JPS6121542Y2 - - Google Patents

Info

Publication number
JPS6121542Y2
JPS6121542Y2 JP389379U JP389379U JPS6121542Y2 JP S6121542 Y2 JPS6121542 Y2 JP S6121542Y2 JP 389379 U JP389379 U JP 389379U JP 389379 U JP389379 U JP 389379U JP S6121542 Y2 JPS6121542 Y2 JP S6121542Y2
Authority
JP
Japan
Prior art keywords
cooling water
car heater
engine
valve
sensing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP389379U
Other languages
Japanese (ja)
Other versions
JPS55104720U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP389379U priority Critical patent/JPS6121542Y2/ja
Publication of JPS55104720U publication Critical patent/JPS55104720U/ja
Application granted granted Critical
Publication of JPS6121542Y2 publication Critical patent/JPS6121542Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Description

【考案の詳細な説明】 この考案はカーヒータの暖房性能を向上させる
ためのエンジン冷却水通路の流量制御装置に関す
るものである。
[Detailed Description of the Invention] This invention relates to a flow rate control device for an engine cooling water passage for improving the heating performance of a car heater.

カーヒータへの冷却水の供給はエンジンの冷却
水系から冷却水を分岐させてカーヒータへ導くの
が一般である。自動車用エンジンの冷却水系は一
般に第1図に示すようにエンジン1とラジエータ
2を結んで冷却水を循環させる主循環路3を備
え、かつこの循環路にはラジエータをバイパスし
て冷却水を流すバイパス流路4を備え、さらに、
主循環路3から分岐してカーヒータ5を経由し
て、冷却水を主循環路3に戻すカーヒータ冷却水
路6を備えるのが一般である。ラジエータ2の上
流側の主循環路3にはサーモスタツト7が設けら
れ、冷却水温が低い間はサーモスタツト7が閉じ
ており、したがつてバイパス路4を通つて冷却水
が循環するが、水温が上昇するとサーモスタツト
7が開きラジエータ2を通つて冷却水が循環す
る。カーヒータ5を作動させる場合には、主循環
路3から冷却水がカーヒータ冷却水通路6を通つ
て分岐してカーヒータ5に流れ、カーヒータ5で
例えば運転室内空気との熱交換を行い、熱交換後
の冷却水を主循環路3にもどす。
Generally, cooling water is supplied to the car heater by branching the cooling water from the engine's cooling water system and guiding it to the car heater. As shown in Fig. 1, the cooling water system of an automobile engine generally includes a main circulation path 3 that connects the engine 1 and the radiator 2 and circulates the cooling water, and the cooling water bypasses the radiator and flows through this circulation path. A bypass flow path 4 is provided, and further,
Generally, a car heater cooling water channel 6 is provided which branches off from the main circulation path 3 and returns cooling water to the main circulation path 3 via the car heater 5. A thermostat 7 is provided in the main circulation path 3 on the upstream side of the radiator 2, and the thermostat 7 is closed while the cooling water temperature is low. Therefore, the cooling water circulates through the bypass path 4, but when the water temperature is low, the thermostat 7 is closed. When the temperature rises, the thermostat 7 opens and cooling water circulates through the radiator 2. When the car heater 5 is operated, the cooling water from the main circulation path 3 branches through the car heater cooling water passage 6 and flows to the car heater 5, where the car heater 5 exchanges heat with, for example, the air in the driver's cabin. The cooling water is returned to the main circulation path 3.

