JPS61215214A - Recovery of gallium from material containing intermetallic compound of gallium and arsenic - Google Patents

Recovery of gallium from material containing intermetallic compound of gallium and arsenic

Info

Publication number
JPS61215214A
JPS61215214A JP60057000A JP5700085A JPS61215214A JP S61215214 A JPS61215214 A JP S61215214A JP 60057000 A JP60057000 A JP 60057000A JP 5700085 A JP5700085 A JP 5700085A JP S61215214 A JPS61215214 A JP S61215214A
Authority
JP
Japan
Prior art keywords
gallium
aqueous solution
organic phase
nitric acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60057000A
Other languages
Japanese (ja)
Other versions
JPH0463016B2 (en
Inventor
Tadanori Matsumura
松村 忠典
Akihiro Fujimoto
藤本 明弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Priority to JP60057000A priority Critical patent/JPS61215214A/en
Publication of JPS61215214A publication Critical patent/JPS61215214A/en
Publication of JPH0463016B2 publication Critical patent/JPH0463016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To recover Ga in high purity with simple operation, by dissolving a material containing Ga-As compound in nitric acid, contacting the solution with an organic solvent containing an organic phosphorus compound and carrying out the back extraction of the organic phase containing extracted Ga. CONSTITUTION:A material containing an intermetallic compound of Ga and As is dissolved in nitric acid. The nitric acid solution is made to contact with an organic solvent (e.g. higher alcohol) containing an organic phosphorus compound (e.g. di-2-ethylhexyl phosphate) to effect the liquid-liquid extraction of Ga to the organic phase. The organic phase containing Ga is brought into contact with an aqueous solution of a mineral acid (e.g. hydrochloric acid) to effect the back extraction of Ga to the aqueous phase. High purity Ga can be recovered from the scraps, etc., of an intermetallic compound of Ga and As without causing the problems of environmental pollution, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガリウム−砒素金属間化合物含有物からのガリ
ウムの回収方法、特にトランジスタ、ダイオード、IC
などの電子部品を製造するときに生じるガリウム−砒素
半導体屑などからガリウムを高純度で効率よく回収する
方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for recovering gallium from materials containing gallium-arsenic intermetallic compounds, particularly for use in transistors, diodes, and ICs.
The present invention relates to a method for efficiently recovering gallium with high purity from gallium-arsenic semiconductor waste generated during the manufacture of electronic components such as.

(従来の技術) 半導体などの電子材料として有用なm−v族金属間化合
物の研究・開発が進められている。■−■族金属間化合
物のなかでも、ガリウム−砒素金属間化合物(以下、 
GaAs金属間化合物という)は。
(Prior Art) Research and development of m-v group intermetallic compounds useful as electronic materials such as semiconductors is progressing. Among the ■-■ group intermetallic compounds, gallium-arsenic intermetallic compounds (hereinafter referred to as
(called GaAs intermetallic compound).

電子材料としての特性に優れているため、ICの基板用
などにその需要が急増している。原料となるガリウムは
、その精鉱がほとんど存在しない稀少元素のひとつであ
り、主として、アルミニウムや亜鉛の精錬副産物として
得られる。そのため。
Due to its excellent properties as an electronic material, its demand for use in IC substrates and other applications is rapidly increasing. Gallium, the raw material, is one of the rare elements that hardly exists in concentrate, and is mainly obtained as a byproduct of smelting aluminum and zinc. Therefore.

上記ICなどの電子部品を製造するときに生じるGaA
s金属間化合物屑やスクラップからのガリウムの回収が
望まれている。他方、砒素は有毒物質であるため、Ga
As金属間化合物屑やスクラップからクローズド・シス
テムで回収されることが公害防止の面から必要とされる
GaA produced when manufacturing electronic components such as the above ICs
s It is desired to recover gallium from intermetallic compound waste and scrap. On the other hand, since arsenic is a toxic substance, Ga
From the viewpoint of pollution prevention, it is necessary to recover As intermetallic compounds from waste and scrap in a closed system.

