JPS61213647A - Detector for water leakage - Google Patents

Detector for water leakage

Info

Publication number
JPS61213647A
JPS61213647A JP5340285A JP5340285A JPS61213647A JP S61213647 A JPS61213647 A JP S61213647A JP 5340285 A JP5340285 A JP 5340285A JP 5340285 A JP5340285 A JP 5340285A JP S61213647 A JPS61213647 A JP S61213647A
Authority
JP
Japan
Prior art keywords
signal
circuit
water
time integral
integral value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5340285A
Other languages
Japanese (ja)
Other versions
JPH023933B2 (en
Inventor
Tadashi Saito
斎藤 粛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5340285A priority Critical patent/JPS61213647A/en
Publication of JPS61213647A publication Critical patent/JPS61213647A/en
Publication of JPH023933B2 publication Critical patent/JPH023933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Abstract

PURPOSE:To reduce a difference in the ability to detect water leak by providing a decision part which decides leakage of water from the time integral value of a water leak signal and a decision part which makes a decision from the ratio of a time integral value based upon a dark noise signal when there is no leakage of water. CONSTITUTION:A sensor 1, a waveform shaping circuit 2, a signal continuance integration circuit 3, a water leak decision circuit 5, etc., are provided. Then, oscillation caused by a water leaking sound, noise, etc., detected by the sensor 1 is converted into an electric signal, which is inputted to the circuit 2. The circuit 2 amplifies the electric signal from the sensor 1 and performs waveform shaping so that a signal significant as a water leak signal has a high level and an insignificant signal has a low level. The circuit 3 integrates the time when the input signal has the high level and outputs a time integral value T. Further, the circuit 5 stores the time integral value when there is no water leakage and outputs a decision signal indicating a leakage of water only when the ratio of the integral value T to the time integral value or the integral value T is larger than a set decision reference value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水道管からの水漏れを検出する漏水検出袋wL
4ニ関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a water leakage detection bag wL for detecting water leakage from water pipes.
Regarding 4th.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

浄水場、または配水池からv141家まで配水される途
中の配水管および給水管から漏−れる漏水量は現在、全
配水量の10allニなってお夛、これ(=よる損失を
金#L(:換算すると、1−IrLa当りの上水コスト
を100円として1年当シ約2,0001円にも達する
。漏水量を補うために新規に水源を開発するにはさら(
=美大な資金を必要とする。従って、漏水の発生を速や
か4=知り、漏水量を抑制することが急務とされるが、
大部分の漏水は地中で元生する丸め、これを地上から発
見することは困難である。
The amount of water leaking from the water distribution pipes and water supply pipes on the way from the water treatment plant or water distribution reservoir to the v141 homes is currently 10all of the total amount of water distributed, and the loss due to this is calculated as follows: :If converted, if the water cost per 1-IrLa is 100 yen, it will amount to about 2,0001 yen per year.
=Requires a large amount of funds. Therefore, it is urgent to know the occurrence of water leakage as soon as possible and to control the amount of water leakage.
Most leaks occur underground and are difficult to detect from above ground.

従来、夫用C;供されている代懺的な地下漏水検出法(
;音響棒C;よる方法がある。これは音響棒をV路が埋
設されている地上に当てるか、ボーリングした穴を通し
て直接埋設管路(=これを接触させるか、めるいは消火
栓、量水器などの地上へ露出している部分へこれを接触
させて、音響棒から伝わる逗動音を機械的、又は4気的
(=増幅し、ヘッドホーンを通して調査員が耳で聴くこ
と(=より漏水の有無を判断する方法である。しかし、
この方法では、漏水音とその他の雑音を区別するための
熟練技術を要すること、また、この技術を有する調査員
が全市街地を巡回するためζ二は膨大な労力と時間を要
するため、漏水個所の発見が遅々として進まない等の問
題がある。
Traditionally, conventional underground water leakage detection methods have been provided (
There is a method using sound rod C; This can be done by applying a sound rod to the ground where the V-way is buried, or directly contacting the buried pipe (= this) through a bored hole, or by directly contacting the buried pipe (= this) with the part exposed above the ground such as a fire hydrant or water meter. This is a method of determining the presence or absence of water leaks by bringing the sound rod into contact with the sound rod, mechanically or mechanically amplifying the sound, and having the investigator listen to it through headphones. but,
This method requires skilled techniques to distinguish between water leak sounds and other noises, and requires a huge amount of labor and time as surveyors with this technique patrol the entire city area. There are problems such as slow progress in discovery.