このような構成の冷却水系において、冷却水が
低温で冷却水がバイパス路を循環している状態に
おいて、カーヒータによる暖房を行なう場合、カ
ーヒータ及びカーヒータ冷却水通路の流過抵抗
が、バイパス路の流過抵抗よりかなり大きいた
め、バイパス路へ流れる冷却水量が多くなり、特
にアイドリング時のようにエンジン回転数が低
く、冷却水系全体の循環水量が少ない場合におい
ては、カーヒータへ流れる冷却水量は暖房性能を
確保するために充分な量が得られず暖房性能を悪
くする恐れがあつた。
In a cooling water system with such a configuration, when heating is performed using a car heater while the cooling water is at a low temperature and is circulating through the bypass passage, the flow resistance of the car heater and the car heater cooling water passage will increase the flow resistance of the bypass passage. Since it is considerably larger than the excessive resistance, the amount of cooling water flowing to the bypass passage increases. Especially when the engine speed is low and the amount of circulating water in the entire cooling water system is small, such as when idling, the amount of cooling water flowing to the car heater will affect the heating performance. There was a risk that a sufficient amount could not be obtained and the heating performance would deteriorate.

この問題を改善するために、従来バイパス路に
バイパス路を流れる冷却水温度を感知して作動す
る開閉弁(サーモスタツト)8を設けたものがあ
つたが、バイパス路の水温を感知するために作動
の時間的な遅れが大きく、また、作動が単なる
オ・オフであるためカーヒータへの冷却水量をき
め細かく制御することはできなかつた。特にエン
ジン回転数の急激な変化により冷却水の流量が大
きく変わつた場合、例えば急に回転数が上り冷却
水量が大幅に増大した場合には、単なる感温式の
ものではその変化についていけず、カーヒータが
暖房性能を確保するのに必要とする冷却水量をは
るかに上回る冷却水がカーヒータを流れることに
なり、そのためにカーヒータ上流(バイパス路の
開閉弁の上流)の冷却水圧が非常に高まり各部に
悪影響をあたえる恐れがあつた。
In order to improve this problem, conventional bypass passages were equipped with an on-off valve (thermostat) 8 that operated by sensing the temperature of the cooling water flowing through the bypass passage. There is a large time delay in operation, and since the operation is simply on and off, it is not possible to precisely control the amount of cooling water supplied to the car heater. In particular, when the flow rate of cooling water changes significantly due to a sudden change in engine speed, for example, when the engine speed suddenly increases and the amount of cooling water increases significantly, a simple temperature-sensitive type cannot keep up with the change. The amount of cooling water flowing through the car heater is far greater than the amount of cooling water required by the car heater to ensure its heating performance, and as a result, the cooling water pressure upstream of the car heater (upstream of the on-off valve in the bypass path) increases significantly. There was a fear that it would have a negative impact.

そこでこの考案は以上のような事情に鑑み、カ
ーヒータ上流側の圧力を感知し応答する開閉弁を
設けることにより、従来のものの欠点を解消し、
よりよい冷却水量の制御を行ない、延いては、暖
房性能を向上させる装置を提供することを目的と
するものである。
Therefore, in view of the above circumstances, this invention eliminates the drawbacks of conventional ones by providing an on-off valve that senses and responds to the pressure on the upstream side of the car heater.
It is an object of the present invention to provide a device that can better control the amount of cooling water and improve heating performance.

この目的に対応してこの考案のエンジン冷却水
通路の流量制御装置は、エンジンとラジエータと
の間に冷却水を循環させる主循環路と、前記主循
環路に付設され前記ラジエータをバイパスして冷
却水を循環させるバイパス路と、及び前記主循環
路に付設されカーヒータに冷却水を流すカーヒー
タ冷却水通路とを備えたエンジン冷却水通路にお
いて、エンジン冷却水の温度を感知して作動する
感温部材と、及び前記バイパス路に設けられた前
記感温部材の作動によつて開弁圧を変化させる圧
弁を設け、前記圧力弁の開閉によつて前記カーヒ
ータ冷却水通路に流れる冷却水の流量を制御する
ように構成したことを特徴としている。
In response to this purpose, the engine cooling water passage flow rate control device of this invention includes a main circulation path that circulates cooling water between the engine and the radiator, and a main circulation path that is attached to the main circulation path and cools the water by bypassing the radiator. A temperature sensing member that senses the temperature of the engine coolant and operates in an engine coolant passage that includes a bypass passage that circulates water and a car heater cooling water passage that is attached to the main circulation passage and that supplies the cooling water to the car heater. and a pressure valve that changes valve opening pressure by actuation of the temperature-sensitive member provided in the bypass passage, and controls the flow rate of cooling water flowing into the car heater cooling water passage by opening and closing the pressure valve. It is characterized by being configured to do so.

