JPS6121611B2 - - Google Patents

Info

Publication number
JPS6121611B2
JPS6121611B2 JP56087770A JP8777081A JPS6121611B2 JP S6121611 B2 JPS6121611 B2 JP S6121611B2 JP 56087770 A JP56087770 A JP 56087770A JP 8777081 A JP8777081 A JP 8777081A JP S6121611 B2 JPS6121611 B2 JP S6121611B2
Authority
JP
Japan
Prior art keywords
diglycerin
temperature
flash evaporation
glycerin
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56087770A
Other languages
Japanese (ja)
Other versions
JPS57203023A (en
Inventor
Shinji Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP8777081A priority Critical patent/JPS57203023A/en
Publication of JPS57203023A publication Critical patent/JPS57203023A/en
Publication of JPS6121611B2 publication Critical patent/JPS6121611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジグリセリンをグリセリン及びトリグ
リセリン、テトラグリセリン、さらにそれ以上の
ポリグリセリン等との混合物から分離精製する方
法に関するものである。 ジグリセリンは4価のアルコールで、その4個
の水酸基を利用してエステル化、エーテル化など
種々の反応を行なうことができ、有機合成薬品、
乳化剤、消泡剤、塗料用樹脂、ポリウレタン、ポ
リエステル等に広く用いられている。 ジグリセリンはグリセリン製造時の副生物とし
て、あるいはグリセリンの脱水縮合等により製造
されている。しかし、いずれの場合もジグリセリ
ンはグリセリン及びトリグリセリン、テトラグリ
セリン、さらにそれ以上のポリグリセリン等との
混合物として得られ、この混合物から分離精製す
る必要がある。従来、ジグリセリンの精製は減圧
下においてバツチ式単蒸留により行なわれてお
り、先ず、混合物からグリセリン、ジグリセリン
留分を留出させ、さらにこの留出液を再度バツチ
式単蒸留を行なつてグリセリン留分を留出し、缶
液としてジグリセリンを得ていた。しかしなが
ら、このような方法では蒸発缶への滞留時間が長
くなるため、副反応が生じ、例えば、アクロレイ
ンや水等へ分解したり、環状物質(主にジオキサ
ン類)へ変化したり、又はグリセリン類が縮合反
応を起して炭素数の多いポリグリセリンへ変化す
るので、ジグリセリンを収率よく精製回収するこ
とが出来なかつた。しかも、得られるジグリセリ
ンは着色が激しく、商品価値を高めるには、活性
炭やイオン交換樹脂等を用いて脱色する必要があ
つた。このように工業的生産では多くの欠点を有
していた。 本発明者は上記の諸欠点を克服すべく鋭意研究
を進めた。先ず、この様な蒸溜により、できるだ
け低温で短時間に物質を処理するには、バツチ式
単蒸溜より連続的なフラツシユ蒸発を採用する方
が副反応を抑制できるという点に着目した。 減圧下で連続的なフラツシユ蒸発を利用してジ
グリセリンをグリセリン及びトリグリセリン、テ
トラグリセリン、さらにそれ以上のポリグリセリ
ン等との混合物から分離精製する方法は次の2通
りが考えられる。すなわち、最初に第1段フラツ
シユ蒸発でグリセリンなどを留出し、その塔底液
を再度第2段フラツシユ蒸発を行ない、塔頂液と
してジグリセリンを得る方法(A法)と、この逆
に最初の第1段フラツシユ蒸発でグリセリン、ジ
グリセリン等を塔頂液として留出させ、これを再
度第2段フラツシユ蒸発によりグリセリンなどを
留出させ塔底液としてジグリセリンを得る方法
(B法)である。しかし、前者(A法)の場合は
2段目のフラツシユ蒸発工程で副反応により生じ
た副生物がジグリセリンに混入するという欠点が
あつた。また、後者(B法)の場合は前者のそれ
に加えて、ジグリセリンが塔底液として得られる
ことになるため、着色が激しいという欠点があつ
た。さらに、どちらも2回フラツシユ蒸発を行な
うため、エネルギー的にも設備的にも無駄が多
い。 次いで、本発明者は上記の事実等を考慮した上
で、鋭意研究を更に進め、目的を達成しうる優れ
たジグリセリンの精製方法の開発に成功した。即
ち、本発明はジグリセリンを、グリセリン及びト
リグリセリン、テトラグリセリン、さらにそれ以
上のポリグリセリン等との混合物から分離精製す
るに際し、該混合物を10Torr以下の減圧下でフ
ラツシユ蒸発を行ない、対応蒸気圧におけるジグ
リセリンの露点からこの露点より100℃低い温度
までの温度範囲内の温度で分縮させることにより
凝縮液としてジグリセリンを得ることを特徴とす
るジグリセリンの精製方法を提供するものであ
る。 本発明においては、蒸発面の圧力は10Torr以
下、好ましくは5torr以下で行なう必要がある。
10Torrを越えると蒸発温度が高くなるためジグ
リセリンの副反応が生じて回収率が下がるととも
に、伝熱面の汚れがひどくなる。又、熱媒温度は
約270℃以下から選ばれるが、仕込速度と共に蒸
気圧や蒸発能力等から実験によつて適宜決められ
る。 本発明に用いられるフラツシユ蒸発装置は、上
昇薄膜型蒸発器や流下薄膜型蒸発器のような滞留
時間の短かい型式のものが好ましい。さらに、
Turba−Film型のような回転するかき取り板をも
つた型式の蒸発器も、伝熱を促進する上で有効で
ある。また流下薄膜型蒸発器を用いる場合、仕込
液を単通により蒸発させてもよいが、強制循環さ
せることも可能である。 フラツシユ蒸発により発生した蒸気は、多管式
あるいは二重管式の熱交換器に導かれ部分凝縮さ
れ、凝縮液としてジグリセリンが得られる。この
分縮温度は対応蒸気圧におけるジグリセリンの露
点からこの露点より100℃低い温度までの温度範
囲内の温度が適当である。 例えば、5Torrでは120℃〜220℃、好ましくは
120℃〜170℃である。120℃未満ではジグリセリ
ン中のグリセリン濃度が高くなり、220℃を越え
るとフラツシユ蒸気中のジグリセリンを充分凝縮
しきれなくなる。このような分縮器は蒸発器と別
に設置してもよいが、蒸発器の上部に組み込んだ
ような型式にする方が、配管の圧力損失を減じる
点で好ましい。 分縮器で凝縮しない蒸気は別の熱交換器に導か
れ、全縮され低沸液として回収される。 本発明の対象とされる仕込液はジグリセリンを
含有する液であればいずれも適用できるが、通
常、粗製グリセリンの蒸溜残液が使用される。 このようにして、本発明を実施すればジグリセ
リンがグリセリン及びトリグリセリン、テトラグ
リセリン、さらにそれ以上のポリグリセリン等と
の混合物から1段階のフラツシユ蒸発で効率よく
得られるため、設備的にも簡単となり、分離精製
に必要なエネルギーも少なくてすむことになる。
その上副反応が抑えられ、得られるジグリセリン
の収率も高く純度、着色等の品質もよいという利
点を有するので工業的利用価値は大きい。 次に、実施例をあげて本発明を具体的に説明す
る。 なお、サンプル、例えば、仕込液、低沸液、精
製ジグリセリン及び塔底液等はそれぞれ無水酢酸
とピリジンを加え、2時間加熱還流してアセチル
化を行なつた後、ガスクロマトグラフイで分析し
た。また水分はカールフイツシヤー滴定で分析し
た。 実施例 1 上部に分縮用の凝縮器を内蔵している内径23
mm、長さ500mmのステンレス製流下薄膜型蒸発器
に、ジグリセリン粗液を240g/hrで仕込みTorr
の減圧下でフラツシユ蒸発を行なつた。蒸発管の
外側に取付けられたジヤケツトに250℃の熱媒を
循環し、凝縮器出口の蒸気温度が125℃となるよ
うに分縮させ精製ジグリセリンを得た。凝縮器出
口蒸気は別の凝縮器に導いて全縮させ低沸液とし
て回収した。この結果を表1に示す。 実施例 2 ジグリセリン粗液を400g/hrで仕込み、更に塔
底液を4000ml/hrで強制循環させながら、一定量
ずつ抜き取つた以外実施例1と同様に処理した。
この時、熱媒温度は252℃、凝縮器出口の蒸気温
度は130℃であつた。この結果を表1に示す。 実施例 3 ジグリセリン粗液を変え、それを300g/hrで仕
込み、又、5Torrの減圧下で行つた以外、実施例
1と同様に処理した。この時、熱媒温度は260
℃、凝縮器出口の蒸気温度は150℃であつた。こ
の結果を表1に示す。
The present invention relates to a method for separating and purifying diglycerin from a mixture of glycerin, triglycerin, tetraglycerin, and further polyglycerin. Diglycerin is a tetrahydric alcohol that can perform various reactions such as esterification and etherification using its four hydroxyl groups, and is used as an organic synthetic drug,