このため、漏水発見の自動化を目指して近時試用が開始
された相関式漏水発見装置が開発されている。これは2
1tl所の消火@ζ二取付けた振動上ンサからの信号の
相互相関をとることによって、漏水位置を決定しようと
するものである。しかじ、これ1:は次の欠点がある。
For this reason, a correlated water leak detection device, which has recently been put into trial use, has been developed with the aim of automating water leak detection. This is 2
The water leak location is determined by cross-correlating the signals from the vibrating sensors installed at the fire extinguisher at the 1 tl location. However, this 1: has the following drawbacks.

第一に調査区間の電路の分岐、管の材質、管の長さのデ
ータが正確1:分っていなければならないこと、第二4
二、2個所のセンナ間に管路の分岐がある場合、分岐f
については別途調査しなければならないこと、第三に、
熟練技術を要さないが、市内を巡回点検する必要がある
ため、漏水の早期発見侍は限界がるること、などである
First, the data on the branching of the electric circuit, pipe material, and pipe length in the survey section must be known accurately.
2. If there is a branch of the pipe between two senna locations, the branch f
Thirdly, there is a need to investigate separately.
Although it does not require any specialized skills, it requires patrolling the city for inspections, which limits the ability of samurai to detect water leaks early.

現在、漏水件数はその約90 Toが配水管からの分岐
個所を含めて需要家へ引き込まれる給水管で占められて
いるので、漏水検出装置を各需要家の給水yt二固定設
置することζ二よって、需要家周辺の漏水を早期発見す
ることができる。
Currently, approximately 90 of the water leaks occur in the water supply pipes leading to customers, including branch points from the distribution pipes, so it is necessary to permanently install a water leak detection device at each customer's water supply. Therefore, water leakage around the customer can be detected early.

とのような漏水検出装置は発明者らの研究4二よって開
発されている。即ち、一旦発生した漏水は修理されない
限り継続して発生し、自然復旧することは有り得ない。
A water leakage detection device such as this has been developed through research conducted by the inventors. In other words, once a water leak occurs, unless it is repaired, it will continue to occur and will never recover naturally.

一方線音源である水道の水使用量は水を使用する時にの
み雑音を発生することが明白であり、その他の外部雑音
源も連続して発生することはきわめて少ない。この基本
的現象の違いを利用して漏水と漏水以外の原因による信
号を区別するものである。
On the other hand, it is clear that water consumption from tap water, which is a line sound source, generates noise only when water is used, and it is extremely rare for other external noise sources to occur continuously. This difference in basic phenomena is used to distinguish between water leaks and signals caused by causes other than water leaks.

この種の装置としては、例えば、特開昭59−1951
39号公報が知られている。この装置はセンナで検出さ
れた漏水音および雑音、または漏水による振動および雑
音(=よる振動は電気信号≦二変換されて波形整形回路
へ入力される。波形整形回路ではセンナからの電気信号
の増幅、周波aによるフィルタリング、および波高11
[1−よる弁別などが行われ、漏水信号として有意な信
号を例えば高レベル(;、有意でない信号を低レベルに
波形廠形する。
As this type of device, for example, Japanese Patent Application Laid-Open No. 59-1951
Publication No. 39 is known. This device uses water leakage sounds and noises detected by the senna, or vibrations and noises caused by water leakage (=vibrations caused by water leakage) to be converted into electrical signals and input to the waveform shaping circuit.The waveform shaping circuit amplifies the electrical signals from the senna. , filtering by frequency a, and wave height 11
Discrimination based on [1-] is performed, and a signal significant as a water leakage signal is waveformed to a high level (; and an insignificant signal is waveformed to a low level.

信号継続時間積分回路は入力信号が高レベルの時間を積
分−して時間積分信号を出力する。漏水判定回路は信号
継続時間積分回路で積分された時間が予め設定した判定
基準を越えた場合にのみ漏水量りの判定信号を出力する
回路である。
The signal duration integration circuit integrates the time during which the input signal is at a high level and outputs a time-integrated signal. The water leak determination circuit is a circuit that outputs a water leak measurement determination signal only when the time integrated by the signal duration integration circuit exceeds a preset determination criterion.

