JPS6121481B2 - - Google Patents

Info

Publication number
JPS6121481B2
JPS6121481B2 JP14295380A JP14295380A JPS6121481B2 JP S6121481 B2 JPS6121481 B2 JP S6121481B2 JP 14295380 A JP14295380 A JP 14295380A JP 14295380 A JP14295380 A JP 14295380A JP S6121481 B2 JPS6121481 B2 JP S6121481B2
Authority
JP
Japan
Prior art keywords
pullulan
molecular weight
raw material
intravenous injection
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14295380A
Other languages
Japanese (ja)
Other versions
JPS5767602A (en
Inventor
Mikihiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority to JP14295380A priority Critical patent/JPS5767602A/en
Publication of JPS5767602A publication Critical patent/JPS5767602A/en
Publication of JPS6121481B2 publication Critical patent/JPS6121481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

プルランは、オーレオバシデイウム・プルラン
ス(Aureobasidium pullulans)を単類糖、少糖
類などの糖類を含む栄養培地に好気的に培養して
得られるグルカンであつて、その化学構造は、主
としてマルトトリオースが繰り返しα−1.6−グ
ルコシド結合した線状高分子である。 プルランは、工業的に分子量80000〜300000程
度のものが製造、販売され、プルランの持つてい
る水溶性、可食性、接着性、造膜性などの優れた
性質が食品工業、化学工業などに広く利用されて
いる。 本発明は、医薬用途を目ざしたプルランの製造
方法、なかでも血漿増量用プルランの製造方法に
関するものである。 本発明のプルランは、出血に基づく外傷性シヨ
ツクの予防、及び治療用血漿増量剤に好適であ
る。 本発明のプルランは、生体内に投与された場合
に、組織酵素によつて腎排泄が可能なまでに分解
されるので安全性において優れた血漿増量用注射
剤の製造に好適である。 最近、輸血用血液不足や血清肝炎発生の危険性
から、積極的に血漿増量剤を用いて輸血を節減す
る方法がとられている。 この目的で本発明者らは、先きに昭和54年特許
願第63976号(特開昭55−157513号公報参照)と
して、重量平均分子量(以下、wと示す)が
30000〜90000のプルランを含有する血漿増量剤に
かかわる出願をした。 本発明者は、さらに血漿増量用プルランの製造
方法について検討を加えるために、市販の各種
wのプルランについて、ゲル過法により重量平
均分子量/数平均分子量(以下、w/nと示
す)を調べたところ、何れも2.0以上とした分子
量分布幅の広いものであることが判明した。 そこで、本発明者は、種々のw/n値を有
するwが60000のプルランを家兎に静脈注射し
て実験したところ、w/nが1.5以下のプル
ランが静脈注射時における静脈圧の上昇が少な
く、またプルランの急激な尿排出も少なく血漿増
量剤に好適であることを見いだした。さらには、
w/nが1.5以下でありwが30000〜90000
であるプルランの製造方法について検討したとこ
ろ、原料プルランを部分分解すれば、それに含ま
れる高分子量のプルランが低分子量のプルランよ
りも容易に加水分解を受け、次いで有機溶媒など
で分画すれば、目的のプルラン分画が高収率で採
取し得ることを見いだして本発明を完成した。 次に、実験に基づいて詳細に説明する。 実験 1 種々のw/n値を有するプルランの静脈注
射wが60000でw/nが2.8,2.0,1.5,1.2
である4種類のプルランを、生理食塩水に6%
(W/V)溶解し滅菌して静脈注射実験用の血漿
増量剤とした。 これらの血漿増量剤100mlを体重約3.0Kgの家兎
に対し、約15分間で急速に静脈注射し、静脈注射
時の静脈圧変化と、注入プルランの排泄率を測定
した。 静脈圧変化は、静脈注射開始前の静脈圧(mm
H2O)と静脈注射終了時の静脈圧とを測定し、静
脈注射終了時静脈圧の静脈注射開始前静脈圧に対
する上昇倍数を求め、静脈注射時の循環系に対す
る負荷の指標とした。 また、静脈注射開始後2時間以内に尿中に排泄
されたプルラン量を測定し、静脈注射プルラン量
に対する排泄率(%)を求め、その体内保持程度
から血漿増量効果の指標とした。 実験の結果を第1表に示した。なお、示した数
値は家兎2羽づつの平均値である。
Pullulan is a glucan obtained by aerobically cultivating Aureobasidium pullulans in a nutrient medium containing sugars such as monosaccharides and oligosaccharides, and its chemical structure is mainly malt-based. It is a linear polymer in which triose is repeatedly bonded to α-1,6-glucoside. Pullulan is manufactured and sold industrially with a molecular weight of about 80,000 to 300,000, and its excellent properties such as water solubility, edibility, adhesiveness, and film-forming properties are widely used in the food industry, chemical industry, etc. It's being used. The present invention relates to a method for producing pullulan for pharmaceutical use, and in particular to a method for producing pullulan for plasma volume expansion. The pullulan of the present invention is suitable as a plasma expander for the prevention and treatment of traumatic shocks caused by bleeding. When the pullulan of the present invention is administered into a living body, it is decomposed by tissue enzymes to the extent that it can be excreted by the kidneys, so it is suitable for producing an injection for increasing plasma volume with excellent safety. Recently, due to the shortage of blood for transfusion and the risk of occurrence of serum hepatitis, methods have been taken to actively use plasma expanders to reduce blood transfusions. For this purpose, the present inventors previously published a patent application No. 63976 of 1974 (see Japanese Patent Application Laid-Open No. 157513/1983) in which the weight average molecular weight (hereinafter referred to as w) is