Widely used in emulsifiers, antifoaming agents, paint resins, polyurethanes, polyesters, etc. Diglycerin is produced as a by-product during glycerin production or by dehydration condensation of glycerin. However, in any case, diglycerin is obtained as a mixture with glycerin, triglycerin, tetraglycerin, and even higher polyglycerin, and it is necessary to separate and purify this mixture. Conventionally, diglycerin has been purified by batch simple distillation under reduced pressure. First, glycerin and diglycerin fractions are distilled from a mixture, and then this distillate is subjected to batch simple distillation again. The glycerin fraction was distilled off to obtain diglycerin as a bottom liquid. However, in this method, the residence time in the evaporator becomes long, so side reactions occur, such as decomposition into acrolein, water, etc., conversion into cyclic substances (mainly dioxanes), or glycerin undergoes a condensation reaction and changes to polyglycerin with a large number of carbon atoms, making it impossible to purify and recover diglycerin in a good yield. Moreover, the diglycerin obtained is highly colored, and in order to increase its commercial value, it is necessary to decolorize it using activated carbon, ion exchange resin, or the like. As described above, industrial production has many drawbacks. The inventors of the present invention have conducted extensive research in order to overcome the above-mentioned drawbacks. First, we focused on the fact that side reactions can be suppressed by adopting continuous flash evaporation rather than batch-type single distillation in order to process substances in a short time at the lowest possible temperature using this type of distillation. The following two methods can be considered for separating and purifying diglycerin from a mixture of glycerin, triglycerin, tetraglycerin, and even higher polyglycerin using continuous flash evaporation under reduced pressure. That is, there is a method (method A) in which glycerin and the like are first distilled out through first-stage flash evaporation, and then the bottom liquid is subjected to second-stage flash evaporation again to obtain diglycerin as the top liquid (method A). This is a method (Method B) in which glycerin, diglycerin, etc. are distilled out as a top liquid in the first stage flash evaporation, and then glycerin, etc. are distilled out again in a second stage flash evaporation to obtain diglycerin as a bottom liquid. . However, the former method (Method A) had the disadvantage that by-products produced by side reactions in the second flash evaporation step were mixed into the diglycerin. Furthermore, in the case of the latter (Method B), in addition to the former, diglycerin is obtained as a bottom liquid, which has the disadvantage of severe coloring. Furthermore, since flash evaporation is performed twice in both cases, there is a lot of waste in terms of energy and equipment. Next, in consideration of the above-mentioned facts, the present inventors further advanced their research and succeeded in developing an excellent method for purifying diglycerin that can achieve the objective. That is, in the present invention, when separating and purifying diglycerin from a mixture of glycerin, triglycerin, tetraglycerin, and further polyglycerin, etc., the mixture is subjected to flash evaporation under reduced pressure of 10 Torr or less, and the corresponding vapor pressure is reduced. The present invention provides a method for purifying diglycerin, which is characterized in that diglycerin is obtained as a condensate by partial condensation at a temperature within a temperature range from the dew point of diglycerin to a temperature 100° C. lower than this dew point. In the present invention, the pressure on the evaporation surface must be 10 Torr or less, preferably 5 Torr or less.