ところが、雑音信号レベルは場所!=よる違いが大きい
ため、漏水がない状態での時間積分信号に個体差が生じ
る。すなわち、雑音信号レベルが高い場所(=設置され
る漏水検出装置では、判定基準を高くし、雑音信号レベ
ルが低い場所に設置される装置では判定基準を低くする
必要がある。もし、判定基準を一定11i[にすると、
場所に上って検出が可能な漏水信号レベル(=違いを生
じる。
However, the noise signal level depends on the location! = Since the difference is large, individual differences occur in the time-integrated signal when there is no water leakage. In other words, it is necessary to set a high judgment standard for a water leak detection device installed in a place where the noise signal level is high, and a low judgment standard for a device installed in a place where the noise signal level is low. For a constant 11i[,
Water leakage signal level that can be detected by reaching a location (= making a difference).

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題点シニ鑑みてなされたもので、
場所による漏水検出能力の差を減少させることが可能な
漏水検出装置を提供することを目的とする。
The present invention was made in view of these problems.
It is an object of the present invention to provide a water leakage detection device that can reduce differences in water leakage detection ability depending on location.

〔発明の概要〕[Summary of the invention]

本発明は時間積分値の大きさをもって判定する第一の判
定部と、漏水がない状態の暗雑音信号(=よる時間積分
値との比率または差の−大きさをもって判定する第二の
判定部を備えること(=よって、設置場所の暗雑音の大
きさに左右されず、常にはぼ一定規模の漏水を検出する
ことができるものである。
The present invention includes a first determining section that makes a determination based on the magnitude of a time integral value, and a second determining section that makes a determination based on the -magnitude of the ratio or difference between the background noise signal in a state where there is no water leakage (= the time integral value). Therefore, it is possible to always detect water leaks of a constant size, regardless of the level of background noise at the installation location.

即ち、本発明は水道管やこれ(=付属する機器からの漏
水−よって発生する音圧変動および管壁などの振動を検
知するセンナと、このセンナの出力を入力し所定の波高
値信号に整形する波形整形回路と、この波形整形回路の
出力を所定の時間だけ信号の継続時間を積分する信号継
続時間積分回路と、積分値の大きさと設定された判定基
準値とを比較して雑音と漏水音の区別を行う漏水判定回
路とから成る漏水検出装置である。
That is, the present invention includes a sensor that detects sound pressure fluctuations and vibrations of pipe walls caused by water pipes and associated equipment, and a sensor that inputs the output of this sensor and shapes it into a predetermined peak value signal. A signal duration integration circuit that integrates the signal duration of the output of the waveform shaping circuit for a predetermined period of time, and compares the magnitude of the integrated value with a set judgment reference value to detect noise and water leakage. This is a water leak detection device consisting of a water leak determination circuit that distinguishes between sounds.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例について説明する。1P11図及び
第6図は次の各構成要素からなる漏水検出装置を示して
いる。
Next, examples of the present invention will be described. Figure 1P11 and Figure 6 show a water leakage detection device consisting of the following components.

