JPS6121291B2 - - Google Patents

Info

Publication number
JPS6121291B2
JPS6121291B2 JP57120638A JP12063882A JPS6121291B2 JP S6121291 B2 JPS6121291 B2 JP S6121291B2 JP 57120638 A JP57120638 A JP 57120638A JP 12063882 A JP12063882 A JP 12063882A JP S6121291 B2 JPS6121291 B2 JP S6121291B2
Authority
JP
Japan
Prior art keywords
furnace
electrode
electrodes
zinc
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57120638A
Other languages
Japanese (ja)
Other versions
JPS5912283A (en
Inventor
Kenji Kubota
Takahiko Ookura
Masatoshi Ogasawara
Toshio Shiina
Matsuhisa Uzaki
Kenichi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Kakoki Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tanabe Kakoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tanabe Kakoki Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP12063882A priority Critical patent/JPS5912283A/en
Publication of JPS5912283A publication Critical patent/JPS5912283A/en
Publication of JPS6121291B2 publication Critical patent/JPS6121291B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、上部電極と下部電極とを具備する竪
型亜鉛蒸留製錬炉における上部電極の構成に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an upper electrode in a vertical zinc distillation and smelting furnace, which includes an upper electrode and a lower electrode.

非鉄線錬においては、電熱蒸留製錬炉が亜鉛を
代表とする幾つかの金属を対象として使用されて
いる。亜鉛の電熱蒸留製錬を例にとると、酸化焙
焼した硫化亜鉛鉱の焼結塊およびコークスが竪形
の蒸留製錬炉の炉頂から装入される。炉の高温帯
域においてコークスと酸化亜鉛が反応し、酸化亜
鉛は還元されて亜鉛蒸気となる。炉の中間部から
亜鉛蒸気は吸引され、そしてコンデンサにおいて
凝縮せしめられる。亜鉛が揮発したあとの残査は
炉内を降下しそして炉底から回転排鉱皿によつて
排出される。炉には上部電極と下部電極が装備さ
れ、装入物の抵抗を利用して所要の熱量が発生せ
しめられる。第1図は従来からある亜鉛製錬用の
電熱蒸留炉1を示す。炉1には、その炉頂から酸
化亜鉛焼結塊とコークスの混合物2がほぼ2対1
(重量比)の混合比で装入される。装入物は炉内
を降下するにつれ、上部電極3と下部電極5との
間の通電によつて生じた高温部を通り、そこで次
の反応を起す: ZnO+C→Zn+CO ZnO+CO→Zn+CO2 CO2+C→2CO 発生する亜鉛蒸気は蒸気リング9に真空ポンプ
等の吸引によつて導かれ、その後コンデンサに通
されて凝縮される。亜鉛が揮発した残渣は炉内を
降下しそして回転排鉱皿7によつて炉外に排出さ
れる。
In non-ferrous wire refining, electric distillation smelting furnaces are used for several metals, typified by zinc. Taking electrothermal distillation smelting of zinc as an example, sintered lumps of oxidized and roasted zinc sulfide ore and coke are charged from the top of a vertical distillation smelting furnace. Coke and zinc oxide react in the high temperature zone of the furnace, and the zinc oxide is reduced to zinc vapor. Zinc vapor is drawn from the middle of the furnace and condensed in a condenser. After the zinc has volatilized, the residue descends through the furnace and is discharged from the bottom of the furnace by a rotating scavenger tray. The furnace is equipped with an upper electrode and a lower electrode, and the required amount of heat is generated using the resistance of the charge. FIG. 1 shows a conventional electric distillation furnace 1 for smelting zinc. From the top of the furnace 1, a mixture 2 of zinc oxide sintered mass and coke is mixed in an approximately 2:1 ratio.
(weight ratio). As the charge descends through the furnace, it passes through a high temperature zone created by the current flow between the upper electrode 3 and the lower electrode 5, where the following reaction takes place: ZnO+C→Zn+CO ZnO+CO→Zn+CO 2 CO 2 +C →2CO The generated zinc vapor is led to the steam ring 9 by suction from a vacuum pump, etc., and then passed through a condenser and condensed. The residue from which the zinc has volatilized descends within the furnace and is discharged to the outside of the furnace by a rotating ore removal tray 7.