An application was filed regarding a plasma expander containing 30,000 to 90,000 pullulan. In order to further investigate the manufacturing method of pullulan for plasma volume expansion, the present inventor investigated the weight average molecular weight/number average molecular weight (hereinafter referred to as w/n) of various commercially available pullulan by gel filtration method. As a result, it was found that all of them had a wide molecular weight distribution of 2.0 or more. Therefore, the present inventor conducted an experiment by intravenously injecting pullulan with a w of 60,000 and various w/n values into domestic rabbits, and found that pullulan with a w/n of 1.5 or less caused an increase in venous pressure during intravenous injection. It was found that pullulan is suitable as a plasma expander because it causes less rapid urine excretion. Furthermore,
w/n is 1.5 or less and w is 30000 to 90000
When we investigated the production method of pullulan, we found that if the raw material pullulan is partially decomposed, the high molecular weight pullulan contained therein undergoes hydrolysis more easily than the lower molecular weight pullulan, and if it is then fractionated with an organic solvent, etc. The present invention was completed by discovering that the desired pullulan fraction could be collected in high yield. Next, a detailed explanation will be given based on experiments. Experiment 1 Intravenous injection of pullulan with various w/n values w 60000 w/n 2.8, 2.0, 1.5, 1.2
Four types of pullulan are added to physiological saline at 6%
(W/V) was dissolved and sterilized to make a plasma expander for intravenous injection experiments. 100 ml of these plasma expanders were rapidly intravenously injected into a rabbit weighing approximately 3.0 kg over a period of approximately 15 minutes, and changes in venous pressure during intravenous injection and excretion rate of the injected pullulan were measured. The venous pressure change is the venous pressure before the start of intravenous injection (mm
H 2 O) and the venous pressure at the end of the intravenous injection were measured, and the increase multiple of the venous pressure at the end of the intravenous injection relative to the venous pressure before the start of the intravenous injection was determined, which was used as an index of the load on the circulatory system during the intravenous injection. In addition, the amount of pullulan excreted in the urine within 2 hours after the start of intravenous injection was measured, and the excretion rate (%) with respect to the amount of intravenous injection pullulan was determined, and the degree of retention in the body was used as an index of the plasma volume increase effect. The results of the experiment are shown in Table 1. The numerical values shown are the average values of two rabbits each.