(イ)水道管又は水道管に付属する機器からの漏水によ
って発生する音圧変動又は管壁の振動を検知して電気信
号(;変換するセンサl(ロ )センサ1の電気1に号1aを所定の波高値信号25a
に増幅する増幅回路6と、増幅された波高値信号25a
のうちの土成分を通過させる帯域通過フィルタあと、帯
域通過フィルタ怒を通過した間流4気信号26aのうち
の負信号を正信号(=変換する絶対1直増幅回w!r2
7と、絶対値増幅回路nから出力された変換信号のうち
予め定められ九判定基準峨圧Erと比較して判定基準螺
圧Er以上の変換信′号のみを出力する比較回wロ8と
からなる波形整形回路2 (ハ)波形整形回路2の出力の備考継続時間をディジタ
ル化する回路41と、ディジタル化した出力パノシス列
を予め定め九時間だけ計数するカクンタ43と、予め整
定された時刻砿二槓分開始信号INI、積分終了(F1
号lN01判定夾施信号及び前記針数回路の復#信号を
出力するタイミング回@44とからなる信号lB続待時
間積分回路(→信号継続時間積分回路3によって測定さ
れた時間積分11T及び予め設定され九定数01とを比
較判定して判定信号DIを出力するステップ52と、漏
水有りの測定回数Nb (;1を加えるステップ57と
、時間積分値Tを漏水有りの累積時間積分メモリBに加
えるステップ詔と、累積時間積分メモリBを測定回数N
bで割算して漏水有りの状態の時間積分値llIbを更
新するステップ59とからなる漏水判定回路5 即ち、セン?1で検出された漏水音および雑音。
(b) A sensor that detects sound pressure fluctuations or pipe wall vibrations caused by water leakage from water pipes or equipment attached to the water pipes and converts them into electrical signals. Predetermined peak value signal 25a
an amplification circuit 6 that amplifies the peak value signal 25a;
A band-pass filter passes the earth component of the filter. Then, the negative signal of the intercurrent 4-air signal 26a that has passed through the band-pass filter is converted into a positive signal (=absolute 1-direction amplification circuit w!r2
7, and a comparison circuit W 8 which compares the converted signals outputted from the absolute value amplification circuit n with a predetermined 9 judgment reference pressure Er and outputs only the converted signal ' which is equal to or higher than the judgment reference pressure Er. A waveform shaping circuit 2 consisting of (c) a circuit 41 that digitizes the duration of the output of the waveform shaping circuit 2, a kakunta 43 that counts the digitized output panosis sequence for a predetermined period of nine hours, and a preset time. Integration start signal INI, integration end (F1
Signal IB continuation time integration circuit (→ time integration 11T measured by signal continuation time integration circuit 3 and preset A step 52 of comparing and determining the result with the nine constant 01 and outputting a judgment signal DI, a step 57 of adding the number of measurements Nb (;1) indicating that there is a water leak, and adding the time integral value T to the cumulative time integral memory B of the presence of a water leak. Step edict and cumulative time integral memory B are measured N
The water leakage determination circuit 5 comprises a step 59 of updating the time integral value llIb in the state of water leakage by dividing by b. Water leak sound and noise detected in 1.

または漏水による振動および雑音鴫;よる振動は一気信
号4;変換されて波形!1形回路2へ入力される。
Or the vibration and noise caused by water leakage; the vibration caused by it is a signal 4; it is converted into a waveform! It is input to type 1 circuit 2.

波形贅形回$2ではセンサ1からの一気信号の増幅、周
波a4;よるフィルタリング、および波高1直による弁
別などが行なわれ、例えば漏水信号として有意な信号を
高レベル(=、有意でない信号を低しベ/E/C波形櫨
形する。信号継続時間積分−43は入力信号が高レベル
の時間を積分して時間積分値Tを出力する。通常、内蔵
されている時計回路によって、床夜の雑音が少ない時間
帯(2181回測定する。改良形の漏水判定画lI!5
は漏水がない状態での時間積分値T、を記憶しておき、
時間積分値Tの時間積分値T、に対する比、または時間
積分値Tがそれぞれ設定された判定基準値より大きいと
きに限って漏水有りの判定信号を出力する回路である。
In waveform round $2, the signal from sensor 1 is amplified, filtered by frequency a4, and discriminated by wave height 1. For example, a significant signal as a water leakage signal is set to a high level (=, an insignificant signal is The low Be/E/C waveform is square-shaped.The signal duration integral 43 integrates the time when the input signal is at a high level and outputs the time integral value T.Usually, a built-in clock circuit Time period when noise is low (measured 2181 times. Improved water leak detection image I!5
Store the time integral value T when there is no water leakage,
This is a circuit that outputs a water leak determination signal only when the ratio of the time integral value T to the time integral value T, or the time integral value T is larger than a respective set determination reference value.

以下(=これらの構成について詳細≦二連べる。センt
1は音響信号または振#口よる優位、速度、加速度など
を電気信号R洪する変換器である。
The following (=Details about these configurations≦2 series.St.
Reference numeral 1 denotes a converter that converts an acoustic signal or vibration, speed, acceleration, etc. into an electrical signal.

第2図は波形整形回路2の実施例の構成図である。増幅
回路δはセンサ1からの一気信号を増幅し、例えば、低
域!M周周数数kHz、高域遮断周波数10 k出の帯
域通過フィルタ26によりて信号生成分を通過させる。
FIG. 2 is a configuration diagram of an embodiment of the waveform shaping circuit 2. In FIG. The amplifier circuit δ amplifies the signal from the sensor 1, for example, the low frequency! The generated signal is passed through a band-pass filter 26 having M frequencies of kHz and a high cutoff frequency of 10 k.