従来からの上部電極3は、例えば4〜12本のグ
ラフアイト電極を炉周囲に沿つて放射状に配置す
ることにより構成された。下部電極5も、上部電
極と対をなして多数本が炉周囲に放射状に位置づ
けられている。下部電極については、炉内部に突
出する下部電極先端部周囲にベコが付着し、その
結果炉内断面通路が非常に狭くなり、残査の円滑
な流出を妨げる事態を認識して、炉底下の排鉱皿
中央に単一の下部電極を設けることが本件出頭人
によつて提唱されている。
The conventional upper electrode 3 is constructed by, for example, 4 to 12 graphite electrodes arranged radially around the furnace. A large number of lower electrodes 5 are also arranged radially around the furnace in pairs with the upper electrodes. As for the lower electrode, we recognized that there is a build-up around the tip of the lower electrode that protrudes into the furnace, and as a result, the cross-sectional passage inside the furnace becomes extremely narrow, which prevents the smooth outflow of residue. It has been proposed by the applicant in this case to provide a single lower electrode in the center of the ore discharge pan.

上部電極は、炉内温度分布等の関係から複数の
電極を放射状に配列することが必須と従来から考
えられていた。しかしながら、こうした上部電極
を使用しての操業は、多数本の電極の取扱が面倒
であること、電極消耗時に電極再挿入の為に通電
を休止せねばならず、一炉当りの生産量が低下す
ること、上部電極は炉内に突出ている為降下する
装入物との接触によつて折損しやすく、折損した
場合炉壁を伝つて電気が流れ炉壁耐火れんがを消
耗せしめ、炉修理サイクルを短縮すること等の欠
点を生ぜしめた。炉内の温度分布をより均一にす
るために使用電極数を増やすことが近時企図され
ているが、電極数が増加する程上記欠点は顕著と
なる。
It has been conventionally believed that it is essential for the upper electrode to have a plurality of electrodes arranged radially in view of the temperature distribution within the furnace. However, in operations using such upper electrodes, it is troublesome to handle a large number of electrodes, and when the electrodes are worn out, electricity must be stopped to reinsert the electrodes, resulting in a decrease in production per furnace. Because the upper electrode protrudes into the furnace, it is easily broken by contact with the descending charge, and if it breaks, electricity will flow through the furnace wall and wear out the refractory bricks on the furnace wall, causing the furnace repair cycle to be interrupted. This resulted in shortcomings such as shortening the . Recently, attempts have been made to increase the number of electrodes used in order to make the temperature distribution in the furnace more uniform, but as the number of electrodes increases, the above-mentioned drawbacks become more pronounced.

上記欠点を解消しまた炉内温度分布の一層の均
一化を計つて、本発明は従来からの上部電極概念
を一新して炉頂に単一の上部電極を設置すること
を試み、成功を納めた。特に電極としてゼーダー
ベルグ電極を使用することにより、電極の消耗に
応じて上端に継足していけるので、従来のように
電極取替作業に伴う面倒さが軽減されそして炉休
止時間も最小限とされうる。更に、上記頂部1本
電極は前述した下部1本電極と組合せて使用する
ことにより一段と良好な炉内通電効果を奏しうる
ことも判明した。
In order to solve the above-mentioned drawbacks and to make the temperature distribution in the furnace more uniform, the present invention attempts to completely change the conventional upper electrode concept and install a single upper electrode at the top of the furnace, and has succeeded. I paid it. In particular, by using Soederberg electrodes as electrodes, additional electrodes can be added to the upper end as the electrodes wear out, reducing the trouble associated with conventional electrode replacement work and minimizing furnace downtime. . Furthermore, it has been found that when the single top electrode is used in combination with the single bottom electrode described above, an even better effect of energizing the furnace can be achieved.