【表】 第1表の結果から明らかなように、w/n
が1.5以下のプルランは、静脈注射時の静脈圧の
上昇も少なく、また注入プルランの急激な尿中排
泄も少なく血漿増量用に好適である。 次に、w/nが2.8でありwが60000のプ
ルランをゲル過法にて分画し、分子量15000以
下のプルランと、分子量150000以上のプルランを
採取し、前記と同様に家兎を使つて実験したとこ
ろ、分子量15000以下のプルランの場合は、静脈
圧が約1.2倍であつたが、尿中排泄率が約80%に
も達し、逆に分子量150000以上のプルランの場合
は、尿中排泄率が約7%であつたが、静脈圧が約
3倍にも達することが判明した。 これらの結果から、分子量15000以下のプルラ
ンの場合には、静脈注射後尿への排泄までの半減
期が極めて短時間であり、これでは腎臓への負荷
を高めるのみで、血漿増量剤としての効果がほと
んど期待できない。また、分子量150000以上のプ
ルランの場合には、急速な静脈注射により静脈圧
をかなり上昇させることが認められたことから循
環系への負荷を高めることが懸念される。 従つて、本発明の目的を達成するためには、プ
ルランのwが単に30000〜90000であると言うだ
けでなく、分子量15000以下の低分子画分と、分
子量150000以上の高分子画分とをできるだけ減少
させて分子量分布幅を狭めたw/nが1.5以
下のプルランが好適である。 実験 2 プルランの製造 次に、本発明のw/nが1.5以下であり、
wが30000〜90000であるプルランの製造方法に
ついて検討した。 w/nが2.5でありwが150000の原料プ
ルランを10%(w/v)の水溶液とし、(A)未分解
のまま、(B)硫酸酸性下(PH約2)で80℃に2時間
保つて部分分解した後中和し、また(C)酵素剤(α
−アミラーゼ剤、長瀬産業株式会社製造、商品名
ネオスピターゼ)をプルラングラム当り糊精化力
活性で550単位の割合で加えてPH5.5、温度60℃で
20時間保つて部分分解した後酵素を加熱失活さ
せ、次いで、これら(A)(B)(C)を30℃に保ちつつ、そ
れぞれにメタノールを43%(v/v)になるよう
に加え生じた下層部を除去した後、得られた上層
部にさらにメタノールを60%(v/v)になるよ
うに加えて静置した後、下層部を分画採取して乾
燥紛末化し、w/nが1.4であるw60000の
プルラン製品を得た。 本製品の原料プルランに対する収率(固形物換
算)は、第2表にまとめた。
[Table] As is clear from the results in Table 1, w/n
Pullulan with a value of 1.5 or less causes less increase in venous pressure during intravenous injection and less rapid urinary excretion of injected pullulan, making it suitable for plasma volume expansion. Next, pullulan with w/n of 2.8 and w of 60,000 was fractionated by the gel filtration method, and pullulan with a molecular weight of 15,000 or less and pullulan with a molecular weight of 150,000 or more were collected. In experiments, pullulan with a molecular weight of 15,000 or less had a venous pressure of approximately 1.2 times, but the urinary excretion rate reached approximately 80%; Although the rate was about 7%, it was found that the venous pressure was about three times as high. These results show that pullulan, which has a molecular weight of less than 15,000, has an extremely short half-life until it is excreted in the urine after intravenous injection, and this only increases the burden on the kidneys, making it less effective as a plasma volume expander. can hardly be expected. Furthermore, in the case of pullulan with a molecular weight of 150,000 or more, rapid intravenous injection has been found to significantly increase venous pressure, so there is concern that it may increase the load on the circulatory system. Therefore, in order to achieve the purpose of the present invention, it is necessary not only to say that w of pullulan is 30,000 to 90,000, but also to have a low molecular weight fraction with a molecular weight of 15,000 or less and a high molecular fraction with a molecular weight of 150,000 or more. Pullulan with a w/n of 1.5 or less, which is reduced as much as possible to narrow the molecular weight distribution width, is preferred. Experiment 2 Manufacture of pullulan Next, the w/n of the present invention is 1.5 or less,
A method for producing pullulan in which w is 30,000 to 90,000 was studied. Raw material pullulan with w/n of 2.5 and w of 150,000 was made into a 10% (w/v) aqueous solution, and (A) undecomposed, (B) heated to 80°C under acidic sulfuric acid (PH approximately 2) for 2 hours. (C) Enzyme agent (α
-Amylase agent (manufactured by Nagase Sangyo Co., Ltd., trade name Neospitase) was added at a rate of 550 units of glue purification activity per pullulan gram at pH 5.5 and temperature 60°C.
After keeping for 20 hours to partially decompose, the enzyme was inactivated by heating, and then, while keeping these (A), (B), and (C) at 30°C, methanol was added to each at a concentration of 43% (v/v). After removing the resulting lower layer, methanol was further added to the resulting upper layer to give a concentration of 60% (v/v), and the mixture was allowed to stand.The lower layer was fractionated and dried into a powder. A pullulan product of w60000 with /n of 1.4 was obtained. The yield (in terms of solids) of this product based on the raw material pullulan is summarized in Table 2.