When the temperature exceeds 10 Torr, the evaporation temperature becomes high, causing a side reaction of diglycerin, reducing the recovery rate and making the heat transfer surface more contaminated. Further, the heating medium temperature is selected from about 270° C. or lower, and is appropriately determined by experiment based on the charging rate, vapor pressure, evaporation capacity, etc. The flash evaporator used in the present invention is preferably of a type having a short residence time, such as a rising thin film type evaporator or a falling thin film type evaporator. moreover,
A rotating scraper type evaporator, such as the Turba-Film type, is also effective in promoting heat transfer. Further, when using a falling film type evaporator, the charged liquid may be evaporated by single passage, but forced circulation is also possible. The steam generated by flash evaporation is introduced into a multi-tube or double-tube heat exchanger and is partially condensed, yielding diglycerin as a condensate. The decomposition temperature is suitably within the temperature range from the dew point of diglycerin at the corresponding vapor pressure to a temperature 100° C. lower than this dew point. For example, 120℃~220℃ at 5Torr, preferably
The temperature is between 120°C and 170°C. If the temperature is lower than 120°C, the concentration of glycerin in the diglycerin will be high, and if it exceeds 220°C, the diglycerin in the flash vapor will not be sufficiently condensed. Although such a dephlegmator may be installed separately from the evaporator, it is preferable to incorporate it into the upper part of the evaporator from the viewpoint of reducing pressure loss in the piping. The vapor that is not condensed in the dephlegmator is led to another heat exchanger, where it is completely condensed and recovered as a low-boiling liquid. Although any liquid containing diglycerin can be used as the charging liquid to be used in the present invention, distillation residue of crude glycerin is usually used. In this way, if the present invention is carried out, diglycerin can be efficiently obtained from a mixture of glycerin, triglycerin, tetraglycerin, and even more polyglycerin in one step of flash evaporation, which is easy in terms of equipment. Therefore, less energy is required for separation and purification.
Moreover, it has the advantage that side reactions are suppressed and the diglycerin obtained has a high yield and good quality such as purity and coloring, so it has great industrial utility value. Next, the present invention will be specifically explained with reference to Examples. In addition, samples such as charging solution, low-boiling solution, purified diglycerin, and tower bottom solution were each added with acetic anhydride and pyridine, heated under reflux for 2 hours to perform acetylation, and then analyzed by gas chromatography. . Moisture content was also analyzed by Karl Fischer titration. Example 1 Inner diameter 23 with a built-in condenser for partial condensation in the upper part
240 g/hr of diglycerin crude liquid was charged into a stainless steel falling film evaporator with a length of 500 mm and a Torr rate of 240 g/hr.
Flash evaporation was carried out under reduced pressure. A heating medium at 250°C was circulated through a jacket attached to the outside of the evaporation tube, and the vapor was fractionated to a temperature of 125°C at the outlet of the condenser to obtain purified diglycerin. The condenser outlet vapor was led to another condenser where it was completely condensed and recovered as a low-boiling liquid. The results are shown in Table 1. Example 2 The same procedure as in Example 1 was carried out, except that diglycerin crude liquid was charged at 400 g/hr, and the tower bottom liquid was withdrawn in fixed amounts while being forcedly circulated at 4000 ml/hr.
At this time, the heating medium temperature was 252°C, and the steam temperature at the condenser outlet was 130°C. The results are shown in Table 1. Example 3 The treatment was carried out in the same manner as in Example 1, except that the crude diglycerin solution was changed, it was charged at 300 g/hr, and the treatment was carried out under a reduced pressure of 5 Torr. At this time, the heating medium temperature is 260
℃, and the steam temperature at the condenser outlet was 150℃. The results are shown in Table 1.