斯くして、本発明は、上部電極と下部電極とを
具備し、装入物を通しての抵抗加熱により発熱を
行う竪型亜鉛蒸留製錬炉において、上部電極が炉
頂に設けられる、好ましくはゼーダーベルグ型式
の単一の電極とされることを特徴とする亜鉛蒸留
製錬炉を提供せんとするものである。
Thus, the present invention provides a vertical zinc distillation and smelting furnace comprising an upper electrode and a lower electrode and generating heat by resistance heating through the charge, in which the upper electrode is provided at the top of the furnace, preferably a Soederberg It is an object of the present invention to provide a zinc distillation smelting furnace characterized in that it is a single electrode type.

以下、本発明の具体例について亜鉛蒸留炉を例
にとつて説明する。
Hereinafter, a specific example of the present invention will be described using a zinc distillation furnace as an example.

第2図は本発明を具備した亜鉛蒸留炉の正面方
向からの部分断面図であり、ここでは炉頂に設け
られた単一の上部電極3と炉底の排鉱皿7の中央
に設けられた単一の下部電極5が装備されるもの
として示されている。炉体の付属設備は省略して
ある。単一上部電極3は炉頂に環状空隙を周囲に
残して垂直に挿入されている。環状域には、例え
ば4つと云つた適宜数の装入物供給口8が設けら
れている(第3図)。装入物は、供給ホツパから
適当な予熱器を経て例えば炉頂上に設けられたク
ツシヨンホツパ6に送られ、そこから供給口8に
通じる送入脚6′を経て炉内に供給される。ここ
では、上部電極3を挟んでその正面及び背後に2
つのクツシヨンホツパ6が設置され、各クツシヨ
ンホツパからの2つの送入脚6′がそれぞれ供給
口8に通じる具体例が示してある(図面では正面
のもののみ示し、これと同じクツシヨンホツパが
電極3の背後にある)。装入物供給装置はこれに
限られるものでなく、炉内になるだけ一様に装入
物を送入しうる任意の構成をとりえ、例えば環状
空隙全体を覆う供給シユートを通して装入物を供
給してもよい。別様には、炉頂近くに炉周囲に沿
つて供給口を設けてもよい。更には、上部電極3
を環状形態とし、その中央穴を通して装入物を供
給する構成を上記手段と併用することもできる。
FIG. 2 is a partial cross-sectional view from the front of a zinc distillation furnace equipped with the present invention. It is shown as being equipped with a single lower electrode 5. The attached equipment for the furnace body is omitted. A single upper electrode 3 is inserted vertically into the furnace top leaving an annular gap around it. A suitable number of charge feed ports 8, for example four, are provided in the annular area (FIG. 3). The charge is conveyed from the feed hopper via a suitable preheater to a cushion hopper 6 mounted, for example, on top of the furnace, and from there fed into the furnace via a feed leg 6' leading to a feed opening 8. Here, two electrodes are placed in front and behind the upper electrode 3.
A concrete example is shown in which two cushion hoppers 6 are installed, and two feed legs 6' from each cushion hopper each lead to a supply port 8 (only the front one is shown in the drawing, and the same cushion hopper is located behind the electrode 3). be). The charge feeding device is not limited to this, but may have any configuration capable of uniformly feeding the charge into the furnace, for example, feeding the charge through a feed chute that covers the entire annular cavity. May be supplied. Alternatively, feed ports may be provided along the perimeter of the furnace near the top of the furnace. Furthermore, the upper electrode 3
It is also possible to use in combination with the above-mentioned means an arrangement in which the tube is in an annular form and the charge is fed through its central hole.

下部電極5は単一の電極として示してあるが、
従来通り炉底近くに挿入される複数の周囲電極構
成或いはその他の任意の電極構成の使用が阻まれ
るものでない。単一下部電極5は、炉内通電状態
を良好にし、また炉下部での余剰発熱現象を回避
する為に、銅線リング5′を下部電極5の上端周
囲に付設して電流を分散することが好ましい。下
部電極への通電はブラシ周囲接触方式が従来提唱
されていたが、第4図に明示するように、円板状
の給電リング10を下部電極周囲に取付け、それ
をカーボンブラシ12にて弾発的に上下から挟持
する方式の方が、ブラシ焼損等の事故が生ぜず、
安定した給電を行いうることも判明した。
Although the lower electrode 5 is shown as a single electrode,
This does not preclude the use of multiple peripheral electrode configurations inserted near the bottom of the furnace, or any other electrode configuration, as is conventional. For the single lower electrode 5, a copper wire ring 5' is attached around the upper end of the lower electrode 5 to disperse the current in order to improve the current flow inside the furnace and to avoid excess heat generation in the lower part of the furnace. is preferred. Conventionally, a contact method around the brush has been proposed for supplying current to the lower electrode, but as shown in FIG. Generally speaking, the method of holding the brush from above and below prevents accidents such as brush burnout, and
It was also found that stable power supply can be achieved.