以下この考案の詳細を一実施例を示す図面につ
いて説明する。
The details of this invention will be explained below with reference to the drawings showing one embodiment.

第2図において11はエンジンであり、12は
ラジエータであり、エンジン11とラジエータ1
2とは主循環路13によつて接続され、したがつ
て、冷却水はエンジン11とラジエータ12との
間に主循環路13を通して冷却水が循環する。主
循環路13におけるラジエータ12の入口側には
サーモスタツト17が設けられている。また主循
環路13にはラジエータ12をバイパスしてバイ
パス路14が設けられている。主循環路13及び
バイパス路14における冷却水の圧送はウオータ
ポンプ19によつて行なわれる。主循環路13か
らはカーヒータ冷却水路16が分岐している。カ
ーヒータ冷却水路16は主循環路13のエンジン
下流側から分岐してカーヒータ15に達し、かつ
カーヒータ15から出て主循環路13のエンジン
上流側に接続している。バイパス路14には圧力
弁21が設けられている。この圧力弁21は冷却
水温感温部材26によつて検出されケーブル30
で伝えられる冷却水の温度(但し、冷却水温感部
材26の冷却水温検出位置は図示のもののほか、
カーヒータの上流の任意の位置例えばA,Bまた
はCで示す位置でもよい)だけに応じて作動する
ものではなく、カーヒータ15の上流側の冷却
水、例えばバイパス路14の圧力弁21の上流側
の冷却水圧力に応じて開閉作動するものであつ
て、例えば第3図及び第4図に示すようなバタフ
ライバルブ21′を用いることができる。バタフ
ライバルブ21′は軸22に固着した弁板23を
備え、軸22にはコイルスプリング24が付設さ
れており、この弁板23の軸22の回転はコイル
スプリング24に弾性的に拘束されており、コイ
ルスプリング24のプリセツト力を調節すること
によつて、バタフライバルブの開弁圧力を調整す
ることができる。
In FIG. 2, 11 is an engine, 12 is a radiator, and the engine 11 and radiator 1
The engine 11 and the radiator 12 are connected to each other by a main circulation path 13, and therefore, cooling water circulates between the engine 11 and the radiator 12 through the main circulation path 13. A thermostat 17 is provided on the inlet side of the radiator 12 in the main circulation path 13 . Further, a bypass path 14 is provided in the main circulation path 13 so as to bypass the radiator 12 . Cooling water is pumped through the main circulation path 13 and the bypass path 14 by a water pump 19. A car heater cooling water channel 16 branches off from the main circulation path 13 . The car heater cooling water channel 16 branches from the engine downstream side of the main circulation path 13 to reach the car heater 15, exits from the car heater 15, and connects to the engine upstream side of the main circulation path 13. A pressure valve 21 is provided in the bypass path 14 . This pressure valve 21 is detected by a cooling water temperature sensing member 26 and a cable 30
(However, the cooling water temperature detection position of the cooling water temperature sensing member 26 is not shown in the figure.)
It does not operate only in response to an arbitrary position upstream of the car heater (for example, the position indicated by A, B or C), but also in response to the cooling water upstream of the car heater 15, for example, the upstream side of the pressure valve 21 of the bypass passage 14. For example, a butterfly valve 21' as shown in FIGS. 3 and 4 may be used, which opens and closes in response to the cooling water pressure. The butterfly valve 21' includes a valve plate 23 fixed to a shaft 22, and a coil spring 24 is attached to the shaft 22, and rotation of the shaft 22 of the valve plate 23 is elastically restrained by the coil spring 24. By adjusting the preset force of the coil spring 24, the opening pressure of the butterfly valve can be adjusted.

