JPS61213594A - Extractor for noncondensing gas of condenser - Google Patents

Extractor for noncondensing gas of condenser

Info

Publication number
JPS61213594A
JPS61213594A JP5700485A JP5700485A JPS61213594A JP S61213594 A JPS61213594 A JP S61213594A JP 5700485 A JP5700485 A JP 5700485A JP 5700485 A JP5700485 A JP 5700485A JP S61213594 A JPS61213594 A JP S61213594A
Authority
JP
Japan
Prior art keywords
vacuum
cooling water
condenser
water
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5700485A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kizawa
木沢 良弘
Shotaro Inagaki
稲垣 正太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5700485A priority Critical patent/JPS61213594A/en
Publication of JPS61213594A publication Critical patent/JPS61213594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To maintain a high degree of vacuum even if a cooling water temperature varies in a comperatively wider range by a method wherein a plural number of ejectors having individually different characteristics are arranged in a parallel, besides they are individually connected to a water sealed vacuum pump in a series, which are used individually as a selective system in accordance with the temperature variation of the cooling water. CONSTITUTION:Air ejectors 3, 31 having different types of characteristic properties in suction vacuum rate and also in suction volume rate, are installed at a parallel position, and the respective ejectors are connected in a series to a water-sealed vacuum pump 2. And by the use of the temperature detector 9 for detecting a cooling water temperature, a selective switch 10 permit to actuate for opening and closing operating valves 6, 61, then either ejector 3 or 31 is connected in series to the water-sealed type vacuum pump 2. With this layout, the series operation with the individual ejector and the above pump 2 become in a stable situation, therefore, it is possible to maintain the predetermined degree of vacuum in the condenser 1 within a wider range of the cooling water temperature, as well as to prevent a pump operating efficiency from lowering down and similarly to prevent the pump operation from generating cavitation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は冷却水の通流により不凝縮性ガスを含む蒸気を
冷却凝縮して復水にする復水器内の不凝縮性ガスを抽出
する復水器の不凝縮性ガス抽出装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention extracts non-condensable gas in a condenser by cooling and condensing steam containing non-condensable gas by flowing cooling water. This invention relates to a non-condensable gas extraction device for a condenser.

〔従来技術とその問題点〕[Prior art and its problems]

冷却水を通流して不凝縮性ガスを含む蒸気を冷却凝縮し
て復水にする復水器、例えば蒸気タービンの復水器に詔
いてその排気蒸気を復水にして所定の真空度を得る際、
排気蒸気に含まれる不凝縮性ガスを復水器内から抽出す
るために従来不凝縮性ガスとしての空気により駆動され
るエゼクタと水封式真空ポンプとを直列に配した装置を
使用している。以下図面を用いて従来技術について説明
する。
A condenser that cools and condenses steam containing noncondensable gases by passing cooling water through it, such as a steam turbine condenser, and condenses the exhaust steam to achieve a predetermined degree of vacuum. edge,
Conventionally, in order to extract the non-condensable gas contained in the exhaust steam from inside the condenser, a device is used in which an ejector driven by air as the non-condensable gas and a water ring vacuum pump are arranged in series. . The prior art will be described below with reference to the drawings.

第3図は従来の復水器の不凝縮性ガス抽出装置の系統図
である。第3図において復水器1には冷却水を復水器1
内に通流させる入口冷却水管加と出口冷却水管2工が設
けられており、冷却水管銀。
FIG. 3 is a system diagram of a conventional condenser noncondensable gas extraction device. In Figure 3, cooling water is supplied to condenser 1.
An inlet cooling water pipe and two outlet cooling water pipes are installed to allow water to flow into the interior, and the cooling water pipe is silver.