この交流−気信号は絶対値増幅回971i;よって負信
号は正信号に変換され、比較回路28−人力される。比
較回路囚は判定基準−比+Er以上の入力信号のみを一
定也圧信号に変換して出力する。
This alternating current signal is converted into an absolute value amplification circuit 971i; therefore, a negative signal is converted into a positive signal and inputted to the comparison circuit 28. The comparator circuit converts only input signals that are equal to or greater than the judgment criterion-ratio+Er into a constant pressure signal and outputs the signal.

II&3図は1/&1図の中の信号継続時間積分回路3
の一実施例を示すものである。パルス発振回路菊の周波
数は波形整形回路2(=含まれるフィルタの高域遮断周
波数の数倍以上とし、分解能を確保する。タイミング回
11&4はタイマをδ蔵し、設定され九時刻C;積分開
始信号INI、積分終了信号INO。
Figures II & 3 are the signal duration integration circuit 3 in Figures 1/&1.
This shows an example of this. The frequency of the pulse oscillation circuit Kiku is several times higher than the high-frequency cutoff frequency of the waveform shaping circuit 2 (= the included filter) to ensure resolution. Timing circuits 11 & 4 contain timers δ and are set. 9 time C: Integration starts Signal INI, integration end signal INO.

判定実施信号DIO、カウンタ43のリセット信号R8
などの一連の指令信号を発生する機能をもっている。こ
れらの信号は通常は1日周期で発生し、例えば、深夜の
0時に積分開始信号INIが、午前4時に積分終了信号
INOが出るように設定される。
Judgment execution signal DIO, reset signal R8 of counter 43
It has the function of generating a series of command signals such as. These signals are normally generated on a daily basis, and are set, for example, so that the integration start signal INI is output at midnight and the integration end signal INO is output at 4 a.m.

記憶回路6は積分開始信号INIがら積分終了信号IN
Oまでの間、論理11″の状態を保持し、アンドゲート
41(=よってパルスとの論理積をと]、アンド7−)
42ヘパルスを供給する。アンドゲート42はアンドゲ
ート41の出力パルスと波形整形回路2の出力信号の論
理積なとることによって、波形整形回路2の出力信号継
続時間をディジタル化する。カウンタ43はアンドゲー
ト42の出力パルス列を計数すること(=よって、積分
開始信号INIが発生してから積分終了信号INOが発
生するまでの波形整形回路出力信号の時間積分を行う。
The storage circuit 6 stores integration start signal INI to integration end signal IN.
The state of logic 11'' is maintained until O, and the AND gate 41 (=therefore, logical product with the pulse], AND7-)
42 pulses are supplied. The AND gate 42 digitizes the output signal duration of the waveform shaping circuit 2 by performing the logical product of the output pulse of the AND gate 41 and the output signal of the waveform shaping circuit 2. The counter 43 counts the output pulse train of the AND gate 42 (=Therefore, it performs time integration of the waveform shaping circuit output signal from the generation of the integration start signal INI until the generation of the integration end signal INO.

第4図は漏水判定回路5の演算70−チャートで6る。FIG. 4 is a chart showing the operation 70 of the water leakage determination circuit 5.

信号継続時間積分回路3からの判定実施信号DIOを受
け、以下の手順で漏水有り、sしの判定をする。
Upon receiving the determination execution signal DIO from the signal duration integration circuit 3, it is determined whether there is a water leak or not in accordance with the following procedure.

ステップ51では今回測定された時間積分値Tが予め設
定された定数01よ)大きい場合に、漏水有りと判定し
、判定信号DIを出力する。
In step 51, if the time integral value T measured this time is larger than the preset constant 01, it is determined that there is a water leak, and a determination signal DI is output.

ステップ52に於て、漏水なしの測定回aN、=00場
合(使用開始時CN、 W O−するので第一回目の測
定時ンは、漏水がない状態での時間積分値T、の値が未
知であるからステップ53を飛ばす。
In step 52, if the number of measurements without water leakage is aN, = 00 (CN at the start of use, WO-, so at the first measurement time, the value of the time integral value T when there is no water leakage is Since it is unknown, step 53 is skipped.

