱の放散を効率
的に行なえる磁気軸受のステイターを提供するこ
とを目的とする。
The present invention improves the above-mentioned drawbacks and provides a stator for a magnetic bearing that increases the number of turns of the electromagnet coil to improve the load capacity to volume ratio of the bearing and efficiently dissipates heat generated from the electromagnet. The purpose is to

本考案の実施例を第3図、第4図にもとづいて
説明する。
An embodiment of the present invention will be explained based on FIGS. 3 and 4.

図面において15はセンサー、16,17は電
磁石で第1図と同様に回転体1を空中に浮上させ
る。電磁石16およびセンサー15の鉄心は薄い
軟磁性体(一般にはケイ素鋼板を使用する)を積
層して構成してある。18,19,20,21は
スペイサーである。22はタイロツドで両端のナ
ツト23によりカバー24,25と共に電磁石、
センサー、スペイサーを締付けて固定する。
In the drawing, 15 is a sensor, and 16 and 17 are electromagnets that levitate the rotating body 1 in the air as in FIG. The iron cores of the electromagnet 16 and the sensor 15 are constructed by laminating thin soft magnetic materials (generally made of silicon steel plates). 18, 19, 20, and 21 are spacers. 22 is a tie rod with nuts 23 on both ends, which together with covers 24 and 25 connect an electromagnet;
Tighten and secure the sensor and spacer.

従来と本考案の構造の大きく異なる点は、図面
から明確なように、本考案においてはスリーブを
用いていない点である。本考案によれば、スリー
ブを除去したことで、半径方向の空間を増大せし
め電磁石のコイル26の巻数を従来と比較して著
しく増大させることができ、磁気軸受のステイタ
ーの直径および長さを変えることなく軸受の負荷
能力対体積の比を大きくすることが可能となる。
換言すれば、従来と同程度の負荷能力を要求され
れば、従来より小型の磁気軸受の設計が可能であ
る。また電磁石の熱を直接放散することができる
ため放熱で効率的に行なえるし、鉄心16を構成
する薄い軟磁性体の外径を16a,16bのよう
に変化させて積層すれば、放熱フインが形成でき
放熱がさらに効率的となる効果を有する。
The major difference between the structure of the present invention and the conventional structure is that, as is clear from the drawings, the present invention does not use a sleeve. According to the present invention, by removing the sleeve, the radial space is increased and the number of turns of the electromagnetic coil 26 can be significantly increased compared to the conventional one, and the diameter and length of the stator of the magnetic bearing can be changed. It becomes possible to increase the ratio of the bearing's load capacity to volume without causing any problems.
In other words, if the same level of load capacity as conventional magnetic bearings is required, it is possible to design a magnetic bearing smaller than conventional magnetic bearings. In addition, since the heat of the electromagnet can be directly dissipated, heat dissipation can be carried out efficiently, and if the outer diameter of the thin soft magnetic material that makes up the iron core 16 is changed as shown in 16a and 16b and stacked, the heat dissipation fins can be This has the effect of making heat dissipation more efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気軸受の構造断面図、第2図
は第1図のA−A断面図、第3図は本考案の一実
施例である磁気軸受の構造断面図、第4図は第3
図のB−B断面図である。 1……回転体、2……電磁石、3……電磁石4
……センサー、5,6,7,8……スペイサー、
9……スリーブ、10,11……カバー、12…
…ボルト、13……コイル、14……放熱フイ
ン、15……センサ、16,17……電磁石、1
8,19,20,21……スペイサー、22……
タイロツド、23……ナツト24,25……カバ
ー、16a,16b……薄い軟磁性体。
Fig. 1 is a structural cross-sectional view of a conventional magnetic bearing, Fig. 2 is a cross-sectional view taken along line A-A in Fig. 1, Fig. 3 is a structural cross-sectional view of a magnetic bearing that is an embodiment of the present invention, and Fig. 4 is a structural cross-sectional view of a magnetic bearing according to an embodiment of the present invention. Third
It is a BB sectional view of the figure. 1... Rotating body, 2... Electromagnet, 3... Electromagnet 4
...Sensor, 5,6,7,8...Spacer,
9...Sleeve, 10, 11...Cover, 12...
...Volt, 13...Coil, 14...Radiating fin, 15...Sensor, 16, 17...Electromagnet, 1
8, 19, 20, 21... Spacer, 22...
Tie rod, 23...Nuts 24, 25...Cover, 16a, 16b...Thin soft magnetic material.

Claims (1)

【実用新案登録請求の範囲】 (1) 電磁石、センサー、電磁石およびセンサーを
所定の間隔に保つたためにスペーサーを順次重
ねてタイロツドで締付けたことを特徴とする磁
気軸受のステイタ。 (2) 実用新案登録請求の範囲第1項に記載せる磁
気軸受のステイターにおいて、外径の異なる電
磁石の薄板状の鉄心を積層して放熱フインを形
成したことを特徴とする磁気軸受のステイタ。
[Claims for Utility Model Registration] (1) An electromagnet, a sensor, and a stator for a magnetic bearing characterized by stacking spacers in order and tightening them with tie rods in order to maintain a predetermined distance between the electromagnet and the sensor. (2) A stator for a magnetic bearing as set forth in claim 1 of the utility model registration, characterized in that a heat dissipation fin is formed by laminating thin plate iron cores of electromagnets having different outer diameters.
JP17126081U 1981-11-17 1981-11-17 magnetic bearing stator Granted JPS5874621U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17126081U JPS5874621U (en) 1981-11-17 1981-11-17 magnetic bearing stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17126081U JPS5874621U (en) 1981-11-17 1981-11-17 magnetic bearing stator

Publications (2)

Publication Number Publication Date
JPS5874621U JPS5874621U (en) 1983-05-20
JPS6121612Y2 true JPS6121612Y2 (en) 1986-06-28

Family

ID=29963196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17126081U Granted JPS5874621U (en) 1981-11-17 1981-11-17 magnetic bearing stator

Country Status (1)

Country Link
JP (1) JPS5874621U (en)

Also Published As

Publication number Publication date
JPS5874621U (en) 1983-05-20

Similar Documents

Publication Publication Date Title
US5054587A (en) Eddy-current brake
JPS6218954A (en) Single-phase synchronous motor
JPS6121612Y2 (en)
JP4424135B2 (en) Stator structure of axial gap type rotating electrical machine
JPH08214502A (en) Cooling device of permanent magnet synchronous machine
JP3016640U (en) Rotary transformer core structure
JPS60187522U (en) electromagnetic device
JPS61153472U (en)
JPS59135088U (en) Damper for stepping motor
JPS6445450U (en)
JPS6152493U (en)
JP2005143261A (en) Eddy current reduction gear
JPS5897975U (en) load device
JPH0654517A (en) Retarder
JPH03117376U (en)
JPS5880773U (en) Totally enclosed motor cooling system
JPH01101155U (en)
JPS5921138U (en) Negative action electromagnetic brake
JPS58108776U (en) linear motor
JPS6110078U (en) Linear actuator with air bearings
JPH10174397A (en) Rotating electric machine
JPH0314969U (en)
JPH08728U (en) Eddy current retarder
JPS60167211U (en) Servo valve cooling system
JPS5928260U (en) Preload addition mechanism in motor bearing device