【表】 第2表の結果から明らかなように、原料プルラ
ンをそのまま分画採取するよりも、部分分解した
後に目的プルランを分画採取する方が高収率であ
る。 この原因を検討するために、部分分解プルラン
を経時的にサンプリングし、ゲル過法により分
子量分布の変化を調べたところ、酸、酵素何れの
場合においても、原料プルラン中の高分子プルラ
ンの方が、低分子プルランよりも加水分解作用を
受け易い性質を有していることが判明した。この
ことから、部分分解の程度を目的プルラン画分が
最大になるように適宜選択することによつて約40
〜60%、またはそれ以上の高収率を得ることも容
易になつた。 また、酸で部分分解するよりも、酵素で部分分
解する方がやや高収率であつた。 本発明に使用する原料プルランとしては、部分
分解した後、w/nが1.5以下でありwが
30000〜90000であるプルランが採取し得るもので
あればよく、一般的にはwが目的プルランのそ
れよりも大きいものが適している。 部分分解の条件としては、原料プルランが部分
的に分解を受けて目的プルラン画分が増量すれば
よい。その手段としては、例えば乳酸、クエン
酸、塩酸、硫酸などの有機、無機酸類、或はシク
ロデキストリングルカノトランスフエラーゼ
(EC 2.4.1.19)、α−アミラーゼ(EC 3.2.1.1)、
プルラナーゼ(EC 3.2.1.41)、イソプルラナーゼ
(EC 3.2.1.57)、イゾアミラーゼ(EC 3.2.1.68)
などの酵素類、工業的には、大量処理の容易な酸
または酵素による部分分解法が適している。 このようにして部分分解したものから、目的プ
ルラン画分を得る方法としては、通常メタノー
ル、エタノール、イソプロパノール、アセトンな
どの親水性有機溶媒による分画法が用いられる
が、必要に応じて、例えばゲル過法、膜分離法
などを用いることができる。 得られたプルラン画分は、通常活性炭、イオン
交換樹脂などによつて脱色、脱塩し、次いでメン
ブランフイルターにて過し、濃縮して無色透明
なシラツプ状、またはさらに乾燥、紛末化して白
色紛末状のパイロゲン無含有のプルラン製品にす
る。 このようにして得られた本発明のプルランは、
血漿増量用に好適である。通常、本発明のプルラ
ンを固形物当り約4〜10%(w/t)の水溶液に
し、これに塩類、糖類などの等張化剤を加え、滅
菌して血漿増量用注射製剤を製造する。 次に、2〜3の実施例について述べる。 実施例 1 w/nが2.3でありwが300000である原
料プルラン200gを10%(w/v)水溶液にし、
塩酸を用いてPHを約2にし、80℃に2時間保つて
プルランの部分分解を行つた後、カセイソーダで
中和し、冷却して30℃に保ち、これにメタノール
を40%(v/v)となるように加え、生じた下層
部を除去した後、得られた上層部にさらにメタノ
ールを55%となるように加えて静置した後、下層
部を分別採取した。これからメタノールを留去
し、残つたプルラン水溶液に活性炭を加えて脱色
し、H型およびOH型イオン交換樹脂にて脱塩
し、さらにメンブランフイルターにて過し、得
た精製プルランを濃縮、乾燥、紛砕して、w/
nが1.4でありwが50000であるプルランの白
色紛末約90gを得た。 実施例 2 w/nが2.6でありwが80000である原料
プルラン200gを20g(w/v)の水溶液とし、
硫酸を用いてPHを約2とし、80℃に2時間保つて
プルランの部分分解を行つた後、カセイソーダで
中和し、40℃に保ちつつこれにエタノールを50%
(v/v)となるように加え、生じた下層部を除
去した後、得られた上層部にさらにエタノールを
70%(v/v)となるように加え、生じた下層部
を採取した。 これをさらに、実施例1と同様に処理して精製
し、w/nが1.3でありwが30000であるプ
ルランの白色紛末約70gを得た。 実施例 3 w/nが2.1でありwが200000である原
料プルラン200gを5%(w/v)水溶液とな
し、実施例1と同様に部分的分解した後、中和
し、30℃に保ちつつ、これにアセトンを20%
(v/v)となるように加え、生じた下層部を除
去した後、得られた上層部にさらにアセトンを45
%(v/v)となるように加え、生じた下層部を
採取し、さらに実施例1と同様に処理して精製
し、w/nが1.5でありwが85000であるプ
ルランの白色紛末約80gを得た。 実施例 4 w/nが2.3でありwが300000である原
料プルラン200gを10%(w/v)水溶液とし、
これに、昭和53年特許出願公告第27791号公報で
開示されているバチルス属細菌が生産したシクロ
デキストリングルカノトランスフエラーゼ(EC
2.4.1.19)をプルラングラム当り糊精化力で150単
位の割合で添加し、PH6.0、温度65℃に20時間保
つてプルランの部分分解を行つた後、90℃に15分
間保つて酵素を加熱失活させ、次いで、実施例1
と同様にメタノールにて分画し、精製、濃縮、乾
燥して、実施例1と同じw/nが1.4で
w50000を有するプルランの白色紛末を約105gを
得た。 実施例 5 w/nが2.6でありwが80000である原料
プルラン200gを20%(w/v)水溶液とし、こ
れに、市販プルラナーゼ(株式会社林原生物化学
研究所製造)をプルラングラム当り4単位の割合
で添加し、PH6.0、温度50℃に20時間保つてプル
ランの部分分解を行つた後、酵素を加熱失活さ
せ、次いで実施例2と同様にエタノールにて分画
し、精製、濃縮、乾燥して、実施例2と同じ
w/nが1.3でw30000を有するプルランの白
色紛末を約100g得た。 実施例 6 w/nが2.1でありwが200000である原
料プルラン200gを5%(w/v)水溶液にし、
市販のα−アミラーゼ(EC 3.2.1.1)(長瀬産業
株式会社製造、商品名 ネオスピターゼ)をプル
ラングラム当り糊精化力で500単位の割合で添加
し、PH6.4、温度55℃に24時間保つてプルランの
部分分解を行つた後、酵素を加熱失活させ、次い
で実施例3と同様にアセトンにて分画し、製精、
濃縮、乾燥して実施例3と同じw/nが1.5
でw85,000を有するプルランの白色紛末を約
110gを得た。 実施例 7 w/nが2.3でありwが300000である原
料プルラン200gを10%(w/v)水溶液とし、
これに市販イソアミラーゼ(株式会社林原生物化
学研究所製造)をプルラングラム当り200単位の
割合で添加し、PH4.3、温度50℃に20時間保つて
プルランの部分分解を行つた後、酵素を加熱失活
させ、次いで実施例1と同様にメタノールにて分
画し、精製、濃縮、乾燥して実施例1と同じ
w/nが1.4でw50000を有するプルランの白
色紛末を約115g得た。 実施例 8 w/nが2.1でありwが580000である原
料プルラン200gを0.05M NaCl水溶液で10%
(w/v)とし、これを30℃に保ちつつ、出力
50W、45KHzの超音波発生器(商品名 Branson
