JPS61214403A - Cryogenic apparatus - Google Patents

Cryogenic apparatus

Info

Publication number
JPS61214403A
JPS61214403A JP60057345A JP5734585A JPS61214403A JP S61214403 A JPS61214403 A JP S61214403A JP 60057345 A JP60057345 A JP 60057345A JP 5734585 A JP5734585 A JP 5734585A JP S61214403 A JPS61214403 A JP S61214403A
Authority
JP
Japan
Prior art keywords
temperature
precooling
heat exchanger
gas
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057345A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Toyoda
豊田 勝義
Itsuo Kodera
小寺 溢男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60057345A priority Critical patent/JPS61214403A/en
Publication of JPS61214403A publication Critical patent/JPS61214403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Abstract

PURPOSE:To automatically lower the temperature of a return cooling medium for precooling a superconductive coil without the use of an expensive control valve and its controller by providing a heat exchanger in the precooling medium channel, cooling a superconductive coil through the heat exchanger, and exchanging heat between part of the return precooling medium raised in temperature and the precooling medium. CONSTITUTION:Precooling helium gas flowing through the inlet section 10a of a heat exchanger 10 in the temperature level as low as in liquid nitrogen exchanges heat with the superconductive coil 6 to become a return gas raised in temperature. Part of the return gas is led to the vessel 11 through an adiabatic pipe 12 to raise the temperature of the precooling gas at the outlet of the heat exchanger 10 to a value appropriate for precooling by exchanging heat in the heat exchanger 10. By setting the opening ratio of valves 14a, 14b to a suitable value at the initial stage of precooling, the temperature of the gas led to the vessel 11 via the pipe 12 drops in response to temperature drop of the coil 6, resulting in an automatic temperature drop in the precooling gas passing through the outlet section 10b of the heat exchanger 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導コイルを冷却する極低温装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryogenic device for cooling superconducting coils.

〔従来の技術〕[Conventional technology]

第2図は、例えばProceedings of th
e 9thIn−ternational Cryog
enic Kngineering Conferen
ce。
FIG. 2 shows, for example, Procedures of th
e 9thIn-international Cryog
enic Kngineering Conference
ce.

KOBJ Japan (1982) P96の第2図
を必要部分のみ簡略化したものであるが、従来の極低温
装置を示すものであり、図において、(1)は冷凍機、
(2)は熱交換器、(3)は液体窒素配管、(4)はヘ
リウムガス圧縮機、(6)は調節弁、(6)は超電導コ
イル、(7)は超電導コイル(6)を収納した極低温容
器、+81は冷凍機(11を経た低風のヘリウムガスを
極低温容器(7)に導く冷却配管、(91Fi極低温容
器(7)内のヘリウムガスを冷凍機(11の常帰部、即
ちヘリウムガス圧縮機(4)に戻す戻り配管である。
This is a simplified version of Figure 2 on page 96 of KOBJ Japan (1982), but it shows a conventional cryogenic device. In the figure, (1) is a refrigerator,
(2) is a heat exchanger, (3) is a liquid nitrogen pipe, (4) is a helium gas compressor, (6) is a control valve, (6) is a superconducting coil, and (7) is a superconducting coil (6). +81 is a cooling pipe that leads the low-flow helium gas that has passed through the refrigerator (11) to the cryogenic container (7); This is a return pipe that returns to the helium gas compressor (4).

次に動咋について説明する。ヘリウム圧縮m[41から
吐出されたヘリウムガスは、熱交換器(2)を介して、
液体窒素配管(3)により導かれた液体窒素と熱交換し
、液体窒素温度レベルの低温ヘリウムガスとなって冷却
配管(8)を通って極低温容器(7)に圧送され、初期
には室温状態にある超電導コイル(6)を冷却する。こ
の時、予冷の初期段階から、液体窒素帰席レベルまで冷
却されたヘリウムガスで超電導コイル(6)を冷却する
と、大きな熱歪が発生し、超電導コイル(6)に悪影響
を及ぼす車がある。従って、例えば図のように調節弁(
6)を介して、室温のヘリウムガスと、液体窒素温度レ
ベルのヘリウムガスを混合し、大きな熱歪が発生しない
ように、予冷ヘリウムガス織度をコントローラ(図示せ
−P)によりコントロールしている。
Next, I will explain about Dokui. The helium gas discharged from the helium compressor m[41 passes through the heat exchanger (2),
It exchanges heat with the liquid nitrogen introduced by the liquid nitrogen pipe (3), becomes low-temperature helium gas at the liquid nitrogen temperature level, and is pumped through the cooling pipe (8) to the cryogenic container (7), which initially reaches room temperature. The superconducting coil (6) in the state is cooled down. At this time, if the superconducting coil (6) is cooled with helium gas that has been cooled down to the liquid nitrogen return level from the initial stage of pre-cooling, large thermal distortion occurs, which adversely affects the superconducting coil (6) in some cars. Therefore, for example, as shown in the figure, the control valve (
6), helium gas at room temperature and helium gas at the liquid nitrogen temperature level are mixed, and the degree of pre-cooling helium gas is controlled by a controller (P shown in the figure) to prevent large thermal distortion from occurring. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の極低温装置は、以上のように11IIF!i、さ
れており、超電導コイルに発生する歪の大きさによって
予冷ヘリウムガス温度を調整するため、調節弁及びその
コントローラが高瀝になるという問題点があった。
Conventional cryogenic equipment is 11IIF! Since the temperature of the pre-cooled helium gas is adjusted depending on the magnitude of strain generated in the superconducting coil, there is a problem in that the control valve and its controller have a high displacement.