ステップ団に於て、漏水がない状態での時間積分[T、
+一対する今回測定された時間積分値Tの比率が予め設
定された定数C2よシ大きい場合(T/T、>02) 
 に、漏水有9と判定し、判定信号D2を出力する。
In the step group, time integral [T,
+If the ratio of the currently measured time integral value T to one is larger than the preset constant C2 (T/T, >02)
Then, it is determined that there is water leakage 9, and a determination signal D2 is output.

ステップ54に於て、漏水なしの測定回数N−二1を加
える。
In step 54, the number of measurements without water leakage (N-21) is added.

ステップ55に於て、今回測定され九時間積分値Tt4
水なしの累積時間積分メモIJAに加える。
In step 55, the nine-hour integral value Tt4 measured this time is
Add to cumulative time integral memo IJA without water.

ステップ56に於て、ステップ斗で得られた累積時間積
分メモリAを測定回数N、で割って漏水がない状態の時
間積分11T、を更新する。
In step 56, the cumulative time integral memory A obtained in step 2 is divided by the number of measurements N, to update the time integral 11T in a state where there is no water leakage.

ステップ574二於て、漏水有りの測定回数Nbに1を
加える。
In step 5742, 1 is added to the number of measurements Nb indicating water leakage.

ステップ5Bに於て、今回測定された時間積分値Tを漏
水有夛の累積時間積分メモIjB(=加える。
In step 5B, the time integral value T measured this time is added to the cumulative time integral memo IjB (==of leakage).

ステップ59C:於て、ステップ絽で得られた累積時間
積分メモyBを測定回数Nbで割って漏水有りの状態の
時間積分tTbを更新する。
Step 59C: The cumulative time integral memo yB obtained in step 5 is divided by the number of measurements Nb to update the time integral tTb in the state where there is water leakage.

上記判定信号D1は漏水故障が除々(=成長し、時間積
分信号が漸増する場合Cは時間積分値はT。
The above judgment signal D1 indicates that the water leakage failure is gradually (=growing) and the time integral signal is gradually increasing.C means that the time integral value is T.

も漸増するため、ステップ53の判定では見逃がす恐れ
がるるため(=必賛なものである。
Since the value gradually increases, there is a risk that the determination in step 53 will miss the value (= must be approved).

以上の機能を満す回路はマイクロコンピュータとROM
g=よって容易に実現が可能でるる。
The circuit that fulfills the above functions is a microcomputer and ROM.
g = Therefore, it can be easily realized.

tた、ステップ53における判定基準T/T、>C2の
代り6二T−T、>C2なる判定基準とすることもでき
る。
In addition, instead of the determination criterion T/T, >C2 in step 53, the determination criterion 62T-T, >C2 may be used.

測定回数N−、Nbは本装置の取付後に、外部よりリセ
ット信号R8Tでリセットする。改良形漏水判定回路5
をマイクロコンピュータで構成するととによって、判定
信号Di、D2が出された回数な記憶すること、タイミ
ング回路44り;内蔵されるタイマから読取った年月日
を判定信号DI、D2と関連付けて記憶すること、本装
置の取付年月日を記憶すること、これら記憶内容の続出
しなども容易ζ:できる。出力端子Pは続出された内容
を表示器に出力したり、伝送回路を通して嵯話回腺へ出
力するためのものである。
The number of measurements N- and Nb are reset by an external reset signal R8T after this device is installed. Improved water leakage determination circuit 5
By using a microcomputer, the timing circuit 44 stores the number of times the determination signals Di, D2 are issued; the timing circuit 44 stores the date read from the built-in timer in association with the determination signals DI, D2. In addition, it is easy to memorize the installation date of this device, and to continue to store these stored contents. The output terminal P is used to output the successively outputted contents to a display device or to the voice communication gland through a transmission circuit.

第5図のaは帯域通過フィルタの出力信号波形の一例、
bは絶対値増幅回路の出力信号波形の一例で、Cは判定
基準電圧+Erよシも信号が大きいときに高レベルにな
る比較回路の出力信号波形で、波形整形回路2の出力信
号になる。
5a is an example of the output signal waveform of the bandpass filter,
b is an example of the output signal waveform of the absolute value amplification circuit, and C is the output signal waveform of the comparator circuit that becomes high level when the signal is larger than the determination reference voltage +Er, and is the output signal of the waveform shaping circuit 2.