ultrasonic cleaner,Model 12,ヤマト科学株式
会社製、東京)で30分間処理し、次いで実施例1
と同様にメタノールにて分画し、精製、濃縮、乾
燥して、実施例1と同じw/nが1.4で
w50000を有するプルランの白色紛末を約70g得
た。
[Table] As is clear from the results in Table 2, the yield is higher when the target pullulan is fractionated and collected after partial decomposition than when the raw material pullulan is fractionated and collected as it is. In order to investigate the cause of this, we sampled partially decomposed pullulan over time and examined changes in molecular weight distribution using a gel filtration method, and found that the polymeric pullulan in the raw material pullulan was better in both cases of acid and enzyme. It was found that it has properties that are more susceptible to hydrolytic action than low-molecular-weight pullulan. From this, by appropriately selecting the degree of partial decomposition to maximize the target pullulan fraction, approximately 40%
It has become easy to obtain high yields of ~60% or more. Furthermore, partial decomposition with an enzyme resulted in a slightly higher yield than partial decomposition with an acid. After partial decomposition, the raw material pullulan used in the present invention has a w/n of 1.5 or less and a w of
It is sufficient that pullulan having a molecular weight of 30,000 to 90,000 can be collected, and generally, a pullulan with w larger than that of the target pullulan is suitable. The conditions for partial decomposition are such that the raw material pullulan undergoes partial decomposition to increase the amount of the target pullulan fraction. Examples of the means include organic and inorganic acids such as lactic acid, citric acid, hydrochloric acid, and sulfuric acid, or cyclodextrin glucanotransferase (EC 2.4.1.19), α-amylase (EC 3.2.1.1),
Pullulanase (EC 3.2.1.41), Isopululanase (EC 3.2.1.57), Izoamylase (EC 3.2.1.68)
For industrial purposes, partial decomposition methods using acids or enzymes are suitable because they can be easily processed in large quantities. To obtain the desired pullulan fraction from the partially decomposed product, a fractionation method using a hydrophilic organic solvent such as methanol, ethanol, isopropanol, or acetone is usually used. A filtration method, a membrane separation method, etc. can be used. The obtained pullulan fraction is usually decolorized and desalted using activated carbon, ion exchange resin, etc., then filtered through a membrane filter, concentrated to form a colorless and transparent syrup, or further dried and powdered to form a white color. Make powdered pyrogen-free pullulan products. The pullulan of the present invention obtained in this way is
Suitable for plasma volume expansion. Usually, the pullulan of the present invention is made into an aqueous solution of about 4 to 10% (w/t) based on solid matter, to which isotonic agents such as salts and sugars are added and sterilized to produce an injection preparation for plasma volume expansion. Next, a few examples will be described. Example 1 200g of raw material pullulan with w/n of 2.3 and w of 300000 was made into a 10% (w/v) aqueous solution,