21を通流する冷却水により復水器1内に流入する不凝
縮性ガスとしての空気を含む蒸気タービンの排気蒸気は
冷却凝縮されて復水になり、図示しない管路により復水
器1の外部に排出される。
Exhaust steam of the steam turbine containing air as a non-condensable gas flows into the condenser 1 by the cooling water flowing through the cooling water 21, and is cooled and condensed to condensate. It is discharged to the outside.

復水器1内の空気は蒸気を随伴して、空気により駆動さ
れるエゼクタ3(以下空気エゼクタという)により管路
るを通って空気エゼクタ3により圧縮され排出口3bか
ら排出され水封式真空ポンプ2に導かれる。この際セパ
レータ4にて分離された空気が作動弁6を備えた管路ス
を通りて空気エゼクタ3に駆動用空気として供給される
。空気エゼクタ3の排気は管路nを通って水封式真空ポ
ンプ2の吸込口2aに流入し、圧縮されて大気圧となっ
て排出され管路nを通ってセパレータ4に流入する。水
封式真空ポンプ2の水封に使用される冷却水は温度上昇
して水封式真空ポンプ2の排気とともにセパレータ4に
流入し、セパレータ4にて空気と温水とに分離され温水
は底部に貯留される。
The air in the condenser 1 is accompanied by steam, passes through a pipe line by an air-driven ejector 3 (hereinafter referred to as an air ejector), is compressed by the air ejector 3, and is discharged from an outlet 3b, creating a water seal vacuum. guided to pump 2. At this time, the air separated by the separator 4 passes through a conduit provided with an operating valve 6 and is supplied to the air ejector 3 as driving air. The exhaust gas from the air ejector 3 flows into the suction port 2a of the water ring vacuum pump 2 through a pipe n, is compressed to atmospheric pressure, is discharged, and flows into the separator 4 through a pipe n. The cooling water used for the water seal of the water ring vacuum pump 2 rises in temperature and flows into the separator 4 together with the exhaust of the water ring vacuum pump 2.The separator 4 separates the water into air and hot water, and the hot water flows to the bottom. stored.

この温水は管路スを通って冷却器7により冷却水管頒、
21から分岐した冷却水管路20a121Jを通流する
冷却水により冷却され、管路5を通って再び水封式真空
ポンプ2の水封のための冷却水として通流する。
This hot water passes through a conduit and is distributed to cooling water pipes by a cooler 7.
It is cooled by the cooling water flowing through the cooling water pipe 20a121J branched from 21, and flows through the pipe 5 again as cooling water for the water seal of the water ring vacuum pump 2.

復水器1の内圧が大気圧でより、この状態から復水器内
を真空にするとき、例えば蒸気タービン起動時には作動
弁6を閉にして空気エゼクタ3を駆動させずに空気エゼ
クタ3をバイパスする管路易に設けられたバイパス弁5
を開にして水封式真空ポンプのみを作動させて復水器1
内の空気を吸出して真空にする。そして所定の真空度に
達した後、管路田内の圧力を検出する圧力スイッチ8に
よりバイパス弁5を閉にし、作動弁6を開にしてセパレ
ータ4から空気を供給して空気エゼクタ3を作動させ、
水封式真空ポンプと直列運転させて所定の高真空度を得
る。これは水封に使用される通常の冷却水温度において
は水封式真空ポンプ単独では高真空度が得られないので
空気エゼクタを水封式真空ポンプの吸込側に設置し、水
封式ポンプの吸込圧力を高くして空気エゼクタと水封式
ポンプとの二段で圧縮することにより空気エゼクタの吸
込側、すなわち復水器の高い真空度を得るようにしてい
るためである。
When the internal pressure of the condenser 1 is atmospheric pressure and the inside of the condenser is made into a vacuum from this state, for example when starting a steam turbine, the operating valve 6 is closed and the air ejector 3 is bypassed without being driven. Bypass valve 5 that is easily installed in the pipeline
Open the condenser 1 and operate only the water ring vacuum pump.
Suck out the air inside to create a vacuum. After reaching a predetermined degree of vacuum, the bypass valve 5 is closed by the pressure switch 8 that detects the pressure inside the pipe field, and the operating valve 6 is opened to supply air from the separator 4 and operate the air ejector 3. ,
A predetermined high degree of vacuum is obtained by operating in series with a water ring vacuum pump. This is because a water ring vacuum pump alone cannot achieve a high vacuum at the normal cooling water temperature used in a water ring, so an air ejector is installed on the suction side of the water ring vacuum pump. This is because the suction pressure is increased and the air is compressed in two stages, that is, the air ejector and the water ring pump, thereby obtaining a high degree of vacuum on the suction side of the air ejector, that is, the condenser.