ガリウムまたは砒素の個々についての回収方法に関する
文献や特許は過去にも知られている。例えば、特開昭5
4−40212号公報には、アルミニウム製錬における
バイヤー液(アルミニウム、ナトリウム、ガリウムを含
有するアルカリ性水溶液)からヒドロキシキノリン類を
抽出剤として液−液抽出によりガリウムを回収する方法
が開示されている。しかし、これらの方法はGaAs金
属間化合物からのガリウムの回収には適当ではない。こ
のように、現在のところ、 GaAs金属間化合物から
ガリウムを高純度で効率よく回収する方法は知られてい
ない。
Literature and patents regarding recovery methods for gallium or arsenic are known in the past. For example,
Publication No. 4-40212 discloses a method for recovering gallium from Bayer solution (alkaline aqueous solution containing aluminum, sodium, and gallium) in aluminum smelting by liquid-liquid extraction using hydroxyquinolines as an extractant. However, these methods are not suitable for recovering gallium from GaAs intermetallic compounds. Thus, at present, there is no known method for efficiently recovering gallium from GaAs intermetallic compounds with high purity.

(発明が解決しようとする問題点) 本発明は上記従来の欠点を解決するものであり。(Problem that the invention attempts to solve) The present invention solves the above-mentioned conventional drawbacks.

その目的とするところはGaAs金属間化合物からガリ
ウムを高純度で効率よく回収する方法を提供することに
ある。本発明の他の目的は、上記ガリウムの回収を操作
の簡単な湿式処理により行う方法を提供することにある
The objective is to provide a method for efficiently recovering gallium from GaAs intermetallic compounds with high purity. Another object of the present invention is to provide a method for recovering gallium using a wet process that is easy to operate.

(問題点を解決するための手段) 本発明のガリウム−砒素金属間化合物含有物からのガリ
ウムの回収方法は、(a)  ガリウム−砒素金属間化
合物含有物を硝酸に溶解させる工程、(b)(8)項で
得られた硝酸水溶液と酸性有機リン化合物を含む有機溶
媒とを液−液接触させ、ガリウムを有機相に抽出する工
程、および(c)  (b)項で得られた有機相を鉱酸
により逆抽出しガリウム水溶液を得る工程、を包含し、
そのことにより上記目的が達成される。
(Means for Solving the Problems) The method for recovering gallium from a gallium-arsenic intermetallic compound-containing material of the present invention includes (a) dissolving the gallium-arsenic intermetallic compound-containing material in nitric acid; (b) A step of bringing the nitric acid aqueous solution obtained in section (8) into liquid-liquid contact with an organic solvent containing an acidic organophosphorus compound to extract gallium into the organic phase, and (c) the organic phase obtained in section (b). A step of back-extracting with mineral acid to obtain a gallium aqueous solution,
This achieves the above objective.

本発明方法によれば、第1図に示すように、まず、第1
工程(溶解工程)■においてGaAs金属間化合物屑な
どのGaAs金属間化合物含有物を硝酸に溶解させる。
According to the method of the present invention, as shown in FIG.
In step (dissolution step) (2), GaAs intermetallic compound-containing materials such as GaAs intermetallic compound scraps are dissolved in nitric acid.

GaAs金属間化合物含有物は溶解しやすいように粉砕
されていることが好ましい。通常。
It is preferable that the GaAs intermetallic compound-containing material is pulverized so that it can be easily dissolved. usually.

粉砕されたGaAs金属間化合物含有物に水を加えてス
ラリー状とし、これに硝酸水溶液を加えて溶解させる。
Water is added to the crushed GaAs intermetallic compound-containing material to form a slurry, and a nitric acid aqueous solution is added to the slurry to dissolve it.

溶解時の温度が高いほど溶解効率が上がるため、40〜
110℃に加熱して溶解させることが好ましい。硝酸添
加量がGaAs金属間化合物1モルに対して5モル以上
であれば該GaAs金属間化合物を溶解させることがで
きる。通常、工業的には硝酸はGaAs金属間化合物含
有物1モルに対して5〜10モルの割合で添加されるの
が有利である。添加量が過剰であると、後述の第2にお
いて酸性有機リン化合物でガリウムを抽出するときのp
HfiJ1整に塩基が大量に必要となる。この第1工程
において。
The higher the temperature during melting, the higher the melting efficiency, so 40~
It is preferable to heat it to 110°C to dissolve it. If the amount of nitric acid added is 5 moles or more per mole of the GaAs intermetallic compound, the GaAs intermetallic compound can be dissolved. Usually, industrially, it is advantageous to add nitric acid in a ratio of 5 to 10 moles per mole of the GaAs intermetallic compound-containing material. If the amount added is excessive, p when extracting gallium with an acidic organic phosphorus compound in the second step described below.
A large amount of base is required for HfiJ1 regulation. In this first step.