【表】 比較例 1 (バツチ式単蒸留) 容量2のガラス製丸底フラスコに、実施例1
で用いたジグリセリン粗液を1600g仕込み、マン
トルヒーターで加熱しながら3Torrの減圧下で、
バツチ式単蒸留を行なつた。留出液はfr−1、fr
−2に分けた。この時液温はfr−1で196〜225
℃、fr−2で225〜268℃であつた。この結果を表
2に示す。 比較例 2 (2段フラツシユ蒸発=B法) 内径23mm、長さ500mmのステンレス製流下薄膜
型蒸発器にジグリセリン粗液を300g/hrで仕込
み、3Torrの減圧下で第1段フラツシユ蒸発を行
なつた。蒸発管の外側に取付けられたジヤケツト
に250℃の熱媒を循環し、発生した蒸気は凝縮器
に導いて全縮させた。次いで、この塔頂液をまと
めて熱媒温度を220℃に変えた以外、第1段フラ
ツシユ蒸発と同様にして、第2段フラツシユ蒸発
を行い、塔底液として精製ジグリセリンを得た。
この結果を表2に示す。 比較例 3 (2段フラツシユ蒸発=A法) 次の変更を加えた以外、比較例2と同様に処理
した。熱媒温度を230℃で、第1段フラツシユ蒸
発を行ない、塔頂液として低沸液を溜出させた。
次いで、この塔底液をまとめて、熱媒温度を260
℃で第2段フラツシユ蒸発を行ない、塔頂液とし
て精製ジグリセリンを得た。この結果を表2に示
す。
[Table] Comparative Example 1 (Batch type simple distillation) Example 1 was placed in a glass round bottom flask with a capacity of 2.
Pour 1600g of the diglycerin crude liquid used in , and heat it with a mantle heater under reduced pressure of 3Torr.
Batch simple distillation was performed. The distillate is fr-1, fr
- Divided into 2. At this time, the liquid temperature is fr-1, 196 to 225
°C, fr-2 was 225-268 °C. The results are shown in Table 2. Comparative Example 2 (Two-stage flash evaporation = Method B) Diglycerin crude liquid was charged at 300 g/hr into a stainless steel falling film type evaporator with an inner diameter of 23 mm and a length of 500 mm, and the first stage flash evaporation was performed under a reduced pressure of 3 Torr. Summer. A heat medium at 250°C was circulated through a jacket attached to the outside of the evaporation tube, and the generated steam was led to a condenser where it was completely condensed. Next, second-stage flash evaporation was performed in the same manner as the first-stage flash evaporation, except that the top liquid was collected and the heating medium temperature was changed to 220° C., and purified diglycerin was obtained as a bottom liquid.
The results are shown in Table 2. Comparative Example 3 (Two-stage flash evaporation=Method A) Processing was carried out in the same manner as Comparative Example 2 except for the following changes. The first stage flash evaporation was carried out at a heating medium temperature of 230° C., and a low-boiling liquid was distilled off as the top liquid.
Next, this bottom liquid is collected and the heating medium temperature is adjusted to 260°C.
A second flash evaporation was carried out at °C to obtain purified diglycerin as the top liquid. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ジグリセリンをグリセリン及びトリグリセリ
ン、テトラグリセリン、さらにそれ以上のポリグ
リセリン等との混合物から分離精製するに際し、
該混合物を10Torr以下の減圧下でフラツシユ蒸
発を行ない、対応蒸気圧におけるジグリセリンの
露点からこの露点より100℃低い温度までの温度
範囲内の温度で分縮させることにより、凝縮液と
してジグリセリンを得ることを特徴とするジグリ
セリンの精製方法。
1. When separating and purifying diglycerin from a mixture of glycerin, triglycerin, tetraglycerin, and even higher polyglycerin,
The mixture is subjected to flash evaporation under a reduced pressure of 10 Torr or less and fractionated at a temperature within the temperature range from the dew point of diglycerin at the corresponding vapor pressure to a temperature 100°C below this dew point, thereby producing diglycerin as a condensate. A method for purifying diglycerin, characterized in that it obtains diglycerin.
JP8777081A 1981-06-08 1981-06-08 Purifying method of diglycerol Granted JPS57203023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8777081A JPS57203023A (en) 1981-06-08 1981-06-08 Purifying method of diglycerol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8777081A JPS57203023A (en) 1981-06-08 1981-06-08 Purifying method of diglycerol