しかしながらこのような不凝縮性ガス抽出装置における
水封式真空ポンプの良好な性能を保持するための冷却水
温度の範囲は狭く、復水器および水封式真空ポンプの冷
却水温度が年間を通じ15°0〜犯°0程度の比較的広
範囲で変化する場合、特に冷却水温度が35 ’Oを越
える領、域では水封式真空ポンプの性能が低下したりキ
ャビテーシ璽ンが発生する等して使用が困難になるとい
う問題がある。
However, the cooling water temperature range for maintaining good performance of the water ring vacuum pump in such noncondensable gas extraction equipment is narrow, and the cooling water temperature of the condenser and water ring vacuum pump is 15% throughout the year. If the temperature changes over a relatively wide range from 0° to 0°, the performance of the water ring vacuum pump may deteriorate or cavitation may occur, especially in areas where the cooling water temperature exceeds 35'O. There is a problem that it becomes difficult to use.

〔発明の目的〕[Purpose of the invention]

本発明は、前述のような点に鑑み冷却水温度が比較的広
い範囲に変化しても復水器の真空を所定の高い真空度に
保持できる復水器の不凝縮性ガス抽出装置を提供するこ
とを目的とする。
In view of the above-mentioned points, the present invention provides a non-condensable gas extraction device for a condenser that can maintain the vacuum of the condenser at a predetermined high degree of vacuum even if the cooling water temperature changes over a relatively wide range. The purpose is to

〔発明の要旨〕[Summary of the invention]