用いる水の量を少量とすれば、砒素を亜砒酸(ASzO
+)として析出させることができる。水溶液の容量が少
量でありかつAs2O,を濾別して得られる水溶液中に
は砒素量が少なくなるため、第2工程以後におけるガリ
ウムと砒素との分離効率が上がる。容量効率も上がるた
め大規模の設備を必要とせず。
If the amount of water used is small, arsenic can be converted to arsenous acid (ASzO).
+). Since the volume of the aqueous solution is small and the amount of arsenic is reduced in the aqueous solution obtained by filtering As2O, the efficiency of separating gallium and arsenic in the second and subsequent steps increases. Capacity efficiency is also increased, so large-scale equipment is not required.

工業的に有利となる。水溶液の容量は1通常、金属間化
合物含有物100gに対して41以上であり。
It is industrially advantageous. The volume of the aqueous solution is usually 41 or more per 100 g of the intermetallic compound-containing material.

AS203を析出させる場合には41以下である。When AS203 is precipitated, it is 41 or less.

次に、第2工程(抽出工程)2において、上記GaAs
金属間化合物を含有する硝酸水溶液を酸性有機リン化合
物を含有する有機溶媒と接触させ、ガリウムを有機相中
に液−液抽出する。ここで、抽出剤として用いられる酸
性有機リン化合物は、下記の構造式を有する化合物のう
ちの少なくとも1種である: (ここで、 R,−R,は、それぞれ、炭素数3〜18
のアルキル基、アルケニル基、脂環式基、アリール基ま
たはアルキルアリール基である)。
Next, in the second step (extraction step) 2, the GaAs
A nitric acid aqueous solution containing an intermetallic compound is brought into contact with an organic solvent containing an acidic organophosphorus compound to perform liquid-liquid extraction of gallium into the organic phase. Here, the acidic organophosphorus compound used as an extractant is at least one of the compounds having the following structural formula: (Here, R, -R, each have a carbon number of 3 to 18
an alkyl group, alkenyl group, alicyclic group, aryl group or alkylaryl group).

このような化合物には1例えばジー2−エチルへキシル
リン酸、2−エチルへキシルホスホン酸モノ−2−エチ
ルヘキシルエステル、ジー2−エチルへキシルホスフィ
ン酸がある。
Such compounds include, for example, di-2-ethylhexyl phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester, di-2-ethylhexylphosphinic acid.

を機溶媒としては、上記抽出剤およびその金属塩を溶解
しうる通常の有機溶媒が利用されうる。
As the organic solvent, a conventional organic solvent that can dissolve the above-mentioned extractant and its metal salt can be used.

例えば1石油系炭化水素が好適に用いられ得、上記抽出
剤が、5〜90 vo1%、好ましくは、 10〜50
vo1%に希釈されて用いられる。液−液抽出を行うと
きには、 NaOH,Ca(OH)z、 NH:lなど
の塩基を加えて接触時の水相のpHを0.5以上、好ま
しくは1〜2に調整する。ガリウムの抽出量は水相のp
itに依存するため、 pitが低すぎるとガリウムが
有機層に抽出されにくい。水相と有機相との接触方法は
既知の方法が用いられうる。塔式あるいは槽弐の多段向
流接触装置を用いると効果的に抽出が行われうる。後述
の第3工程(逆抽出工程)および精製工程における接触
方法についても同様である。
For example, petroleum-based hydrocarbons may be suitably used, and the extractant contains 5 to 90 vol%, preferably 10 to 50 vol.
It is used diluted to vol.1%. When performing liquid-liquid extraction, a base such as NaOH, Ca(OH)z, NH:l is added to adjust the pH of the aqueous phase at the time of contact to 0.5 or higher, preferably 1 to 2. The amount of gallium extracted is determined by the p of the aqueous phase.
Since it depends on it, if pit is too low, it is difficult for gallium to be extracted into the organic layer. A known method can be used for contacting the aqueous phase and the organic phase. Extraction can be effectively carried out using a column-type or two-tank multistage countercurrent contactor. The same applies to the contact method in the third step (reverse extraction step) and purification step, which will be described later.