炉頂単一上部電極3と組合せて、炉底に単一の
下部電極5を設けることにより、装入物を通して
の通電分布が一様化され、炉内温度分布が最適と
なる。しかも、多数本を放射状に設けることによ
り従来見られた付着ベコの発生、折損等の幣害が
解消されることは云うまでもない。これらの結果
として、長期間にわたつての安定した炉操業が可
能となる。
By providing a single lower electrode 5 at the bottom of the furnace in combination with a single upper electrode 3 at the top of the furnace, the current distribution through the charge is uniformed and the temperature distribution within the furnace is optimized. Moreover, it goes without saying that by arranging a large number of rods in a radial manner, damages such as the occurrence of adhesion and breakage, which have conventionally been observed, can be eliminated. As a result of these, stable furnace operation over a long period of time becomes possible.

上部電極構造の詳細が第5図に示してある。併
せて装入物供給設備も示されている。上部電極3
は、ここでは油圧シリンダとして示す電極昇降装
置15及び電極把持体17とによつて電極消耗に
応じて降下される。電極は、通電量により異なる
が、例えば1日当り5cm消耗する。電極の降下は
連続的に或いは間欠的に実施される。油圧シリン
ダ以外にも、電極把持体を一時的に弛めることに
より電極を降下させる方式等の適宜の手段が使用
されうる。上部電極3の揺動を防止する為、電極
ホルダ18が電極把持体17と炉頂との間に設け
られている。電極3はシール19を介して炉頂内
に挿通されている。電力は、水冷銅管20及び電
極ホルダ18を通して供給される。
Details of the upper electrode structure are shown in FIG. Also shown is the charge feed facility. Upper electrode 3
is lowered as the electrode wears out by an electrode lifting device 15 and an electrode gripper 17, which are shown here as hydraulic cylinders. The electrodes are consumed by, for example, 5 cm per day, although this varies depending on the amount of current applied. Lowering of the electrode may be carried out continuously or intermittently. In addition to the hydraulic cylinder, any suitable means may be used, such as a method of lowering the electrode by temporarily loosening the electrode grip. In order to prevent the upper electrode 3 from swinging, an electrode holder 18 is provided between the electrode holder 17 and the furnace top. The electrode 3 is inserted through the seal 19 into the top of the furnace. Power is supplied through the water-cooled copper tube 20 and the electrode holder 18.

上部電極3としては、人造黒鉛電極、炭素電極
等が使用しうるが、本発明の目的に対してはゼー
ダーベルグ電極の使用が好適であることが見出さ
れた。ゼーダーベルグ電極は金属製の円筒状薄板
を容器としてその中にゼーダペーストと呼ばれ
る、コークス或いは無煙炭と粘結剤としてのピツ
チ或いはタールを充填し、炉内の熱と電極を流れ
る電気による発熱によつて自然に軟化溶融した後
揮発成分がガス化して、後に炭素が残り電極の形
成されるものである。電極が消耗して短かくなれ
ば新しい鉄板ケースを古いものの上部に熔接して
その中に電極材料を充填して継足していくことが
できる。ゼーダーベルグ電極は人造黒鉛電極に較
べてコストがほぼ半分ですむに加えて、電極取替
え作業の面倒さがなく、しかも所要の通電効果を
充分に発揮することができる。
Although an artificial graphite electrode, a carbon electrode, etc. can be used as the upper electrode 3, it has been found that a Soederberg electrode is suitable for the purpose of the present invention. The Soederberg electrode is a container made of a cylindrical thin metal plate filled with coke or anthracite called Soeder paste and pitch or tar as a caking agent, and is heated by the heat in the furnace and the electricity flowing through the electrode. After naturally softening and melting, the volatile components are gasified, leaving behind carbon to form the electrode. If the electrode becomes short due to wear and tear, a new iron plate case can be welded on top of the old one and electrode material can be filled into it to add more. Soederberg electrodes cost approximately half as much as artificial graphite electrodes, do not require the trouble of replacing electrodes, and can fully demonstrate the required energizing effect.