このように構成されたエンジン冷却水通路にお
いては、カーヒータ使用時、エンジンの回転数が
低く冷却水の循環量が少ない場合には、主循環路
13内の冷却水の圧力も充分に上昇していないの
で、圧力弁21は閉じられており、従つてエンジ
ン11からの冷却水はバイパス路14を通らずに
大半はカーヒータ冷却水通路16を通つてカーヒ
ータ15に達し、カーヒータ冷却水通路の冷却水
流量を増大させ、暖房性能を向上することができ
る。つぎにエンジン回転数が上昇したときには冷
却水流量が増大し、主循環路13内の冷却水の圧
力が上昇し圧力弁の設定開弁圧以上になると、圧
力弁21が圧力に応じて開き、冷却水はバイパス
路14に流れるようになつているので、圧力弁2
1の上流の冷却水圧が異常に高くなることなく、
カーヒータ16に流れる水量は適当な量が確保さ
れる。つまりバイパス路14の圧力に応じた圧力
弁21の開閉によつて、カーヒータ冷却水路16
に流れる冷却水の水量を常に適正な範囲に制御で
きる。
In the engine cooling water passage configured in this way, when the car heater is in use and the engine speed is low and the amount of circulating water is small, the pressure of the cooling water in the main circulation path 13 does not rise sufficiently. Since the pressure valve 21 is closed, most of the cooling water from the engine 11 does not pass through the bypass passage 14 and reaches the car heater 15 through the car heater cooling water passage 16, and the cooling water in the car heater cooling water passage reaches the car heater 15. It is possible to increase the flow rate and improve heating performance. Next, when the engine speed increases, the flow rate of the cooling water increases, and when the pressure of the cooling water in the main circulation path 13 rises and exceeds the set opening pressure of the pressure valve, the pressure valve 21 opens in accordance with the pressure. Since the cooling water is designed to flow into the bypass passage 14, the pressure valve 2
1, without the cooling water pressure upstream becoming abnormally high.
An appropriate amount of water flowing into the car heater 16 is ensured. That is, by opening and closing the pressure valve 21 according to the pressure of the bypass passage 14, the car heater cooling water passage 16
The amount of cooling water flowing through the system can always be controlled within an appropriate range.

このようにこの考案のエンジン冷却水通路の流
量制御装置によれば、冷却水の低温時にエンジン
回転数の低い冷却水流量の少ない場合は、圧力弁
21によりバイパス通路を閉じることにより、バ
イパス路の冷却水量を減少し、カーヒータ冷却水
路に充分な冷却水量を増大し、暖房性能を向上さ
せるとともに、エンジン回転数が高くなつた場合
には、圧力弁により圧力に応じたバイパス路14
の開閉をおこなうようにしたので、回転数による
冷却水流量の変動に対して時間遅れのない連続性
のある高精度の流量制御をおこなえるので、さら
に好ましい暖房性能が与えられる。なおサーモス
タツト17の開弁後は冷却水は主循環路13を通
つてラジエータ12を経由するが、ラジエータ1
2の冷却水流過抵抗はかなり大きいので、カーヒ
ータへの流量低下は少なく暖房性能が大きく損な
われることはない。
As described above, according to the engine cooling water passage flow rate control device of this invention, when the cooling water is at a low temperature and the engine speed is low and the cooling water flow rate is small, the pressure valve 21 closes the bypass passage. By reducing the amount of cooling water and increasing the amount of cooling water sufficient for the car heater cooling waterway to improve heating performance, when the engine speed increases, the bypass passage 14 is set according to the pressure by the pressure valve.
Since the cooling water flow rate is opened and closed, it is possible to perform continuous and highly accurate flow rate control without time delay in response to fluctuations in the cooling water flow rate depending on the rotation speed, thereby providing more preferable heating performance. Note that after the thermostat 17 is opened, the cooling water passes through the main circulation path 13 and the radiator 12;
Since the cooling water flow resistance of No. 2 is quite large, the decrease in the flow rate to the car heater is small and the heating performance is not significantly impaired.