上記の目的は、本発明によれば供給管路を通る不凝縮性
ガスにより駆動されるエゼクタと、冷却水の水封により
真空を得る真空ポンプとからなり、冷却水の通流により
不凝縮性ガスを含む蒸気を冷却凝縮して復水にする復水
器内の前記不凝縮性ガスを抽出・する復水器の不凝縮性
ガス抽出装置において、複数個並列に配された特性の異
なるエゼクタと、該エゼクタに接続され前記供給管路か
ら分岐した管路のそれぞれに設けられた開閉自在な弁と
、前記複数個のエゼクタを前記真空ポンプの吸込口に接
続する管路と、前記冷却水の温度検出器または前記復水
器の真空度検出i備えてなり、冷却水温度または真空度
により前記弁の制御を行なうようにすることにより達成
される。
According to the present invention, the above object consists of an ejector driven by non-condensable gas passing through a supply pipe, and a vacuum pump that obtains a vacuum by water sealing of cooling water. In a non-condensable gas extraction device for a condenser that extracts the non-condensable gas in the condenser by cooling and condensing steam containing gas to condensate, a plurality of ejectors with different characteristics are arranged in parallel. a valve that can be freely opened and closed provided in each of the pipe lines connected to the ejector and branched from the supply pipe line; a pipe line connecting the plurality of ejectors to the suction port of the vacuum pump; and the cooling water. This is achieved by controlling the valve according to the temperature of the cooling water or the degree of vacuum.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第1図は本発明の実施例による復水器の不凝縮性ガス抽
出技量の系統図である。なお第1図において第2図の従
来例と同一部分には同じ符号を付している。第1図にお
いて復水器1、水封式真空ポンプ2.セパレータ4.バ
イパス弁5等の系統構成により空気エゼクタ3とこれに
直列に接続される水封式真空ポンプ2により復水器1の
真空を得る作用は従来技術のものと同じであるので説明
を省略する。本実施例では特性の異なる空気エゼクタ3
1を空気エゼクタ3と並列に設置し、その排出口31b
を水封式真空ポンプ2の吸込口2aに結合される管路2
2Jこ接続している。また復水器lの抽出口1mとエゼ
クタ31の吸込口31aとを管路るから分岐し逆上弁1
1mを備えた管路23bにより接続している。不ljI
!縮性ガスとしての空気の供給管路めから分岐した管路
24bには開閉自在な弁としての作動弁61を設は空気
エゼクタ31の空気供給口31cに接続している。なお
撰択スイッチ10により作動弁6.61の開閉は制御さ
れている。また入口冷却水管加には冷却水の温度検出器
9を、復水器1には真空度検出器12を設けている。
FIG. 1 is a diagram of the non-condensable gas extraction performance of a condenser according to an embodiment of the present invention. In FIG. 1, the same parts as in the conventional example shown in FIG. 2 are given the same reference numerals. In Fig. 1, a condenser 1, a water ring vacuum pump 2. Separator 4. The operation of obtaining a vacuum in the condenser 1 by means of the air ejector 3 and the water ring vacuum pump 2 connected in series with the air ejector 3 through the system configuration of the bypass valve 5 and the like is the same as that of the prior art, and therefore a description thereof will be omitted. In this embodiment, the air ejector 3 has different characteristics.
1 is installed in parallel with the air ejector 3, and its discharge port 31b
The pipe line 2 connected to the suction port 2a of the water ring vacuum pump 2
2J is connected. Also, the condenser 1's extraction port 1m and the ejector 31's suction port 31a are branched from each other, and the backflow valve 1 is branched.
It is connected by a conduit 23b having a length of 1 m. UnljI
! An operating valve 61 as a valve that can be opened and closed is connected to the air supply port 31c of the air ejector 31 in the conduit 24b branched from the condensable gas supply conduit. Note that the selection switch 10 controls the opening and closing of the operating valve 6.61. Further, a cooling water temperature detector 9 is provided at the inlet cooling water pipe, and a vacuum degree detector 12 is provided at the condenser 1.

上記の系統構成Iこより復水器を大気圧から真空にする
場合、例えば蒸気タービン起動時には前述のように圧力
スイッチ8により作動弁6.61を閉にし、バイパス弁
5を開にして水封式真空ポンプ2のみで復水器は真空に
されるが、所定の真空度になると圧力スイッチ8の作動
によりバイパス弁5を閉(こする。そして空気エゼクタ
を作動させるように作動弁を開にするわけであるが空気
エゼクタ3,31はそれぞれ特性が異なるので撰択スイ
ッチ10により使用する空気エゼクタの作動弁のみ開に
する。この撰定は温度検出器10の冷却水温度、または
冷却水温度の飽和蒸気圧力に近い復水器の真空度を示す
真空度検出器12の真空度を検出して行なわれる。つぎ
に上記の空気エゼクタの撰定について説明する。第2図
は水封式真空ポンプ2と器1に流入する冷却水温度が低
い時の高真空用として、空気エゼクタ31は冷却水温度
が高い時の低真空用として使用されるものとしている。
When the condenser is made into a vacuum from atmospheric pressure using the above system configuration I, for example, when starting a steam turbine, the operating valves 6 and 61 are closed by the pressure switch 8 and the bypass valve 5 is opened as described above. The condenser is evacuated only by the vacuum pump 2, but when a predetermined degree of vacuum is reached, the bypass valve 5 is closed (rubbed) by the operation of the pressure switch 8.Then, the operating valve is opened to operate the air ejector. However, since the air ejectors 3 and 31 have different characteristics, the selection switch 10 opens only the operating valve of the air ejector to be used. This is done by detecting the vacuum level of the condenser with a vacuum level detector 12, which indicates the vacuum level of the condenser close to the saturated steam pressure.Next, the selection of the air ejector mentioned above will be explained.Figure 2 shows a water ring type vacuum pump. The air ejector 31 is used for high vacuum when the temperature of the cooling water flowing into the vessel 1 is low, and the air ejector 31 is used for low vacuum when the temperature of the cooling water is high.