この発明は、上記のような問題点を解消するためになさ
れたもので、予冷ヘリウムガス温度が除徐に降下する極
低温装置を提供するものである。
This invention was made to solve the above-mentioned problems, and provides a cryogenic apparatus in which the temperature of pre-cooled helium gas gradually decreases.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る極低温装(tけ、冷凍機と、超電導コイ
ルが収納された極低温容器とを結ぶ冷却配管上に熱交検
器と、この熱交換器が収納された容器と、極低酷容器か
ら容器への断熱配管と、容器内の冷却媒体を冷凍機の常
温部に戻す戻り配管を設けたものである。
The cryogenic equipment according to the present invention includes a heat exchanger on a cooling pipe connecting a refrigerator and a cryogenic container in which a superconducting coil is housed, a container in which the heat exchanger is housed, and a cryogenic It is equipped with insulated piping from one storage container to another, and a return piping that returns the cooling medium in the container to the room temperature section of the refrigerator.

〔作用〕[Effect]

この発明lζおける極低温装置で汀、極低温容器から容
器を介して冷凍機の常温部へ戻る冷却8体温度が徐々に
降下するため、その冷却媒体と、熱交換器で熱交換する
予冷冷却媒体温度も徐々に降下し、自動的に予冷冷却媒
体温度がコントロールされる。
In the cryogenic device of this invention, the temperature of the cooling medium gradually decreases, and the temperature of the body gradually decreases, so the pre-cooling cooling is carried out by exchanging heat with the cooling medium in a heat exchanger. The medium temperature also gradually decreases, and the precooling medium temperature is automatically controlled.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
肉において、+I01は冷却配彎(8)経路に設けられ
た熱交換器、(10a)け熱交拳器入口部、(10’b
)は緘交喚器出口部である。α1)は熱交換器(1αを
収納I7た容器、(イ)は戻りガスの一部を極低温容器
(7)から容器0υに導ぐための断熱配管、(至)は容
器αυ内のヘリウムガスを冷凍機fi+の常温部、即ち
戻り配管(9)を介してヘリウムガス圧縮機14)に戻
す戻り配管、(4m)、 (14b) n弁である。f
il 〜+91は第1図と同じものである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
For meat, +I01 is the heat exchanger provided in the cooling distribution path (8), (10a) the inlet of the heat exchanger, (10'b
) is the exit part of the diaphragm. α1) is a heat exchanger (container containing 1α), (A) is an insulated pipe for guiding a part of the return gas from the cryogenic container (7) to container 0υ, and (to) is the helium inside the container αυ. A return pipe (4m) and (14b) n valves return the gas to the normal temperature part of the refrigerator fi+, that is, the helium gas compressor 14) via the return pipe (9). f
il ~+91 is the same as in FIG.

次に動作について説明する。笥1図において。Next, the operation will be explained. In Figure 1 of the paper.

熱交換器(lO)の入口部(10a)を流れる予冷ヘリ
ウムガス轍度は、液体窒素温度レベルの低温ガスである
が、この低温予冷ガスは、超電導コイル(6)と熱交換
して、より高い温度の戻りガスとなり、断熱配管Q2を
介して、容器α℃に導かれた予冷ガスの一部と熱交換器
(10)で熱交換する事により、熱交換器(lO)の出
口(10b)では予冷に適当な温度に上昇する。
The precooled helium gas flowing through the inlet (10a) of the heat exchanger (lO) is a low temperature gas at the liquid nitrogen temperature level, and this low temperature precooled gas exchanges heat with the superconducting coil (6) to The returned gas becomes a high temperature gas, and by exchanging heat with a part of the pre-cooled gas led to the container α℃ via the heat exchanger (10) through the adiabatic piping Q2, the return gas returns to the outlet (10b) of the heat exchanger (lO). ), the temperature is raised to an appropriate temperature for pre-cooling.