コイルスプリング24のプリセツトは冷却水の
温度に応じて調整する。すなわち、第5図、第6
図及び第7図に示すようにバタフライバルブ2
1″は軸22及び弁板23を備え、弁板23は軸
22に偏心位置で固着されて軸22の延長部分に
はコイルスプリング24が取り付けられており、
コイルスプリング24の一端は軸22に固着し、
他端は感温部材25に拘束され、位置決めされて
いる。したがつて、軸22の回転はコイルスプリ
ング24によつて弾性的に拘束されており、コイ
ルスプリング24のプリセツト力を変化させるこ
とにより、弁板23の開弁力も変化する。コイル
スプリング24のプリセツト力の調節は感温部材
25の作動によつて行なう。すなわち、感温部材
25は温度感知部材26と作動棒27を備えて定
位置に配設されている。温度感知部材26として
はサーモペレツトを使用し、カーヒータ15の上
流側の冷却水、例えばバイパス路14内の圧力弁
21の上流側の冷却水と伝熱関係に置かれ、冷却
水の温度変化に応じて膨張、収縮をする。作動棒
27は温度感知部材26に連結しており、温度感
知部材26の膨張、収縮によつて進退する。すな
わち温度感知部材26の体積変化が作動棒27の
ストロークに変換される。作動棒27の先端はコ
イルスプリング24の端部をコイルスプリング2
4の周方向に押圧しており、したがつて作動棒2
7の進退によつてコイルスプリング24が捩られ
また捩りが緩められ、コイルスプリング24のプ
リセツト力が変化し、バタフライバルブ21″の
開弁力が変化する。
The preset of the coil spring 24 is adjusted according to the temperature of the cooling water. That is, Figures 5 and 6
Butterfly valve 2 as shown in Figure and Figure 7.
1'' includes a shaft 22 and a valve plate 23, the valve plate 23 is fixed to the shaft 22 at an eccentric position, and a coil spring 24 is attached to an extension of the shaft 22,
One end of the coil spring 24 is fixed to the shaft 22,
The other end is restrained and positioned by the temperature sensing member 25. Therefore, the rotation of the shaft 22 is elastically restrained by the coil spring 24, and by changing the preset force of the coil spring 24, the valve opening force of the valve plate 23 is also changed. The presetting force of the coil spring 24 is adjusted by operating the temperature sensing member 25. That is, the temperature sensing member 25 includes a temperature sensing member 26 and an operating rod 27, and is disposed at a fixed position. A thermo-pellet is used as the temperature sensing member 26, and is placed in a heat transfer relationship with the cooling water upstream of the car heater 15, for example, the cooling water upstream of the pressure valve 21 in the bypass passage 14, so that it responds to temperature changes in the cooling water. It expands and contracts. The actuating rod 27 is connected to the temperature sensing member 26 and moves forward and backward as the temperature sensing member 26 expands and contracts. That is, a change in volume of the temperature sensing member 26 is converted into a stroke of the actuating rod 27. The tip of the actuating rod 27 connects the end of the coil spring 24 to the coil spring 2.
4 in the circumferential direction, and therefore the actuating rod 2
7, the coil spring 24 is twisted and untwisted, and the preset force of the coil spring 24 changes, and the opening force of the butterfly valve 21'' changes.

このように構成された圧力弁装置においては、
温度感知部材26が熱膨張による体積変化をし、
これによつて作動棒27が進退し、コイルスプリ
ング24のプリセツト力を変化させて、弁板23
の開弁圧を調整することができる。この場合に、
作動棒27がコイルスプリング24を拘束する方
向を正向き若しくは逆向きにセツトすることによ
つて、第7図の線Aで示す如く、流体の温度上昇
とともに開弁圧を上昇させるように調整すること
もできるし、また線Bで示す如く流体の温度上昇
に応じて開弁圧を下降させるように調整すること
でできる。
In the pressure valve device configured in this way,
The temperature sensing member 26 undergoes a volume change due to thermal expansion,
As a result, the actuating rod 27 moves back and forth, changing the presetting force of the coil spring 24, and the valve plate 23
The valve opening pressure can be adjusted. In this case,
By setting the direction in which the actuating rod 27 restrains the coil spring 24 in the forward or reverse direction, the valve opening pressure is adjusted to increase as the temperature of the fluid increases, as shown by line A in FIG. Alternatively, as shown by line B, the valve opening pressure can be adjusted to decrease in accordance with the rise in fluid temperature.