After adjusting the pH to about 2 using hydrochloric acid and keeping it at 80℃ for 2 hours to partially decompose pullulan, neutralize it with caustic soda, cool it and keep it at 30℃, and add 40% (v/v) methanol to this. ), and after removing the resulting lower layer, methanol was further added to the resulting upper layer to give a concentration of 55%, and after leaving it to stand, the lower layer was collected separately. Methanol is distilled off from this, activated carbon is added to the remaining pullulan aqueous solution to decolorize it, desalt is carried out using H-type and OH-type ion exchange resins, and the purified pullulan obtained is concentrated, dried, and then filtered through a membrane filter. Shatter it, lol/
Approximately 90 g of white powder of pullulan with n of 1.4 and w of 50,000 was obtained. Example 2 200g of raw material pullulan with w/n of 2.6 and w of 80000 is made into a 20g (w/v) aqueous solution,
Adjust the pH to about 2 using sulfuric acid, keep at 80℃ for 2 hours to partially decompose pullulan, neutralize with caustic soda, and add 50% ethanol to this while keeping at 40℃.
(v/v), remove the resulting lower layer, and then add ethanol to the resulting upper layer.
The solution was added to a concentration of 70% (v/v), and the resulting lower layer was collected. This was further treated and purified in the same manner as in Example 1 to obtain about 70 g of white powder of pullulan with w/n of 1.3 and w of 30,000. Example 3 200g of raw material pullulan with w/n of 2.1 and w of 200000 was made into a 5% (w/v) aqueous solution, partially decomposed in the same manner as in Example 1, neutralized, and kept at 30°C. Add 20% acetone to this.
(v/v), and after removing the resulting lower layer, add 45% acetone to the resulting upper layer.
% (v/v), the resulting lower layer was collected, and further treated and purified in the same manner as in Example 1 to obtain a white powder of pullulan with w/n of 1.5 and w of 85000. About 80g was obtained. Example 4 200g of raw material pullulan with w/n of 2.3 and w of 300000 was made into a 10% (w/v) aqueous solution,
In addition, cyclodextrin glucanotransferase (EC
2.4.1.19) was added at a rate of 150 units of glue refining power per gram of pullulan, kept at pH 6.0 and temperature 65℃ for 20 hours to partially decompose pullulan, and then kept at 90℃ for 15 minutes to decompose the enzyme. was inactivated by heating, and then Example 1
Fractionated with methanol in the same manner as in Example 1, purified, concentrated, and dried to obtain a product with a w/n of 1.4, which is the same as in Example 1.