dはアンドゲート42の出力パルス列で、波形整形回路
2の出力信号のへイレペル期間(=比例したパルス数と
なっている。・は積分開始信号INI、fは積分終了信
号lN01gは記憶回路45の縮埋@ビの状態を示す積
分期間信号、hは判定実施信号DIOで積分終了信号I
NOの後に出され、漏水判定回路5を動作させるための
ものである。リセット信号R8はさらζ:この後≦二出
されて、カウンタ43をイニシャライズするの口側われ
る。
d is the output pulse train of the AND gate 42, and the output signal period of the waveform shaping circuit 2 is proportional to the number of pulses. ・ is the integration start signal INI, and f is the integration end signal lN01g is the output signal of the memory circuit 45. Integration period signal indicating the state of compression@bi, h is the judgment execution signal DIO and the integration end signal I
It is issued after NO and is used to operate the water leakage determination circuit 5. The reset signal R8 is further outputted by ζ≦2, and the counter 43 is initialized.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、漏水検出装置を設置する
場所の暗雑音またはlit振動の大きさく=よらず、常
にはぼ一定規模の漏水を検出することができる。また、
腐食や亀裂の成長に伴って除々−増加する漏水も検出す
ることができる。
As described above, according to the present invention, it is possible to always detect water leaks of a constant size, regardless of the magnitude of background noise or lit vibration at the location where the water leak detection device is installed. Also,
It is also possible to detect water leakage that gradually increases as corrosion and cracks grow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一拠施例な示す漏水検出装置の構成図
、第2図は波形整形回路の構成図、第3図は信号時間積
分回路の構成図、第4図は漏水判定回路の動作を示すフ
ロー説明図、第5図は本発明の動作を示す構成6sの波
形説明図である。 1・・・センサ     2・・・波形整形回路3・・
・信号継続時間積分回路 5・・・漏水判定回路 代理人 弁理士 則 近 m  6(ほか1名)第  
1 図 第  2 図 第3図 第 4図 時呵 第  5 図
Fig. 1 is a block diagram of a water leakage detection device according to an embodiment of the present invention, Fig. 2 is a block diagram of a waveform shaping circuit, Fig. 3 is a block diagram of a signal time integration circuit, and Fig. 4 is a water leakage determination circuit. FIG. 5 is a flow explanatory diagram showing the operation of the present invention, and FIG. 5 is a waveform explanatory diagram of the configuration 6s showing the operation of the present invention. 1...Sensor 2...Waveform shaping circuit 3...
・Signal duration integration circuit 5...Water leakage determination circuit agent Patent attorney Nori Chika m 6 (and 1 other person) No.
1 Figure 2 Figure 3 Figure 4 Timetable Figure 5

Claims (1)

【特許請求の範囲】 次の各構成要素からなる、漏水検出装置。 (イ)水道管又は水道管に付属する機器からの漏水によ
つて発生する音圧変動又は管壁の振動を検知して電気信
号に変換する検出器 (ロ)この検出器の電気信号を所定の波高値信号に増幅
する増幅回路と、増幅された波高値信号のうちの主成分
を通過させる帯域通過フィルタと、この帯域通過フィル
タを通過した交流電気信号のうちの負信号を正信号に変
換する絶対値増幅回路と、この絶対値増幅回路から出力
された変換信号のうち予め定められた判定基準電圧と比
較してこの判定基準電圧以上の変換信号のみを出力する
比較回路とからなる波形整形回路 (ハ)この波形整形回路の出力の信号継続時間をディジ
タル化する回路と、このディジタル化した出力パルス列
を予め定めた時間だけ計数する計数回路と、予め整定さ
れた時刻に積分開始信号、積分終了信号、判定実施信号
及び前記計数回路の復帰信号を出力するタイミング回路
とからなる信号継続時間積分回路 (ニ)この信号継続時間積分回路によつて測定された時
間積分値及び予め設定された定数とを比較判定して判定
信号を出力する判定回路と、漏水有りの測定回数に1を
加える第1の加算回路と、前記時間積分値を漏水有りの
累積時間積分メモリに加える第2の加算回路と、この累
積時間積分メモリを前記測定回数で割算して漏水有りの
状態の時間積分値を更新する更新回路とからなる漏水判
定回路
[Claims] A water leakage detection device comprising the following components. (b) A detector that detects sound pressure fluctuations or pipe wall vibrations caused by water leakage from water pipes or equipment attached to water pipes and converts them into electrical signals. (b) The electrical signals of this detector are converted into electrical signals. an amplification circuit that amplifies the peak value signal, a bandpass filter that passes the main component of the amplified peak value signal, and a negative signal of the AC electrical signal that has passed through this bandpass filter that converts into a positive signal. and a comparison circuit that compares the converted signals output from the absolute value amplified circuit with a predetermined judgment reference voltage and outputs only converted signals that are equal to or higher than this judgment reference voltage. Circuit (c) A circuit that digitizes the signal duration of the output of this waveform shaping circuit, a counting circuit that counts this digitized output pulse train for a predetermined time, and an integration start signal and an integration circuit at a predetermined time. a signal duration integration circuit comprising a timing circuit that outputs an end signal, a determination execution signal, and a return signal for the counting circuit; (d) a time integral value measured by this signal duration integration circuit and a preset constant; a determination circuit that compares and determines and outputs a determination signal; a first addition circuit that adds 1 to the number of times water leakage has been measured; and a second addition circuit that adds the time integral value to a water leakage cumulative time integral memory. and an update circuit that divides this cumulative time integral memory by the number of measurements to update the time integral value in a state where there is a water leak.
JP5340285A 1985-03-19 1985-03-19 Detector for water leakage Granted JPS61213647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5340285A JPS61213647A (en) 1985-03-19 1985-03-19 Detector for water leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5340285A JPS61213647A (en) 1985-03-19 1985-03-19 Detector for water leakage