第2図において曲線Aは水封する冷却水温度が低い時の
水封式真空ポンプの特性曲線であり、曲線Bは冷却水温
度が高い時の水封式真空ポンプの特性曲線である。なお
グラフに示される吸込流値は重量流量で示してあり、復
水器から吸引する流体はその大部分が真空領域への大気
からの洩れ込む空気3よびこの空気を復水器から吸引す
る際の随伴蒸気とからなり、その重量流量は復水器に流
入する冷却水温度によって大きく変わることはない。
In FIG. 2, curve A is a characteristic curve of the water-ring vacuum pump when the temperature of the water-sealed cooling water is low, and curve B is a characteristic curve of the water-ring vacuum pump when the temperature of the cooling water is high. The suction flow values shown in the graphs are expressed in terms of weight flow rate, and most of the fluid sucked from the condenser is the air leaking into the vacuum area from the atmosphere 3 and when this air is sucked from the condenser. The weight flow rate does not change significantly depending on the temperature of the cooling water flowing into the condenser.

つぎに曲線Cは高真空用として使用される空気エゼクタ
3の吸込流量と吸込真空度との関係を、11fl#Dは
空気エゼクタ3の吸込流tと放射真空度との関係を示し
ている。また曲線Eは低真空用として使用される空気エ
ゼクタ31の吸込流量と吸込真空度を、曲線Fは空気エ
ゼクタ31の吸込流量と放射真空度との関係を示してい
る。グラフから分るように復水器および真空ポンプの冷
却水温度が低い場合には水封式真空ポンプの曲線Aに示
されるように水封式真空ポンプの吸込真空度は十分高く
高真空用のエゼクタ3の特性曲線りに示されるように空
気エゼクタ3の放射真空度を十分上廻っている。このた
め空気エゼクタ3が排出する放射真空度は水封式真空ポ
ンプの吸込真空度より低くなり、空気エゼクタと水封式
真空ポンプとは安定した直列運転が行なわれ、空気エゼ
クタに吸込まれた空気等は圧縮されて大気圧となって水
封式真空ポンプより排出される。また冷却水温度が低い
場合は復水器の真空度も高くなるが高真空用のエゼクタ
3の吸込真空度は十分憂いので問題はない。
Next, curve C shows the relationship between the suction flow rate and suction vacuum degree of the air ejector 3 used for high vacuum use, and 11fl#D shows the relationship between the suction flow t of the air ejector 3 and the radiation vacuum degree. Further, the curve E shows the relationship between the suction flow rate and the suction vacuum degree of the air ejector 31 used for low vacuum, and the curve F shows the relationship between the suction flow rate of the air ejector 31 and the radiation vacuum degree. As can be seen from the graph, when the cooling water temperature of the condenser and vacuum pump is low, the suction vacuum degree of the water ring vacuum pump is sufficiently high for high vacuum use, as shown in curve A of the water ring vacuum pump. As shown in the characteristic curve of the ejector 3, the degree of radiation vacuum of the air ejector 3 is sufficiently exceeded. Therefore, the radiation vacuum level discharged by the air ejector 3 is lower than the suction vacuum level of the water ring vacuum pump, and the air ejector and water ring vacuum pump are operated in series in a stable manner. etc. are compressed to atmospheric pressure and discharged from a water ring vacuum pump. Furthermore, when the cooling water temperature is low, the degree of vacuum in the condenser also increases, but there is no problem because the degree of suction vacuum of the ejector 3 for high vacuum is sufficiently low.