Approximately 105 g of white powder of pullulan with w50000 was obtained. Example 5 200 g of raw material pullulan with w/n of 2.6 and w of 80,000 was made into a 20% (w/v) aqueous solution, and commercially available pullulanase (manufactured by Hayashibara Biochemical Research Institute, Ltd.) was added to this by 4 units per gram of pullulan. After partial decomposition of pullulan by keeping it at pH 6.0 and temperature 50°C for 20 hours, the enzyme was inactivated by heating, and then fractionated with ethanol in the same manner as in Example 2, purified, By concentrating and drying, about 100 g of white powder of pullulan having the same w/n of 1.3 and w30000 as in Example 2 was obtained. Example 6 200g of raw material pullulan with w/n of 2.1 and w of 200000 was made into a 5% (w/v) aqueous solution,
Commercially available α-amylase (EC 3.2.1.1) (manufactured by Nagase Sangyo Co., Ltd., trade name Neospitase) was added at a rate of 500 units of glue refining power per gram of pullulan, and kept at pH 6.4 and temperature 55°C for 24 hours. After partial decomposition of pullulan, the enzyme was inactivated by heating, and then fractionated with acetone in the same manner as in Example 3, purified,
After concentration and drying, the same w/n as in Example 3 was 1.5.
Approx. white powder of pullulan with w85,000 in
Obtained 110g. Example 7 200g of raw material pullulan with w/n of 2.3 and w of 300000 was made into a 10% (w/v) aqueous solution,
Commercially available isoamylase (manufactured by Hayashibara Biochemical Research Institute Co., Ltd.) was added to this at a rate of 200 units per gram of pullulan, and the pullulan was partially decomposed by keeping it at pH 4.3 and temperature 50°C for 20 hours. It was inactivated by heating, then fractionated with methanol in the same manner as in Example 1, purified, concentrated, and dried to obtain about 115 g of white powder of pullulan having the same w/n of 1.4 and w50000 as in Example 1. . Example 8 200g of raw material pullulan with w/n of 2.1 and w of 580000 was 10% mixed with 0.05M NaCl aqueous solution.
(w/v), and while keeping this at 30℃, output
50W, 45KHz Ultrasonic Generator (Product Name: Branson
ultrasonic cleaner, Model 12, manufactured by Yamato Scientific Co., Ltd., Tokyo) for 30 minutes, and then Example 1
Fractionated with methanol in the same manner as in Example 1, purified, concentrated, and dried to obtain a product with a w/n of 1.4, which is the same as in Example 1.
Approximately 70 g of white powder of pullulan with w50000 was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 原料プルランを部分分解した後分画し、重量
平均分子量/数平均分子量が1.5以下であり、重
量平均分子量が30000〜90000であるプルランを採
取することを特徴とした血漿増量用プルランの製
造方法。
1. A method for producing pullulan for plasma volume expansion, which comprises partially decomposing raw material pullulan and then fractionating it to collect pullulan having a weight average molecular weight/number average molecular weight of 1.5 or less and a weight average molecular weight of 30,000 to 90,000. .
JP14295380A 1980-10-15 1980-10-15 Preparation of pullulan for expanding plasma Granted JPS5767602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14295380A JPS5767602A (en) 1980-10-15 1980-10-15 Preparation of pullulan for expanding plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14295380A JPS5767602A (en) 1980-10-15 1980-10-15 Preparation of pullulan for expanding plasma