炉頂に大径の単一上部電極を使用するに当つ
て、当初、電極の一部分だけが給電点となつて電
流がそこに集中して流れ、炉内温度分布を悪化す
る事態が憂慮されたが、電流の過大な部分は電極
が早く消耗し、装入物との接触状態が悪くなつて
電流が流れにくくなり、結局電極先端は一定な形
を保ちつつその先端部全面から電流が流れる自己
回復性によつて、上部電極は何ら支障なく通電を
行いうることが判明した。
When using a single, large-diameter upper electrode at the top of the furnace, there was initially concern that only a portion of the electrode would serve as the feeding point, and the current would concentrate there, worsening the temperature distribution inside the furnace. However, if the current is too high, the electrode will wear out quickly, and the contact with the charge will deteriorate, making it difficult for the current to flow.In the end, the electrode tip will maintain a constant shape and the current will flow from the entire surface of the tip. It was found that the upper electrode could be energized without any problems due to its recoverability.

炉高約10000mm及び炉頂内径2050mmの第2図に
示した炉を使用しそして直径800mmのゼーダーベ
ルグ電極を使用して1000トン/月のベースで亜鉛
を生産した結果、従来200日前後で炉内れんが修
理のため休炉していたのがほぼ数年修理を要せず
操業しえた。炉内温度分布も一様で亜鉛生産にお
いても好結果を得た。
Using the furnace shown in Figure 2 with a furnace height of approximately 10,000 mm and a furnace top inner diameter of 2,050 mm, and using a Soederberg electrode with a diameter of 800 mm, zinc was produced on a basis of 1,000 tons/month. Although the reactor had been closed for brick repairs, it was able to operate for almost several years without requiring any repairs. The temperature distribution inside the furnace was uniform, and good results were obtained in zinc production.

このように、本発明は従来製錬用電気炉におい
て慣行的に使用されてきた多数本の放射状挿入上
部電極の概念を打破し、頂部に大径の単一電極を
配することによつて従来実操業において遭遇した
問題を解消したものであり、斯界に有意義な貢献
を為すものである。
As described above, the present invention breaks down the concept of multiple radially inserted upper electrodes conventionally used in electric furnaces for smelting, and by disposing a single large-diameter electrode at the top. It solves the problems encountered in actual operations and makes a meaningful contribution to the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来からの電熱製錬炉を示す概略部分
断面図、第2図は本発明に従う製錬炉の一具体例
の部分断面図、第3図は第2図のX−X線に沿う
断面図、第4図は下部電極への給電装置の斜視
図、そして第5図は上部電極の詳細を示す。 1:炉、3:上部電極、5:下部電極、7:排
鉱皿、9:蒸気リング、8:装入物供給口、6:
クツシヨンホツパ、6′:脚、5′:銅線リング、
10:給電リング、12:ブラシ、15:電極昇
降装置、17:電極把持体、18:電極ホルダ、
19:シール、20:水冷銅管。
FIG. 1 is a schematic partial sectional view showing a conventional electrothermal smelting furnace, FIG. 2 is a partial sectional view of a specific example of the smelting furnace according to the present invention, and FIG. 4 is a perspective view of the power supply device to the lower electrode, and FIG. 5 shows details of the upper electrode. 1: Furnace, 3: Upper electrode, 5: Lower electrode, 7: Ore discharge pan, 9: Steam ring, 8: Charge supply port, 6:
Cushion hopper, 6': Leg, 5': Copper wire ring,
10: Power supply ring, 12: Brush, 15: Electrode lifting device, 17: Electrode grip, 18: Electrode holder,
19: Seal, 20: Water-cooled copper tube.