Publications (2)

Publication Number Publication Date
JPS61213647A true JPS61213647A (en) 1986-09-22
JPH023933B2 JPH023933B2 (en) 1990-01-25

Family

ID=12941832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5340285A Granted JPS61213647A (en) 1985-03-19 1985-03-19 Detector for water leakage

Country Status (1)

Country Link
JP (1) JPS61213647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958296A (en) * 1987-07-22 1990-09-18 Kabushiki Kaisha Toshiba Water-leakage detecting apparatus and method which are little influenced by noise
JP2006317172A (en) * 2005-05-10 2006-11-24 Toshiba Corp Water leakage detector
JP2006349572A (en) * 2005-06-17 2006-12-28 Toshiba Corp Water leakage determining device and method
JP6325147B1 (en) * 2017-04-28 2018-05-16 日本水道管路株式会社 Threshold setting method, water leakage monitoring device and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958296A (en) * 1987-07-22 1990-09-18 Kabushiki Kaisha Toshiba Water-leakage detecting apparatus and method which are little influenced by noise
JP2006317172A (en) * 2005-05-10 2006-11-24 Toshiba Corp Water leakage detector
JP2006349572A (en) * 2005-06-17 2006-12-28 Toshiba Corp Water leakage determining device and method
JP6325147B1 (en) * 2017-04-28 2018-05-16 日本水道管路株式会社 Threshold setting method, water leakage monitoring device and program

Also Published As

Publication number Publication date
JPH023933B2 (en) 1990-01-25

Similar Documents

Publication Publication Date Title
JPH052934B2 (en)
US6561032B1 (en) Non-destructive measurement of pipe wall thickness
EP0940666A3 (en) Acoustically detecting leaks in pipes
JPH0472537A (en) Abnormality monitor for piping
Watanabe et al. Detection and location of a leak in a gas‐transport pipeline by a new acoustic method
EP0733892B1 (en) Method of testing pipes for leakage and leakage testing device
Cole Methods of leak detection: an overview
JPS61213647A (en) Detector for water leakage
US5031446A (en) Water leakage position estimating system
JPS59195139A (en) Water leakage detector
JPH0772705B2 (en) Leakage and leak position detector
US4372151A (en) Automatic fault locating apparatus for a pressurized pipeline
JPH1078371A (en) Liquid leakage detecting method and liquid leakage detector
JP2511105B2 (en) Leakage position detector
JP2815625B2 (en) How to detect leaks inside the valve
Watanabe et al. Location of pinholes in a pipeline
JPS6255539A (en) Water leak detecting device
JPH01199131A (en) Water-leakage detector
Hunaidi et al. Detecting leaks in water distribution pipes
JPH023934B2 (en)
EP0300460A1 (en) Apparatus for detecting presence/absence of water leakage from water pipe
JP4127976B2 (en) Gas leak detection method
JPS59150320A (en) Water leak detecting apparatus
JP3144971B2 (en) Water leak detection device
JPH01119732A (en) Hydrostat

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term