予冷初期の段階で、弁(14a)、 (14b)の開度
比を適当な値に設定しておけば、超電導コイル(6)の
温度か降下するに従い、断熱配管@を介して容器0刀へ
導かねるガス温度も降下し、熱交換器(lO1の出口部
(10b)を通過する予冷ガス温度も自動的に降下する
If the opening ratio of the valves (14a) and (14b) is set to an appropriate value at the initial stage of pre-cooling, as the temperature of the superconducting coil (6) decreases, the temperature of the container will be reduced via the insulated piping. The temperature of the gas that cannot be led to the heat exchanger (lO1) also decreases, and the temperature of the precooled gas that passes through the outlet (10b) of the heat exchanger (lO1) also decreases automatically.

なお、上記実施例では、弁(14a)を容器αηからヘ
リウムガス圧縮機(4)への戻り配管α1上に設けたが
、この弁(ユ鈍)け断熱配管@上に設けても曳い。
In the above embodiment, the valve (14a) was provided on the return pipe α1 from the container αη to the helium gas compressor (4), but the valve (14a) may also be provided on the insulated pipe @.

ボには・弁(na)を省略して弁(14b)のみでも、
所期の目的は遠戚される。
Even if you omit the valve (na) and only the valve (14b),
The intended purpose is to be a distant relative.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、予冷冷却媒体経路−
こ熱交換器を設置し、この値交伊器を介して超電導コイ
ルを冷却して、温度が上昇した戻り予冷冷却媒体の一部
と予冷冷却媒体を熱交換させるようにしたので、高価な
調節弁及びそのコントローラを用いる事なしに、超電導
コイル予冷冷却媒体温度を自動的に降下させる事か出来
るという効果がある。
As described above, according to the present invention, the pre-cooling cooling medium path -
A heat exchanger was installed, and the superconducting coil was cooled through this value exchanger to exchange heat between the pre-cooled cooling medium and a portion of the returned pre-cooled cooling medium whose temperature had increased, thus eliminating the need for expensive adjustment. This has the advantage that the temperature of the superconducting coil precooling medium can be lowered automatically without using a valve or its controller.

【図面の簡単な説明】[Brief explanation of drawings]

筆1図はこの発明の一実施例による極低温装置を示す系
統図、第2図は従来の極低/!A装置を示す系統図であ
る。 図において、fllP′i冷凍機、f6)Fi超1ft
導コイル。 (7)は極低温容器、(8)は冷却配管、(9)は戻り
配管、(lO)は熱交換器、αυけ容器、(Llは断熱
配管、α3は戻り配管である。 なお1図中、同一符号は同−又は相当部分を示す。
Figure 1 is a system diagram showing a cryogenic apparatus according to an embodiment of the present invention, and Figure 2 is a conventional cryogenic apparatus. It is a system diagram showing A device. In the figure, fllP′i refrigerator, f6) Fi over 1ft
conductive coil. (7) is a cryogenic container, (8) is a cooling pipe, (9) is a return pipe, (lO) is a heat exchanger, αυ container, (Ll is an insulated pipe, and α3 is a return pipe. The same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被冷却体が収納された極低温容器、上記被冷却体
を極低温に冷却する被冷却媒体を低温化する冷凍機、こ
の冷凍機の低温部と上記極低温容器とを結び上記冷却媒
体を上記極低温容器内に導く冷却配管、上記極低温容器
内の冷却媒体を上記冷凍機の常温部に戻す戻り配管を備
えたものにおいて、上記冷却配管に配設され、熱交換器
が収納された容器と、上記極低温容器内の冷却媒体の一
部を上記容器内に導く断熱配管と、上記容器内の冷却媒
体を上記冷凍機の常温部に戻す戻り配管を備えたことを
特徴とする極低温装置。
(1) A cryogenic container in which an object to be cooled is housed, a refrigerator that lowers the temperature of a medium to be cooled that cools the object to be cooled to a cryogenic temperature, and a low-temperature part of this refrigerator is connected to the cryogenic container to cool the object. A cooling pipe that guides the medium into the cryogenic container, and a return pipe that returns the cooling medium in the cryogenic container to the normal temperature part of the refrigerator, wherein the cooling pipe is arranged in the cooling pipe and a heat exchanger is housed therein. The refrigerator is characterized by comprising: a container in which the cooling medium is heated, an insulated pipe that guides a part of the cooling medium in the cryogenic container into the container, and a return pipe that returns the cooling medium in the container to the normal temperature part of the refrigerator. cryogenic equipment.
(2)戻り配管には弁が配設されていることを特徴とす
る特許請求の範囲第1項記載の極低温装置。
(2) The cryogenic apparatus according to claim 1, wherein a valve is disposed in the return pipe.
JP60057345A 1985-03-19 1985-03-19 Cryogenic apparatus Pending JPS61214403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057345A JPS61214403A (en) 1985-03-19 1985-03-19 Cryogenic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057345A JPS61214403A (en) 1985-03-19 1985-03-19 Cryogenic apparatus