Claims (1)

【特許請求の範囲】 1 上部電極と下部電極とを具備し、装入物を通
しての抵抗加熱により発熱を行う竪型亜鉛蒸留製
錬炉において、上部電極が炉頂に設けられる単一
の電極とされたことを特徴とする亜鉛蒸留製錬
炉。 2 上部電極がゼーダーベルグ電極である特許請
求の範囲第1項記載の亜鉛蒸留製錬炉。 3 下部電極が炉底下に設けられる単一電極であ
る特許請求の範囲第1項記載の亜鉛蒸留製錬炉。
[Claims] 1. In a vertical zinc distillation smelting furnace that is equipped with an upper electrode and a lower electrode and generates heat by resistance heating through the charge, the upper electrode is a single electrode provided at the top of the furnace. Zinc distillation smelting furnace characterized by: 2. The zinc distillation smelting furnace according to claim 1, wherein the upper electrode is a Soederberg electrode. 3. The zinc distillation and smelting furnace according to claim 1, wherein the lower electrode is a single electrode provided below the furnace bottom.
JP12063882A 1982-07-13 1982-07-13 Electric furnace for smelting Granted JPS5912283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12063882A JPS5912283A (en) 1982-07-13 1982-07-13 Electric furnace for smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12063882A JPS5912283A (en) 1982-07-13 1982-07-13 Electric furnace for smelting

Publications (2)

Publication Number Publication Date
JPS5912283A JPS5912283A (en) 1984-01-21
JPS6121291B2 true JPS6121291B2 (en) 1986-05-26

Family

ID=14791168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12063882A Granted JPS5912283A (en) 1982-07-13 1982-07-13 Electric furnace for smelting

Country Status (1)

Country Link
JP (1) JPS5912283A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431438Y2 (en) * 1986-03-04 1992-07-28
JPS6373478U (en) * 1986-11-01 1988-05-16
JPH0818290B2 (en) * 1987-01-14 1996-02-28 松下電工株式会社 Louvered panel structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773140A (en) * 1980-10-27 1982-05-07 Nippon Mining Co Ltd Electric furnace for refining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773140A (en) * 1980-10-27 1982-05-07 Nippon Mining Co Ltd Electric furnace for refining

Also Published As

Publication number Publication date
JPS5912283A (en) 1984-01-21

Similar Documents

Publication Publication Date Title
EP0975926B1 (en) Method and calcining furnace for electric calcining of carbonaceous material
US5218617A (en) Apparatus for feeding iron-bearing materials to metallurgical furnaces
GB1455221A (en) Method of melt reduction
EP0242995B1 (en) Process and apparatus for producing alloy containing terbium and/or gadolinium
US3896257A (en) Electric arc furnace for melting metals and metal melting method using such furnace
US3985545A (en) Metal melting method using electric arc furnace
JPS6121291B2 (en)
US3714002A (en) Alumina reduction cell and improved anode system therein
RU2487181C1 (en) Method for electroslag remelting of metal-containing wastes
US2300355A (en) Process for the production of carbides and ferro-alloys
CA1213928A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
US4468164A (en) Method and apparatus for feeding raw material to a furnace
CA1218831A (en) Plant for producing calcium carbide
US2343337A (en) Apparatus for melting metal
US2744944A (en) Rotating electric phosphorus furnace
US3147331A (en) Electric shaft furnace
EP0200405A1 (en) Improvements in or relating to the melting of ferrous solids
US2461442A (en) Process of making ferro-alloys
CN215002843U (en) Electric arc furnace convenient to unload
CN112996932B (en) Device for chlorinating titanium-containing raw material in chloride salt melt
US3117175A (en) Apparatus for making aluminum silicon alloys
CN218888735U (en) Device for manufacturing through hole for electrode in use of submerged arc furnace
US1254079A (en) Electric smelting-furnace.
SU559966A1 (en) The method of melting metals and alloys in skull furnaces
RU166321U1 (en) INSTALLATION OF ELECTRIC SLAG RELEASING OF METAL CHIP