しかしながら復水器および水封式真空ポンプの冷却水温
度が高い場合には水封式真空ポンプの特性は曲線Bに示
すようlこ吸込性能が低下し、曲線りで示す高真空用の
エゼクタ3の放射真空度を下廻るようになる。この場合
空気エゼクタ3が排出する放射真空度は水封式ポンプの
吸込冥空鼠より高くなるので圧縮されて大気圧になるの
が困難となり、安定した運転ができずに性能が低下する
However, when the cooling water temperature of the condenser and the water ring vacuum pump is high, the suction performance of the water ring vacuum pump decreases as shown in curve B, and the high vacuum ejector 3 shown in the curve The degree of radiation vacuum becomes lower than that of . In this case, the degree of radiation vacuum discharged by the air ejector 3 is higher than that of the suction vacuum of the water ring pump, so it becomes difficult to compress the air to atmospheric pressure, making stable operation impossible and reducing performance.

またこの場合冷却水偏度が上昇するにつれて水封式真空
ポンプの吸込A少産が空気エゼクタの特性曲線りの示す
真空度より低下すると水封の水が佛騰してキャビテーシ
冒ンを起こしやすい。この時空気エゼクタ3の代りに低
真空用の空気エゼクタ31を作動させればエゼクタ31
の放射X生豆は曲線Fに示すように水封式真空ポンプの
曲線Bを下廻ることになり、前述と同じ理由で空気エゼ
クタと水封式真空ポンプの安定した直列運転ができる。
In addition, in this case, as the degree of cooling water deviation increases, if the suction A of the water ring vacuum pump decreases below the degree of vacuum indicated by the characteristic curve of the air ejector, the water in the water ring rises and tends to cause cavitation. . At this time, if the air ejector 31 for low vacuum is operated instead of the air ejector 3, the ejector 31
Radiation

なお空気エゼクタ31の吸込真空度は空気エゼクタ3に
比して低いが、冷却水温度が高い場合復水器のX空度も
低くなるので不都合はない。
Note that although the suction vacuum degree of the air ejector 31 is lower than that of the air ejector 3, this is not a problem because if the cooling water temperature is high, the X vacancy of the condenser will also be low.

したがって空気エゼクタ3.31を並列して設置される
場合、使用する空気エゼクタの選定は入口冷却水管孔に
設けた温度検出器9により選択スイッチ10を用いて行
なうようにする。すなわち空気エゼクタと水封式真空ポ
ンプを直列運転するときは冷却水温度が低い場合には作
動弁6を開に作動弁61を閉に、冷却水温度が高くなっ
た場合には作動弁6を閉に作動弁61を開にするように
選択スイッチ10により使用する空気エゼクタを選定す
る。上記の場合バイパス作動弁5は閉にしている。なお
、水封式真空ポンプ2の性能を支配する冷却水温度は冷
却器7により冷却された管路5を流れる冷却水の温度で
あるが、冷却水前照を通流する冷却水温度は管路Zを流
れる前記の冷却水温度より僅かに低い温度であるので作
動弁6.61の開閉用の信号として温度検出器9の冷却
水温度を使用しても支障はない。また復水器の真空度も
冷却水管領を通流する冷却水温度より僅かに高い温度に
対応する飽和蒸気圧であるから、温度検出器9の冷却水
温度の代りに復水器に設けられた真空度検出器12の真
空度を作動弁6.61の選択用の信号としても支障はな
い。
Therefore, when the air ejectors 3 and 31 are installed in parallel, the selection of the air ejector to be used is performed using the selection switch 10 using the temperature detector 9 provided in the inlet cooling water pipe hole. In other words, when operating the air ejector and water ring vacuum pump in series, when the cooling water temperature is low, the operating valve 6 is opened and the operating valve 61 is closed, and when the cooling water temperature is high, the operating valve 6 is closed. The air ejector to be used is selected by the selection switch 10 so that the operating valve 61 is closed and the operating valve 61 is opened. In the above case, the bypass operating valve 5 is closed. Note that the temperature of the cooling water that controls the performance of the water ring vacuum pump 2 is the temperature of the cooling water that flows through the pipe 5 cooled by the cooler 7, but the temperature of the cooling water that flows through the cooling water front is determined by the temperature of the cooling water that flows through the pipe 5. Since the temperature is slightly lower than the temperature of the cooling water flowing through the path Z, there is no problem in using the cooling water temperature of the temperature sensor 9 as a signal for opening/closing the operating valve 6.61. Also, since the degree of vacuum in the condenser is a saturated vapor pressure corresponding to a temperature slightly higher than the temperature of the cooling water flowing through the cooling water pipe area, the temperature sensor 9 is installed in the condenser instead of the temperature sensor 9 to measure the cooling water temperature. There is no problem in using the vacuum level of the vacuum level detector 12 as a signal for selecting the operating valve 6.61.