Publications (2)

Publication Number Publication Date
JPS57203023A JPS57203023A (en) 1982-12-13
JPS6121611B2 true JPS6121611B2 (en) 1986-05-28

Family

ID=13924199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8777081A Granted JPS57203023A (en) 1981-06-08 1981-06-08 Purifying method of diglycerol

Country Status (1)

Country Link
JP (1) JPS57203023A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3600388A1 (en) * 1986-01-09 1987-07-16 Solvay Werke Gmbh METHOD FOR SEPARATING AND CLEANING POLYGLYCERINES OR RESIDUES CONTAINING POLYGLYCERINE
DE4309741A1 (en) * 1993-03-25 1994-09-29 Henkel Kgaa Process for the preparation of diglycerin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLYCEROL=1953 *

Also Published As

Publication number Publication date
JPS57203023A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
RU2230733C2 (en) Method of treating crude acetonitrile and method of preparing of high performance liquid chromatography-grade acetonitrile
US4654123A (en) Dehydration of ethanol by extractive distillation
US4209646A (en) Process for crystallizing an adduct of 2,2-di(4-hydroxyphenyl) propane and phenol
US3644432A (en) Process for recovering ethylene oxide
US4554054A (en) Methacrylic acid separation
US4032563A (en) Process for the recovery of high purity diesters of terephthalic or isophthalic acids
EP0053518B1 (en) Process for producing unsaturated nitrile
JPS58159486A (en) Method of obtaining phthalic anhydride and maleic anhydride continuously from reaction gas
KR900017987A (en) Method for producing acrylic ester
US4092481A (en) Process for the recovery of dimethyl terephthalate and of intermediates from the dimethyl terephthalate manufacture
JPS6121611B2 (en)
US4857151A (en) Phenol purification
JPS6383036A (en) Manufacture of propylene-glycol-mono-t- butoxy ether
US4073816A (en) Process for the continuous production of monochloroalkanes
JPH02268174A (en) Purification of monoepoxide
US4113780A (en) Extractive distillation of acetone
JPS6236344A (en) Manufacture of trifluoroacetic acid alkyl
WO1992007815A1 (en) Process for the purification of hydroxypivalyl hydroxypivalate
US4153516A (en) Process for separating alkoxyketone compounds from the corresponding 1-alkoxy-2-alkanol compound
JPS63156738A (en) Purification of 1,3-butylene glycol
US4316775A (en) Treatment of waste stream from adipic acid production
KR20180014056A (en) Separation of organic acids from mixtures containing ammonium salts of organic acids
US4229262A (en) Process for separating alkoxyketone compounds from the corresponding 1-alkoxy-2-alkanol compound
JP2754216B2 (en) Method for producing acetaldehyde dimethyl acetal
JP2588581B2 (en) Method for producing methacrylate