このバタフライバルブ21″によれば、冷却水
の温度に対応して、圧力弁の開弁圧を自動的に調
整することができる。しかもこのバタフライバル
ブ21″は、構造は簡単であり、価格も低廉とな
り、かつその作動は機械的であつて信頼性が高
い。ばね部材としては以上の実施例に示したコイ
ルスプリングに限られるものではなく、例えば板
ばねをもつてこれに替えることもできる。また感
温部材25としては、以上説明したサーモペレツ
トと作動棒の組合せの他に、第8図に示す如くバ
イメタル28を使用することもできる。
According to this butterfly valve 21'', the opening pressure of the pressure valve can be automatically adjusted according to the temperature of the cooling water.Moreover, this butterfly valve 21'' has a simple structure and is inexpensive. It is inexpensive, and its operation is mechanical and highly reliable. The spring member is not limited to the coil spring shown in the above embodiments, but may be replaced with a leaf spring, for example. Further, as the temperature sensing member 25, in addition to the combination of the thermo pellet and the actuating rod described above, a bimetal 28 as shown in FIG. 8 can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエンジン冷却水通路の流量制御
装置を示す構成説明図、第2図はこの考案の一実
施例に係るエンジン冷却水通路の流量制御装置を
示す構成説明図、第3図はバタフライバルブを示
す正面説明図、第4図はバタフライバルブを示す
平面説明図、第5図は他のバタフライバルブを示
す平面説明図、第6図は他のバタフライバルブを
示す正面説明図、第7図は開弁圧と冷却水温度と
の関係を示すグラフ、及び第8図は感温部材の他
の例を示す正面説明図である。 11……エンジン、12……ラジエータ、13
……主循環路、14……バイパス路、15……カ
ーヒータ、16……カーヒータ冷却水路、17…
…サーモスタツト、19……ウオータポンプ、2
1……圧力弁、21′,21″……バタフライバル
ブ、22……軸、23……弁板、24……コイル
スプリング、25……感温部材、26……温度感
知部材、27……作動棒、28……バイメタル。
FIG. 1 is a structural explanatory diagram showing a conventional flow rate control device for an engine cooling water passage, FIG. 2 is a structural explanatory diagram showing a flow rate control device for an engine cooling water passage according to an embodiment of this invention, and FIG. 4 is an explanatory plan view showing the butterfly valve, FIG. 5 is an explanatory plan view showing another butterfly valve, FIG. 6 is an explanatory front view showing another butterfly valve, and FIG. The figure is a graph showing the relationship between valve opening pressure and cooling water temperature, and FIG. 8 is a front explanatory view showing another example of the temperature sensing member. 11...Engine, 12...Radiator, 13
... Main circulation path, 14 ... Bypass path, 15 ... Car heater, 16 ... Car heater cooling water channel, 17 ...
...Thermostat, 19...Water pump, 2
1... Pressure valve, 21', 21''... Butterfly valve, 22... Shaft, 23... Valve plate, 24... Coil spring, 25... Temperature sensing member, 26... Temperature sensing member, 27... Operating rod, 28...bimetal.