〔発明の効果〕 以上の説明から明らかなように、本発明によれば吸込真
空度と吸込流量との特性が異なる複数個のエゼクタを並
列に配設し、それぞれのエゼクタを水封式真空ポンプに
直列に接続し、冷却水温度の変化による水封式真空ポン
プの吸込真空度と吸込流量との特性の変化に対応して前
記エゼクタの選定を行なって水封式真空ポンプに直列に
接続することにより、エゼクタと水封式真空ポンプの直
列運転が安定となるので、冷却水温度の比較的広い範囲
で復水器の所定の真空度を保持できるとともに水封式真
空ポンプの効率低下やキャビテーシ璽ンが生じ難く安定
した不凝縮性ガス抽出装置としての性能が得られるとい
う効果がある。
[Effects of the Invention] As is clear from the above description, according to the present invention, a plurality of ejectors having different characteristics of suction vacuum degree and suction flow rate are arranged in parallel, and each ejector is connected to a water ring vacuum pump. The ejector is connected in series to the water ring vacuum pump, and the ejector is selected in response to changes in the suction vacuum degree and suction flow rate characteristics of the water ring vacuum pump due to changes in cooling water temperature. This makes the series operation of the ejector and water ring vacuum pump stable, making it possible to maintain a predetermined degree of vacuum in the condenser over a relatively wide range of cooling water temperatures, and reducing the efficiency and cavitation of the water ring vacuum pump. This has the effect of providing stable performance as a non-condensable gas extraction device with less occurrence of cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による復水器の不凝縮性ガス抽
出装置の系統図、第2図は第1図におけ   −ろ水封
式真空ポンプの吸込流量と吸込真空度との関係およびエ
ゼクタの吸込流量と吸込真空度および放射真空度との関
係を示す図、第3図は従来の復水器の不凝縮性ガス抽出
装置の系統図である。 1:41水器、2:水制式真空ポンプ、3.31:空気
エゼクタ、6+61:弁、9;温反検出器、12:真空
度検出器。 ロー(霊
Fig. 1 is a system diagram of a non-condensable gas extraction device for a condenser according to an embodiment of the present invention, and Fig. 2 is a system diagram of a non-condensable gas extraction device for a condenser according to an embodiment of the present invention. FIG. 3 is a system diagram of a conventional condenser non-condensable gas extraction device. 1: 41 water container, 2: water vacuum pump, 3.31: air ejector, 6+61: valve, 9: temperature/reaction detector, 12: vacuum degree detector. Rho (spirit)

Claims (1)