第2工程において得られたガリウムを含有する有機相は
1次いで、第3工程(逆抽出工程)3へ移される。この
第2工程と第3工程との間に、最終的に得られるガリウ
ム水溶液の純度を高めるために、洗浄工程4が適宜設け
られる。洗浄工程4においては、第2工程で得られたガ
リウムを含有する有機相を希硝酸と接触させて、ガリウ
ムと共に有機相に抽出された不純物を水相へ除去する。
The gallium-containing organic phase obtained in the second step is then transferred to the third step (reverse extraction step) 3. A cleaning step 4 is appropriately provided between the second step and the third step in order to increase the purity of the finally obtained gallium aqueous solution. In the washing step 4, the organic phase containing gallium obtained in the second step is brought into contact with dilute nitric acid to remove impurities extracted into the organic phase together with gallium into the aqueous phase.

洗浄に用いる硝酸の濃度は高いほど優れた洗浄効果が得
られる。しかし、濃度が高いほど有機相に含有されるガ
リウムも同時に、水相に移行する。
The higher the concentration of nitric acid used for cleaning, the better the cleaning effect can be obtained. However, the higher the concentration, the more gallium contained in the organic phase also migrates to the aqueous phase.

それゆえ、硝酸濃度は0.1〜INであることが好まし
い。洗浄後の水相は、第1図において実線で示すように
、第1工程または第2工程へフィード・バックして用い
ることができる。洗浄水相を第1または第2工程へフィ
ード・バンクすることによりガリウムの回収率が上がる
Therefore, the nitric acid concentration is preferably 0.1 to IN. The aqueous phase after washing can be used by being fed back to the first step or the second step, as shown by the solid line in FIG. Feedbanking the washed aqueous phase to the first or second step increases gallium recovery.

第2工程の抽出工程もしくはこの抽出工程と洗浄工程を
経て得られたガリウム含有有機相を1次いで、第3工程
(逆抽出工程)において鉱酸水溶液と接触させる。それ
により、ガリウムが水相に逆抽出される。逆抽出用の鉱
酸としては、塩酸。
The gallium-containing organic phase obtained through the second extraction step or this extraction step and washing step is then brought into contact with an aqueous mineral acid solution in the third step (reverse extraction step). Gallium is thereby extracted back into the aqueous phase. The mineral acid for back extraction is hydrochloric acid.

硝酸、硫酸などが用いられる。鉱酸の濃度は高いほうが
逆抽出効率が上がる傾向にあるが、濃度が高すぎても逆
抽出効率が低下する。通常、1〜5Nが好適である。逆
抽出後のを機相は、第1図において点線で示すように、
第2工程にフィード・バックさせて用いられうる。
Nitric acid, sulfuric acid, etc. are used. The higher the mineral acid concentration, the higher the back extraction efficiency, but if the concentration is too high, the back extraction efficiency will decrease. Usually, 1 to 5N is suitable. The mechanical phase after back extraction is as shown by the dotted line in Figure 1.
It can be used as feedback to the second step.

このようにして99.9%以上の純度のガリウムを含有
する水溶液が得られる。このガリウム水溶液は、必要に
応じて、さらに、第2図に示す精製工程5で精製される
。この方法で精製を行う場合には、第3工程において鉱
酸として塩酸を用いるのが好適である。精製を行うには
、まず、第3工程で得られたガリウムの塩酸水溶液にさ
らに濃塩酸を添加しもしくは塩化水素ガスを吹き込み、
高級アルコールおよび/もしくはエーテルでガリウムを
抽出する。ガリウムは塩化物の形態で高級アルコールや
エーテルと錯体を形成するため、容易に抽出されうる。
In this way, an aqueous solution containing gallium with a purity of 99.9% or more is obtained. This gallium aqueous solution is further purified in a purification step 5 shown in FIG. 2, if necessary. When purifying by this method, it is preferable to use hydrochloric acid as the mineral acid in the third step. To perform purification, first, further concentrated hydrochloric acid is added to the aqueous solution of gallium in hydrochloric acid obtained in the third step, or hydrogen chloride gas is blown into the solution.
Extract gallium with higher alcohol and/or ether. Gallium forms complexes with higher alcohols and ethers in the form of chlorides and can therefore be easily extracted.