Claims (1)

【実用新案登録請求の範囲】 (1) エンジンとラジエータとの間に冷却水を循環
させる主循環路と、前記主循環路に付設され前
記ラジエータをバイパスして冷却水を循環させ
るバイパス路と、及び前記主循環路に付設され
カーヒータに冷却水を流すカーヒータ冷却水通
路とを備えたエンジン冷却水通路において、エ
ンジン冷却水の温度を感知して作動する感温部
材と、及び前記バイパス路に設けられた前記感
温部材の作動によつて開弁圧を変化させる圧力
弁を設け、前記圧力弁の開閉によつて前記カー
ヒータ冷却水通路に流れる冷却水の流量を制御
するように構成したことを特徴とするエンジン
冷却水通路の流量制御装置。 (2) 前記圧力弁は前記冷却水の温度を感知して作
動する感温部材を前記圧力弁近傍に備え、前記
感温部材の作動により前記圧力弁の開弁圧を変
化させるように構成したことを特徴とする実用
新案登録請求の範囲第1項記載のエンジン冷却
水通路の流量制御装置。
[Claims for Utility Model Registration] (1) A main circulation path that circulates cooling water between the engine and the radiator; a bypass path attached to the main circulation path that bypasses the radiator and circulates the cooling water; and a car heater cooling water passage that is attached to the main circulation path and that flows cooling water to the car heater, a temperature sensing member that operates by sensing the temperature of the engine cooling water, and a temperature sensing member that is provided in the bypass passage. A pressure valve is provided that changes the valve opening pressure by the operation of the temperature sensing member, and the flow rate of the cooling water flowing into the car heater cooling water passage is controlled by opening and closing the pressure valve. Features a flow rate control device for engine cooling water passages. (2) The pressure valve is provided with a temperature sensing member near the pressure valve that operates by sensing the temperature of the cooling water, and is configured to change the opening pressure of the pressure valve by the operation of the temperature sensing member. A flow rate control device for an engine cooling water passage according to claim 1, characterized in that:
JP389379U 1979-01-19 1979-01-19 Expired JPS6121542Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP389379U JPS6121542Y2 (en) 1979-01-19 1979-01-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP389379U JPS6121542Y2 (en) 1979-01-19 1979-01-19

Publications (2)

Publication Number Publication Date
JPS55104720U JPS55104720U (en) 1980-07-22
JPS6121542Y2 true JPS6121542Y2 (en) 1986-06-27

Family

ID=28808307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP389379U Expired JPS6121542Y2 (en) 1979-01-19 1979-01-19

Country Status (1)

Country Link
JP (1) JPS6121542Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235704B2 (en) * 2009-01-29 2013-07-10 日本サーモスタット株式会社 Cooling device for internal combustion engine
CA2940274A1 (en) * 2014-02-21 2015-08-27 Geoffrey Brazier Rotatable pressure relief valve assembly
JP7136667B2 (en) * 2018-11-19 2022-09-13 トヨタ自動車株式会社 internal combustion engine cooling system

Also Published As

Publication number Publication date
JPS55104720U (en) 1980-07-22

Similar Documents

Publication Publication Date Title
US4748941A (en) Cooling system for an engine
US20080223317A1 (en) Cooling apparatus for internal combustion engine
US5975031A (en) Cooling system for an internal combustion engine, particularly for motor vehicles
JP2002201941A (en) Liquid-cooled cooling device of internal combustion engine of automobile
US6343573B1 (en) Thermostat device
US4011988A (en) Device for controlling the flow of cooling water in an internal combustion engine
CA1139282A (en) Motor vehicle having a passenger compartment heating device
JP2002303139A (en) Thermostat valve
JPS63104209U (en)
CA2135668A1 (en) Thermostat for an automotive engine cooling system
JPS61201816A (en) Cooling device for engine
JPS6121542Y2 (en)
DE60304875T2 (en) ENGINE COOLING SYSTEMS
US5787845A (en) Combined bypass and thermostat assembly
JP2573870B2 (en) Cooling water flow control device for internal combustion engine
JP3767028B2 (en) Cooling system for internal combustion engine for vehicle
US3032324A (en) Control installation for vehicle heating
JP2705389B2 (en) Engine cooling system
US4771739A (en) Cooling system for an internal combustion engine
JP3928936B2 (en) Thermostat device
CN113227553B (en) Coolant circuit in a vehicle
JPH0139860Y2 (en)
JPH0324830Y2 (en)
JP3211322B2 (en) Engine cooling system
JPS6215470Y2 (en)