【特許請求の範囲】[Claims] 供給管路を通る不凝縮性ガスにより駆動されるエゼクタ
と、冷却水の水封により真空を得る真空ポンプとからな
り、冷却水の通流により不凝縮性ガスを含む蒸気を冷却
凝縮して復水にする復水器内の該不凝縮性ガスを抽出す
る復水器の不凝縮性ガス抽出装置において、複数個並列
に配された特性の異なるエゼクタと、該エゼクタに接続
され前記供給管路から分岐した管路のそれぞれに設けら
れた開閉自在な弁と、前記複数個のエゼクタを前記真空
ポンプの吸込口に接続する管路と、前記冷却水の温度検
出器または前記復水器の真空度検出器とを備えてなり、
冷却水温度、または真空度により前記弁の制御を行なう
ようにしたことを特徴とする復水器の不凝縮性ガス抽出
装置。
It consists of an ejector that is driven by non-condensable gas passing through a supply pipe, and a vacuum pump that creates a vacuum by water sealing cooling water. A non-condensable gas extraction device for a condenser that extracts the non-condensable gas in the condenser to convert it into water, a plurality of ejectors having different characteristics arranged in parallel, and the supply pipe connected to the ejector. a valve that can be opened and closed on each of the pipes branching from the pipe, a pipe connecting the plurality of ejectors to the suction port of the vacuum pump, and a temperature sensor of the cooling water or the vacuum of the condenser. Equipped with a degree detector,
1. A non-condensable gas extraction device for a condenser, characterized in that the valve is controlled by the temperature of the cooling water or the degree of vacuum.
JP5700485A 1985-03-20 1985-03-20 Extractor for noncondensing gas of condenser Pending JPS61213594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5700485A JPS61213594A (en) 1985-03-20 1985-03-20 Extractor for noncondensing gas of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5700485A JPS61213594A (en) 1985-03-20 1985-03-20 Extractor for noncondensing gas of condenser

Publications (1)

Publication Number Publication Date
JPS61213594A true JPS61213594A (en) 1986-09-22

Family

ID=13043320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5700485A Pending JPS61213594A (en) 1985-03-20 1985-03-20 Extractor for noncondensing gas of condenser

Country Status (1)

Country Link
JP (1) JPS61213594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674856U (en) * 1993-03-26 1994-10-21 進栄株式会社 Condensate recovery pump device
JP2009074161A (en) * 2007-08-29 2009-04-09 Nippon Steel Engineering Co Ltd Vacuum-degassing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674856U (en) * 1993-03-26 1994-10-21 進栄株式会社 Condensate recovery pump device
JP2009074161A (en) * 2007-08-29 2009-04-09 Nippon Steel Engineering Co Ltd Vacuum-degassing method

Similar Documents

Publication Publication Date Title
JPS6035015Y2 (en) Purge device for refrigeration system
JPH056105B2 (en)
US5367886A (en) Refrigerant handling system with air purge and system clearing capabilities
JPS61213594A (en) Extractor for noncondensing gas of condenser
US6223540B1 (en) Gas processing techniques
US3475034A (en) Gas-tight seal
JP2588595B2 (en) Multi-stage rotary vacuum pump
WO1996012557A1 (en) An arrangement in autoclaving systems
JPS55836A (en) Condenser
JP4387536B2 (en) Steam heating device
JPS59185987A (en) Condenser having section in which pressure regulation is possible
CN220102871U (en) Steam transmission system
JP3662035B2 (en) Cooler drain discharge device
JPH08193791A (en) Noncondensible gas extractor
JPS5928836B2 (en) Condenser vacuum device
US20240093919A1 (en) Process vacuum system with condenser and dual ejectors
JPS599193Y2 (en) Decompression steam generator
JPS607196B2 (en) Condenser vacuum adjustment device
JP3282000B2 (en) Steam heating evaporative cooling system
JPH10131713A (en) Drainage device of gland steam condenser
USRE11591E (en) Franz joseph weiss
CN114264163A (en) Condenser water side vacuum pumping system
JPS6029680Y2 (en) vacuum pump equipment
JPS6080087A (en) Discharging method of non-condensable gas for separate type heat exchanger
US803787A (en) Condenser system.