高級アルコールとしては、炭素数4〜18個のアルキル
基または脂環式基を有するアルコール、例えば、2−エ
チルヘキサノールが用いられる。エーテルとしては、炭
素数2〜8個のアルキル基を有するエーテル、例えばイ
ソプロピルエーテルが用いられる。この高級アルコール
やエーテルは溶媒に溶解させて用いられてもよい。
As the higher alcohol, alcohol having an alkyl group or alicyclic group having 4 to 18 carbon atoms, such as 2-ethylhexanol, is used. As the ether, an ether having an alkyl group having 2 to 8 carbon atoms, such as isopropyl ether, is used. This higher alcohol or ether may be used after being dissolved in a solvent.

溶媒としては、上記高級アルコールやエーテルおよびそ
れらの金属付加物(ガリウム塩化物との錯体)を溶解し
うる有機溶媒が用いられる。これらの有機溶媒としては
2例えば9石油系炭化水素が好適に用いられる。ガリウ
ムの抽出量は水相の塩酸濃度に依存し、塩酸濃度が高い
ほど抽出率が高(なる。工業的には塩酸濃度を4〜IO
Nとするのが有利である。次に、ガリウムを含む有機相
を水と接触させれば、ガリウムは水相に容易に逆抽出さ
れる。逆抽出後の有機相は、第2図において点線で示す
ように、精製工程における抽出にフィード・バックして
利用されうる。
As the solvent, an organic solvent that can dissolve the above-mentioned higher alcohols, ethers, and their metal adducts (complexes with gallium chloride) is used. As these organic solvents, petroleum hydrocarbons, for example, are preferably used. The amount of gallium extracted depends on the hydrochloric acid concentration in the aqueous phase, and the higher the hydrochloric acid concentration, the higher the extraction rate.Industrially, the hydrochloric acid concentration is
It is advantageous to set it to N. Next, when the organic phase containing gallium is brought into contact with water, the gallium is easily back-extracted into the aqueous phase. The organic phase after back extraction can be used as feed back to the extraction in the purification process, as shown by the dotted line in FIG.

(作用) 本発明方法によれば、このように、 GaAs金属間化
合物含有物からガリウムが湿式処理法(液−液抽出法)
で有利に回収される。得られたガリウム水溶液中のガリ
ウムの純度は99.9%以上である。
(Function) According to the method of the present invention, gallium is removed from the GaAs intermetallic compound-containing material by the wet processing method (liquid-liquid extraction method).
will be profitably recovered. The purity of gallium in the obtained gallium aqueous solution is 99.9% or more.

この水溶液から既知の方法により高純度の金属ガリウム
またはその酸化物が容易に得られうる。例えば、上記ガ
リウム水溶液もしくは精製後のガリウム水溶液にアルカ
リを加えて水酸化ガリウムとしてガリウムを分離した後
、アルカリ電解法にて金属ガリウムが得られる。
High purity metallic gallium or its oxide can be easily obtained from this aqueous solution by a known method. For example, after adding an alkali to the above gallium aqueous solution or purified gallium aqueous solution to separate gallium as gallium hydroxide, metallic gallium is obtained by an alkaline electrolysis method.

(実施例) 以下に本発明を実施例について説明する。(Example) The present invention will be described below with reference to Examples.

1隻皿上 GaAs金属間化合物含有物として表1に示す組成のG
aAs半導体屑を用いた。この組成は原°子吸光分析法
により決定された。
1 G with the composition shown in Table 1 as a GaAs intermetallic compound-containing material on a plate
aAs semiconductor scrap was used. This composition was determined by atomic absorption spectrometry.

表1 この粉砕された半導体屑100 gに水500mff1
を加えてスラリーとした。これに61wt%の硝酸を2
841m1加えて2時間加熱還流させた後、水を加えて
41とした。不溶物はほとんど認められなかった。
Table 1 100 g of this crushed semiconductor waste and 500 mff1 of water
was added to make a slurry. Add 61wt% nitric acid to this
After adding 841 ml and heating and refluxing for 2 hours, water was added to bring the total volume to 41 ml. Almost no insoluble matter was observed.

この硝酸水溶液を濾過して得られた濾液の組成を表2に
示す。
Table 2 shows the composition of the filtrate obtained by filtering this nitric acid aqueous solution.