Publications (1)

Publication Number Publication Date
JPS61214403A true JPS61214403A (en) 1986-09-24

Family

ID=13052982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057345A Pending JPS61214403A (en) 1985-03-19 1985-03-19 Cryogenic apparatus

Country Status (1)

Country Link
JP (1) JPS61214403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916890A2 (en) * 1997-11-14 1999-05-19 Air Products And Chemicals, Inc. Method and apparatus for precooling a mass prior to immersion in a cryogenic liquid
EP1355114A2 (en) * 2002-04-17 2003-10-22 Linde Aktiengesellschaft Cooling system for high-temperature superconductors
JP2010508666A (en) * 2006-10-31 2010-03-18 リンデ アクチエンゲゼルシヤフト Cooling method of superconducting magnet
CN113555181A (en) * 2021-06-15 2021-10-26 中国科学院合肥物质科学研究院 Forced flow circulating precooling system for superconducting magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916890A2 (en) * 1997-11-14 1999-05-19 Air Products And Chemicals, Inc. Method and apparatus for precooling a mass prior to immersion in a cryogenic liquid
EP0916890A3 (en) * 1997-11-14 2000-07-26 Air Products And Chemicals, Inc. Method and apparatus for precooling a mass prior to immersion in a cryogenic liquid
EP1355114A2 (en) * 2002-04-17 2003-10-22 Linde Aktiengesellschaft Cooling system for high-temperature superconductors
EP1355114A3 (en) * 2002-04-17 2005-03-09 Linde Aktiengesellschaft Cooling system for high-temperature superconductors
JP2010508666A (en) * 2006-10-31 2010-03-18 リンデ アクチエンゲゼルシヤフト Cooling method of superconducting magnet
CN113555181A (en) * 2021-06-15 2021-10-26 中国科学院合肥物质科学研究院 Forced flow circulating precooling system for superconducting magnet

Similar Documents

Publication Publication Date Title
EP0131652B1 (en) Condenser
US3882687A (en) Method of and apparatus for the cooling of an object
CA2136533A1 (en) Active Magnetic Regenerator Method and Apparatus
US3125863A (en) Dense gas helium refrigerator
US4819451A (en) Cryostatic device for cooling a detector
US3643754A (en) Apparatus for cooling a liquid
US5551244A (en) Hybrid thermoelectric/Joule-Thomson cryostat for cooling detectors
EP0305863B1 (en) Temperature testing device provided with sample-receiving chamber from which a specimen is easily detachable and in which temperature is controllable
JPS61214403A (en) Cryogenic apparatus
US3313117A (en) Dense gas helium refrigerator
US4077231A (en) Multistation refrigeration system
US3713305A (en) DEVICE FOR PRODUCING COLD AT TEMPERATURE LOWER THAN THAT OF lambda -POINT OF HELIUM
US3722581A (en) Heat exchanger with adjustable conduit transit size for carrier
US3782129A (en) Proportionate flow cryostat
JPS60178260A (en) Cryogenic refrigerator
JP2945806B2 (en) Pre-cooling device for refrigeration load installed in liquefaction refrigeration system
GB1150507A (en) Improvements in and relating to devices for Cooling a Fluid Medium
JPS6289305A (en) Superconducting magnet
JP2699533B2 (en) Refrigeration equipment
JPS63194163A (en) Cryogenic refrigerator
JPH06123508A (en) Refrigeration plant
JPH0571817A (en) Cooling device
Takeda et al. A liquid helium circulation system for biomagnetometers
GB1535235A (en) Cooling device
JP2707624B2 (en) Cryogenic refrigeration equipment