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15613481A Division JPS57141401A (en) 1981-10-02 1981-10-02 Production of pullulan with narrowed molecular weight distribution

Publications (2)

Publication Number Publication Date
JPS5767602A JPS5767602A (en) 1982-04-24
JPS6121481B2 true JPS6121481B2 (en) 1986-05-27

Family

ID=15327485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14295380A Granted JPS5767602A (en) 1980-10-15 1980-10-15 Preparation of pullulan for expanding plasma

Country Status (1)

Country Link
JP (1) JPS5767602A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141401A (en) * 1981-10-02 1982-09-01 Hayashibara Biochem Lab Inc Production of pullulan with narrowed molecular weight distribution
JP3232488B2 (en) * 1992-08-20 2001-11-26 株式会社林原生物化学研究所 High content of pullulan, its production method and use

Also Published As

Publication number Publication date
JPS5767602A (en) 1982-04-24

Similar Documents

Publication Publication Date Title
DK168297B1 (en) Process for producing low molecular weight heparin from normal heparin
EP0101935B1 (en) Process for the preparation of the c1 inactivator and its use
US4276283A (en) Method of preparing an intravenously administrable immune globulin preparation containing antibodies and preparations produced according to this method
JPS62215529A (en) Medicinal composition containing reverse transcriptase enzyme inhibitor
DE3240174A1 (en) Stable plasminogen activator derivs. - contg. poly:alkylene glycol linked to side chains
DE3150318C2 (en) "Process for the preparation of a polysaccharide derivative of fibrinolysin"
US9066968B2 (en) Fluid for peritoneal dialysis
CN103232558A (en) Preparation method of high-quality low-molecular weight dalteparin sodium
DE3032488A1 (en) METHOD FOR PRODUCING A VACCINE
US5560914A (en) Immunopotentiator and method of manufacturing the same
JPH02154664A (en) Production of dextrin having high dietary fiber content
EP0307158B1 (en) Process for the preparation of branched fructooligosaccharides
JPH0442401B2 (en)
JPS6121481B2 (en)
RU2303984C2 (en) Superbranched amylopectin applicable in methods for surgically and therapeutically treating mammals or in methods for diagnosing diseases primarily as volume plasma-substitute
AU2018333249B2 (en) Pentosan polysulfate and method for producing pentosan polysulfate
EP0049801A2 (en) Sucrose-mutase, immobilized sucrose-mutase and use of this immobilized sucrose-mutase for the production of isomaltulose(6-O-alpha-D-glucopyranosido-D fructose)
JPH0587083B2 (en)
JPH0248561B2 (en)
JPH01285195A (en) Production of difructose-cyanhydride
EP0305981B1 (en) Process for preparing glucose-1-phosphate
JPS60156697A (en) Manufacture of fructose-1,6-diphosphate acid solution
JPH06279292A (en) Production of glycogen having physiological activity and physiological activity
DE3147193A1 (en) Method for the preparation of a pullulan composition having limited molecular weight distribution, method for the preparation of a plasma expander, and method for the preparation of a hyperkinesis agent using the pullulan composition and this agent
US2960498A (en) Partial glycerol esters of pectic substances and preparation thereof