(以下余白) 表2 次に、この濾液40容量部を酸性有機リン化合物を抽出
剤として含有する抽出溶媒50容量部を用いて抽出した
。抽出剤としてはジー2−エチルへキシルリン酸を用い
、これをパラフィン系炭化水素(Shellsol 7
1.5he11社製)に0.6mol/ lとなるよう
に溶解させて抽出溶媒を調製した。抽出時には、 di
l NaO旧O容量部を加えて接触時のpiを1.3に
調製した。得られた有機相100容量部に対して0.1
5Nの硝酸水溶液50容量部を加えて洗浄を2回行った
。洗浄後の有機相100容量部に対して2N塩酸50容
量部を加えて逆抽出を行った。得られた塩酸水溶液中の
金属成分の分析を行った。なお今回は表1および表2に
は示されていない微量成分(cu、 Na、 Te、 
GeおよびP)についても測定を行った。その結果を表
3に示す。塩酸水溶液中のガリウムの純度は99.97
%でありGaAs半導体屑からのガリウムの回収率は8
5%であった。
(Margin below) Table 2 Next, 40 parts by volume of this filtrate was extracted using 50 parts by volume of an extraction solvent containing an acidic organic phosphorus compound as an extractant. Di-2-ethylhexyl phosphoric acid was used as the extractant, and this was mixed with paraffinic hydrocarbon (Shellsol 7
1.5he11) to a concentration of 0.6 mol/l to prepare an extraction solvent. During extraction, di
The pi at contact was adjusted to 1.3 by adding 1 part by volume of NaO prior. 0.1 per 100 parts by volume of the organic phase obtained
Washing was carried out twice by adding 50 parts by volume of a 5N aqueous nitric acid solution. Back extraction was performed by adding 50 parts by volume of 2N hydrochloric acid to 100 parts by volume of the washed organic phase. The metal components in the obtained hydrochloric acid aqueous solution were analyzed. In addition, this time, trace components (cu, Na, Te,
Ge and P) were also measured. The results are shown in Table 3. The purity of gallium in hydrochloric acid aqueous solution is 99.97
%, and the recovery rate of gallium from GaAs semiconductor scrap is 8
It was 5%.

表3 実施例1と同様の組成のGaAs半導体屑10gを2゜
lll1の水を用いてスラリーとした。これに61wt
%の硝酸を45nl加えて2時間加熱還流させた。常温
にもどした後析出した沈澱物(ASto3)を濾去し濾
液に水を加えて100m1!とじた。この硝酸水溶液中
の金属成分の組成を表4に示す。
Table 3 10 g of GaAs semiconductor scraps having the same composition as in Example 1 were made into a slurry using 2 ml of water. 61wt for this
% nitric acid was added thereto, and the mixture was heated under reflux for 2 hours. After returning to room temperature, the deposited precipitate (ASto3) was filtered off, and water was added to the filtrate to make 100ml! Closed. Table 4 shows the composition of the metal components in this nitric acid aqueous solution.

表4 この水溶液を実施例1と同様に処理した。得られた塩酸
水溶液中のガリウムの純度は99.9%以上であった。
Table 4 This aqueous solution was treated in the same manner as in Example 1. The purity of gallium in the obtained hydrochloric acid aqueous solution was 99.9% or more.

去1■1走 第3工程(逆抽出工程)のあとにさらに精製工程を設け
てその効果を評価した。
After the third step (reverse extraction step), a further purification step was provided and its effect was evaluated.

実施例1で得られた塩酸水溶液にZn”、 Fe”。Zn'' and Fe'' were added to the hydrochloric acid aqueous solution obtained in Example 1.

AI3+を塩化物と・して添加し、さらに、濃塩酸を加
えて表5に示す組成の水溶液を得た。
AI3+ was added as a chloride, and concentrated hydrochloric acid was further added to obtain an aqueous solution having the composition shown in Table 5.

(以下余白) 表5 この水溶液100容量部に2−エチルヘキサノール30
 vo1%を含有する抽出溶媒(Shellsol 7
1を溶媒として使用)100容量部を加えて液−液抽出
を行った。得られた有機相に水30容量部を加えて逆抽
出した。得られた精製ガリウム水溶液の組成を表6に示
す。
(Margin below) Table 5 Add 30 parts of 2-ethylhexanol to 100 parts by volume of this aqueous solution.
Extraction solvent containing vol 1% (Shellsol 7
1 as a solvent) was added to perform liquid-liquid extraction. 30 parts by volume of water was added to the obtained organic phase for back extraction. Table 6 shows the composition of the purified gallium aqueous solution obtained.

表6 スm 抽出剤として2−エチルへキシルホスホン酸モノ−2−
エチルヘキシルエステルを用い、そして2N塩酸の代わ
りに2N硝酸を用いたこと以外は実施例1と同様である
。得られた水溶液中のガリウムの純度は99.96%で
あった。
Table 6 Sum 2-ethylhexylphosphonic acid mono-2- as extractant
Same as Example 1 except that ethylhexyl ester was used and 2N nitric acid was used instead of 2N hydrochloric acid. The purity of gallium in the obtained aqueous solution was 99.96%.

(発明の効果) 本発明によれば、このように、 GaAs金属間化合物
含有物から高純度のガリウムが回収される。操作法は簡
単な液−液抽出法(湿式処理法)であり。
(Effects of the Invention) According to the present invention, high-purity gallium is recovered from a material containing a GaAs intermetallic compound. The operation method is a simple liquid-liquid extraction method (wet processing method).

クローズド・システムで処理されうるため砒素による環
境汚染がない。この方法は、ICなどの電子部品を製造
するときに生じるGaAs金属間化合物屑やスクラップ
からのガリウムの回収に有効である。
Since it can be processed in a closed system, there is no environmental pollution caused by arsenic. This method is effective for recovering gallium from GaAs intermetallic compound waste and scrap produced when manufacturing electronic components such as ICs.

4、    の   なV 第1図は本発明のガリウム回収方法を説明する工程図、
第2図は第1図の第3工程で得られるガリウム水溶液を
精製する方法を説明する工程図である。
4. Figure 1 is a process diagram explaining the gallium recovery method of the present invention.
FIG. 2 is a process diagram illustrating a method for purifying the gallium aqueous solution obtained in the third step of FIG. 1.

1・・・第1工程(溶解工程)、2・・・第2工程(抽
出工程)、3・・・第3工程(逆抽出工程)、4・・・
洗浄工程、5・・・精製工程。
1... 1st process (dissolution process), 2... 2nd process (extraction process), 3... 3rd process (reverse extraction process), 4...
Washing step, 5... Purification step.

以上that's all

Claims (1)

【特許請求の範囲】 1、(a)ガリウム−砒素金属間化合物含有物を硝酸に
溶解させる工程、 (b)(a)項で得られた硝酸水溶液と酸性有機リン化
合物を含む有機溶媒とを液−液接触させ、ガリウムを有
機相に抽出する工程、および (c)(b)項で得られた有機相を鉱酸により逆抽出し
ガリウム水溶液を得る工程、 を包含するガリウム−砒素金属間化合物含有物からのガ
リウムの回収方法。 2、前記(a)項で得られた硝酸水溶液から砒素を固体
の亜砒酸として分離・除去する特許請求の範囲第1項に
記載の方法。 3、前記(c)項で得られたガリウム水溶液を高級アル
コールおよび/もしくはエーテルまたは高級アルコール
および/もしくはエーテルを含有する有機溶媒と液−液
接触させ、ガリウムを有機相に抽出する工程、および 該有機相を水により逆抽出しガリウム水溶液を得る工程
、 を包含する特許請求の範囲第1項に記載の方法。 4、前記酸性有機リン化合物が下記構造式を有する化合
物のうちの少なくとも1種である特許請求の範囲第1項
に記載の方法: ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼ (ここで、R_1〜R_6は、それぞれ、炭素数3〜1
8のアルキル基、アルケニル基、脂環式基、アリール基
またはアルキルアリール基 である)。
[Claims] 1. (a) Dissolving a substance containing a gallium-arsenic intermetallic compound in nitric acid; (b) dissolving the nitric acid aqueous solution obtained in item (a) and an organic solvent containing an acidic organophosphorus compound; A gallium-arsenic metal interlayer comprising the steps of: (c) extracting gallium into an organic phase through liquid-liquid contact; and (c) back-extracting the organic phase obtained in (b) with a mineral acid to obtain a gallium aqueous solution. Method for recovering gallium from compound-containing materials. 2. The method according to claim 1, wherein arsenic is separated and removed as solid arsenous acid from the nitric acid aqueous solution obtained in the above (a). 3. A step of bringing the gallium aqueous solution obtained in the above (c) into liquid-liquid contact with a higher alcohol and/or ether or an organic solvent containing a higher alcohol and/or ether to extract gallium into the organic phase, and The method according to claim 1, comprising the step of back-extracting the organic phase with water to obtain a gallium aqueous solution. 4. The method according to claim 1, wherein the acidic organophosphorus compound is at least one compound having the following structural formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (Here, R_1 to R_6 each have 3 to 1 carbon atoms.
8 alkyl group, alkenyl group, alicyclic group, aryl group or alkylaryl group).
JP60057000A 1985-03-20 1985-03-20 Recovery of gallium from material containing intermetallic compound of gallium and arsenic Granted JPS61215214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057000A JPS61215214A (en) 1985-03-20 1985-03-20 Recovery of gallium from material containing intermetallic compound of gallium and arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057000A JPS61215214A (en) 1985-03-20 1985-03-20 Recovery of gallium from material containing intermetallic compound of gallium and arsenic

Publications (2)

Publication Number Publication Date
JPS61215214A true JPS61215214A (en) 1986-09-25
JPH0463016B2 JPH0463016B2 (en) 1992-10-08

Family

ID=13043213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057000A Granted JPS61215214A (en) 1985-03-20 1985-03-20 Recovery of gallium from material containing intermetallic compound of gallium and arsenic

Country Status (1)

Country Link
JP (1) JPS61215214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206312A (en) * 1987-02-23 1988-08-25 Mitsubishi Kasei Corp Extraction of metallic ion
WO1989004878A1 (en) * 1987-11-24 1989-06-01 Metaleurop S.A. Process for hydrometallurgical treatment of a solution of galliferous substances

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206312A (en) * 1987-02-23 1988-08-25 Mitsubishi Kasei Corp Extraction of metallic ion
JPH0466816B2 (en) * 1987-02-23 1992-10-26 Mitsubishi Chem Ind
WO1989004878A1 (en) * 1987-11-24 1989-06-01 Metaleurop S.A. Process for hydrometallurgical treatment of a solution of galliferous substances
FR2624524A1 (en) * 1987-11-24 1989-06-16 Metaleurop Sa PROCESS FOR HYDROMETALLURGIC TREATMENT OF SOLUTION OF GALLIFEROUS MATERIALS

Also Published As

Publication number Publication date
JPH0463016B2 (en) 1992-10-08

Similar Documents

Publication Publication Date Title
US3971843A (en) Process for liquid/liquid extraction of gallium
CN111020188B (en) Extracting agent and preparation method and application thereof
CN103160689B (en) Method of iron extraction and removal with solvent extraction agent
Tao et al. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction
WO2005083131A1 (en) Extractants for palladium and process for separation and recovery of palladium
FI93972C (en) Method for separating interfering substances from precious metal electrolyte solutions
JP2013152854A (en) Method of separating valuable metal from waste secondary battery, and method of recovering valuable metal using the same
CA1073216A (en) Method of separating zinc and copper from aqueous solutions
CN115679129B (en) Method for extracting and separating gallium from aluminum-containing sulfuric acid leaching solution
US3894927A (en) Recovery of metal values from ocean floor nodule ores by halidation in molten salt bath
JPH05132304A (en) Method for recovering sulfuric acid from waste sulfuric acid containing metal sulfate
Bautista Processing to obtain high-purity gallium
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
KR20000015779A (en) Ferric fluoborate/organic extractant hydrometallurgical process for recovering metals
US5284633A (en) Solvent extraction of precious metals with hydroxyquinoline and stripping with acidified thiourea
EP0090119B1 (en) Selectively stripping iron ions from an organic solvent
JPS61215214A (en) Recovery of gallium from material containing intermetallic compound of gallium and arsenic
EP0189831B1 (en) Cobalt recovery method
JP3546911B2 (en) Purification method of high purity nickel sulfate
Gotfryd et al. The selective recovery of cadmium (II) from sulfate solutions by a counter-current extraction–stripping process using a mixture of diisopropylsalicylic acid and Cyanex® 471X
KR940007372B1 (en) Method of purification cobalt
KR930007139B1 (en) Process for the recovery of gallium from basic solution
JP3799488B2 (en) Method for purifying Ga-containing solution
JPH1150167A (en) Production of high purity cobalt solution
US4631176A (en) Recovery of anhydrous zinc chloride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees