JPS61212804A - Radiation-resistant image fiber - Google Patents

Radiation-resistant image fiber

Info

Publication number
JPS61212804A
JPS61212804A JP60052526A JP5252685A JPS61212804A JP S61212804 A JPS61212804 A JP S61212804A JP 60052526 A JP60052526 A JP 60052526A JP 5252685 A JP5252685 A JP 5252685A JP S61212804 A JPS61212804 A JP S61212804A
Authority
JP
Japan
Prior art keywords
quartz glass
image fiber
glass
softening point
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60052526A
Other languages
Japanese (ja)
Other versions
JPH0335642B2 (en
Inventor
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60052526A priority Critical patent/JPS61212804A/en
Publication of JPS61212804A publication Critical patent/JPS61212804A/en
Publication of JPH0335642B2 publication Critical patent/JPH0335642B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the radiation-resistant characteristic of the titled image fiber by disposing an image transmission part constituted of many cores composed of pure quartz glass and clad composed of F-doped quartz glass enclosing each core and a jacket consisting of quartz glass having the softening point higher than the softening point of the quartz glass as the outermost quartz glass layer. CONSTITUTION:The image fiber is formed of the core 1 consisting of the pure quartz, the clad 2 consisting of the F-doped quartz glass enclosing the cores 1 and the jacket 3 consisting of the quartz glass having the high softening point. The quartz glass which is added with nitrogen and has a high softening point of about 50 deg.C is used as the quartz glass having the high softening point. The image fiber having the high radiation resistance is obtd. The high-softening point quartz glass such as, for example the glass added with Al2O3 in place of nitrogen is also usable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、1本のガラスファイバの中に多数のコアを有
するイメージファイバ構造からガる耐放射線イメージフ
ァイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a radiation-resistant image fiber formed from an image fiber structure having multiple cores in a single glass fiber.

く従来の技術〉 一般に、イメージファイバは、工業用内視鏡用として近
年急速に需要が増加しつつある。ところで、工業用イメ
ージファイバは、その特性のうち、画質8分解能等の伝
送特性と外径寸法、許容曲げ径等の機械特性が重要であ
るが、原子力発電所内での冷却水配管検査等を目的とし
た特殊工業用イメージファイバは、萬放射線環境下でも
伝送特性の劣化が少ないことが要求され、その要求はま
す捷す厳しいものとなυつつある。
BACKGROUND ART Generally, the demand for image fibers for use in industrial endoscopes has been rapidly increasing in recent years. By the way, among the characteristics of industrial image fibers, transmission characteristics such as image quality 8 resolution, mechanical characteristics such as outer diameter size and allowable bending diameter are important, but they are used for purposes such as cooling water piping inspection in nuclear power plants. Special industrial image fibers are required to have minimal deterioration in transmission characteristics even in a radioactive environment, and these requirements are becoming increasingly strict.

すなわちイメージファイバの耐放射線特性のうち、放射
線被曝による伝送損失の増加が最も重要で、イメージフ
ァイバの構成ガラス材料−と製造プロセスによりほぼ決
定されることから、ガラス材料としては石英系ガラスが
優れており、第3図に示すように、特に光を伝送するコ
ア1が純粋石英ガラスで、それをとυ丑〈クラッド2が
Fドージ石英ガらスからなり、純粋宕英ガラスのジャケ
ット3で周囲が校覆され’tCfJ造のイメージファイ
バが最も優れていることが知られている。
In other words, among the radiation resistance characteristics of image fibers, the increase in transmission loss due to radiation exposure is the most important, and this is largely determined by the constituent glass materials of the image fiber and the manufacturing process, so silica-based glass is superior as a glass material. As shown in Fig. 3, the core 1 that transmits light is made of pure silica glass, and the cladding 2 is made of F-doge quartz glass, and the jacket 3 of pure quartz glass surrounds it. It is known that the image fiber made of 'tCfJ is the most excellent.

また、製造プロセスでに、線引の条件が支配的であり、
温度は向ければ高い方か望′ましい。
Also, in the manufacturing process, the drawing conditions are dominant,
The higher the temperature, the better.

それは、低温で線引した場合、ガラスが加工歪を受け、
欠陥を生じ、放射線被曝時に着色中心となシ、伝送損失
増となるためである。逆に温度が高ければ高いほど欠陥
の発生量は少なく、耐放射線は向上する。
This is because when drawn at low temperatures, the glass undergoes processing distortion.
This is because defects occur, and when exposed to radiation, the fibers become mainly colored, resulting in an increase in transmission loss. Conversely, the higher the temperature, the fewer defects will occur and the radiation resistance will improve.

したがって、従来は、上記糾!引時に発生する欠陥を少
々くするため、線引温度を可能な限り上げるとともに線
引速度全可能々限り低下させていたが、第3図に示した
ような従来構造のイメージファイバにおいて極端に温度
を上げ、線引速度全低下させた場合、ガラスの粘度が極
度に低下するため、母材のネックダウン部が非常に軟ら
かくなり、線引されたイメージファイバが激しく振動し
たり、線径が非常に不安定となり、安定にイメージファ
イバを線引することは不可能となる。さらに極端な場合
には、自重で母材が流れ落ちるという現象が生じて線引
不可能な状態となる。
Therefore, conventionally, the above-mentioned test! In order to minimize defects that occur during drawing, the drawing temperature was raised as much as possible and the drawing speed was lowered as much as possible. If the drawing speed is increased and the drawing speed is completely reduced, the viscosity of the glass will be extremely reduced, and the neck-down part of the base material will become extremely soft, causing the drawn image fiber to vibrate violently and cause the wire diameter to become very large. The image fiber becomes unstable and it becomes impossible to draw the image fiber stably. In even more extreme cases, a phenomenon occurs in which the base material flows down due to its own weight, making it impossible to draw the wire.

〈発明が解決しようとする問題点〉 本発明は、かかる事情に鑑みて提案されたもので、耐放
射線特性に優れた一本のガラスファイバの中に多数のコ
アを有するイメージファイバに係るものである。
<Problems to be Solved by the Invention> The present invention was proposed in view of the above circumstances, and relates to an image fiber having a large number of cores in a single glass fiber with excellent radiation resistance characteristics. be.

〈問題点を解決するだめの手段〉 本発明は、特にイメージファイバ内の多数の純粋石英ガ
ラスからなるコアと、各コアを取り囲むFドニグ石英ガ
ラスからなるクラッドとから構成される画像伝送部と、
最外殻の石英ガラス層の間に石英ガラスより軟化点の高
い石英系ガラスの層を配置したことを特徴とする。
<Means for Solving the Problems> In particular, the present invention provides an image transmission section comprising a large number of cores made of pure silica glass in an image fiber, and a cladding made of F. Donig quartz glass surrounding each core;
It is characterized in that a layer of quartz-based glass, which has a higher softening point than quartz glass, is placed between the quartz glass layers of the outermost shell.

く作 用〉 本発明は、従来以上に高温、低速で線引することを可能
とし、線引時の1像伝送特性に関与するコアとクラッド
ガラス中の欠陥の発生を抑えることが可能で、得られる
イメージファイバの耐放射線特性は優れたものと彦る。
Effects> The present invention makes it possible to draw wire at a higher temperature and slower speed than before, and can suppress the occurrence of defects in the core and clad glass that are involved in the single image transmission characteristics during drawing. The resulting image fiber has excellent radiation resistance properties.

〈実施例〉 以下、本発明の実施例を第1図ないし第2図に基づいて
詳細に説明する。     ゛第1図は、本発明に係る
イメージファイバの断面構造であり、1は純粋石英のコ
ア、2はコアを取シ囲むFドープ石英ガラスからなるク
ラッド、3は高軟化点石英系ガラスのジャケットである
<Example> Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 and 2.゛Figure 1 shows the cross-sectional structure of the image fiber according to the present invention, where 1 is a pure quartz core, 2 is a cladding made of F-doped quartz glass surrounding the core, and 3 is a jacket made of high softening point silica glass. It is.

ここで、純粋石英ガラスよりも軟化点の高い石英系ガラ
スとしては、現在、伽素Nk添加した石英ガラスが知ら
れており、窒素の添加濃度は少”量添加されたものでよ
く、下記の実施例に示すよ゛うに、軟化温度は純粋石英
に比べ約50℃高い′ものがあり、このレベルで耐放射
線性を著しく改善することができる。また、軟化点の高
いガラスは、窒素を添加したものに限定されるものでは
なく、例えばAt20s k添加したガラスなどが考え
られる。
Here, as a quartz glass having a higher softening point than pure quartz glass, silica glass doped with borosene (Nk) is currently known, and a small amount of nitrogen may be added. As shown in the examples, the softening temperature is about 50°C higher than that of pure quartz, and radiation resistance can be significantly improved at this level.In addition, glass with a high softening point can be added with nitrogen. The material is not limited to the above, and for example, At20sk-added glass may be used.

第2図は本発明に係るイメージファイバの断面構造で、
最外層に純粋石英ガラス層を持つものの断面構造を示し
ており、イメージファイバの最外表面に比較的軟化点が
低く、化学的安定性に優れた純粋石英ガラス層4全配置
すれば、線引時に微細な傷が発生量にくいため、高強度
で信頼性の高いイメージファイバとすることができる。
FIG. 2 shows the cross-sectional structure of the image fiber according to the present invention.
This shows the cross-sectional structure of a fiber with a pure silica glass layer on the outermost layer.If the entire pure silica glass layer 4, which has a relatively low softening point and excellent chemical stability, is placed on the outermost surface of the image fiber, it can be drawn. Since the amount of minute scratches is less likely to occur, it is possible to create a high-strength and highly reliable image fiber.

以下、本発明による実施例の具体的構造について説□明
する。′ コア径10μm1コア間距M15μm1コアガラス、純
粋石英ガラス、クラッドガラス、Fドープ石英ガラス、
Δn=1.0%、画素数12.000でNドープ石英珈
らな兎厚さ0.17+mnのジャケットを持つイメージ
ファイバ(外径2ttan)μm引した。
The specific structure of the embodiment according to the present invention will be explained below. ' Core diameter 10 μm 1 Core distance M 15 μm 1 Core glass, pure quartz glass, clad glass, F-doped quartz glass,
An image fiber (outer diameter 2ttan) having an N-doped quartz jacket with a jacket thickness of 0.17+μm was used with Δn=1.0% and a pixel count of 12,000 μm.

iた上記線引温度は2100℃、線引速度は0.1 t
tan/1xix+である。この線引条件は、従来の構
造では安定に線引でき々い条件である。
The above drawing temperature was 2100°C, and the drawing speed was 0.1 t.
tan/1xix+. These drawing conditions are conditions that allow stable drawing in the conventional structure.

得られたイメージファイバは純粋石英ジャケットを持つ
同一材料のコア、クラッドからなり、同一寸法のイメー
ジファイバに2050℃の温度で0.5珊/mrnの線
速で線引したものより、耐放射線特性が優れたものであ
った。
The resulting image fiber consists of a core and cladding made of the same material with a pure quartz jacket, and has better radiation resistance than an image fiber of the same size drawn at a temperature of 2050°C and a drawing speed of 0.5 x/mrn. was excellent.

また、得られたイメージファイバにγ線ヲ照射したとこ
ろ累積線量105R以上の照射量においても明かるい画
像全伝送することができた。
Furthermore, when the obtained image fiber was irradiated with gamma rays, a bright image could be fully transmitted even at a cumulative dose of 105 R or more.

なお、ジャケットに用いたNドープ石英により、窒素の
添加瀦度の高いものを用いることにより、さらに特性の
優れたものが得られる。
Further, by using N-doped quartz for the jacket, which has a high degree of nitrogen doping, even better characteristics can be obtained.

また、第2図に示すように、最外層に約50μmの厚さ
の純粋石英層を付け、同一条件でrMrj引して得られ
たイメージファイバは、最小曲げ半径100膿で、全長
に亘って非常に強度の強いものが得られた。
Furthermore, as shown in Fig. 2, the image fiber obtained by applying a pure quartz layer with a thickness of about 50 μm to the outermost layer and drawing it under the same conditions has a minimum bending radius of 100 μm, and a A very strong product was obtained.

〈発明の効果〉 以上、実施例とともに詳細に説明したように、本発明に
係る耐放射線イメージファイバは、イメージファイバ内
の多数の純粋石英ガラスからなるコアと、各コアを取り
囲むFドープ石英ガラスからなるクラッドとから構成さ
れる画面伝送部と、最外の石英ガラス層との間に石英ガ
ラスより軟化点の高い石英系ガラスのジャケットを配置
した構造であり、高温、低速で線引することが可能とな
り、しかも、蕨引時の画像伝送特性に関与するコアとク
ラッドガラス中の欠陥の発生を抑えることが可能となり
、得られたイメージファイバの耐放射線特性は優れたも
のとなる。
<Effects of the Invention> As described above in detail together with the examples, the radiation-resistant image fiber according to the present invention has a core made of a large number of pure silica glasses in the image fiber, and a core made of F-doped silica glass surrounding each core. It has a structure in which a jacket made of silica-based glass, which has a higher softening point than quartz glass, is placed between the screen transmission part, which is made up of a cladding made of Moreover, it becomes possible to suppress the occurrence of defects in the core and cladding glass that are involved in image transmission characteristics during fencing, and the resulting image fiber has excellent radiation resistance characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による耐放射線イメージファイバの構造
を示す断面図、第2図はさらに本発明による耐放射線イ
メージファイバの構造を示す断面図、第3図は従来の耐
放射線イメージファイバの構造を示す断面図である。 図面中、 1は純粋石英ガラスのコア、 2はFドープ石英ガラスのクラッド、 3は高軟化点石英系ガラスのジャケット、4は純粋石英
ガラス層である。
FIG. 1 is a cross-sectional view showing the structure of a radiation-resistant image fiber according to the present invention, FIG. 2 is a cross-sectional view further showing the structure of a radiation-resistant image fiber according to the present invention, and FIG. 3 is a cross-sectional view showing the structure of a conventional radiation-resistant image fiber. FIG. In the drawings, 1 is a core made of pure silica glass, 2 is a cladding made of F-doped silica glass, 3 is a jacket made of high softening point quartz glass, and 4 is a pure silica glass layer.

Claims (3)

【特許請求の範囲】[Claims] (1)一本のガラスファイバの中に多数本のコアを有す
るイメージファイバにおいて、純粋石英ガラスからなる
コアと、各コアを取り囲むFドープ石英ガラスからなる
クラッドとから成り、その周囲を石英ガラスより軟化点
の高い石英系ガラスのジャケットで囲んだことを特徴と
する耐放射線イメージファイバ。
(1) An image fiber that has multiple cores in one glass fiber consists of a core made of pure silica glass, a cladding made of F-doped quartz glass surrounding each core, and a cladding made of F-doped silica glass surrounding each core. A radiation-resistant image fiber characterized by being surrounded by a jacket made of quartz glass with a high softening point.
(2)上記イメージファイバにおけるジャケットの最外
層が純粋石英ガラスで被覆されたことを特徴とする特許
請求の範囲第1項記載の耐放射線イメージファイバ。
(2) The radiation-resistant image fiber according to claim 1, wherein the outermost layer of the jacket of the image fiber is coated with pure silica glass.
(3)上記石英ガラスより軟化点の高い石英系ガラスか
らなるクラッドに窒化珪素をドープした石英ガラスを用
いたことを特徴とする特許請求の範囲第1項記載の耐放
射線イメージファイバ。
(3) The radiation-resistant image fiber according to claim 1, characterized in that the cladding is made of quartz glass having a higher softening point than the quartz glass and is made of silica glass doped with silicon nitride.
JP60052526A 1985-03-18 1985-03-18 Radiation-resistant image fiber Granted JPS61212804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052526A JPS61212804A (en) 1985-03-18 1985-03-18 Radiation-resistant image fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052526A JPS61212804A (en) 1985-03-18 1985-03-18 Radiation-resistant image fiber

Publications (2)

Publication Number Publication Date
JPS61212804A true JPS61212804A (en) 1986-09-20
JPH0335642B2 JPH0335642B2 (en) 1991-05-29

Family

ID=12917190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052526A Granted JPS61212804A (en) 1985-03-18 1985-03-18 Radiation-resistant image fiber

Country Status (1)

Country Link
JP (1) JPS61212804A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515682A (en) * 1978-07-21 1980-02-02 Hisao Inoue Oil pressure vibration generator
JPS58149007A (en) * 1982-03-01 1983-09-05 Dainichi Nippon Cables Ltd Multiple fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515682A (en) * 1978-07-21 1980-02-02 Hisao Inoue Oil pressure vibration generator
JPS58149007A (en) * 1982-03-01 1983-09-05 Dainichi Nippon Cables Ltd Multiple fibers

Also Published As

Publication number Publication date
JPH0335642B2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JP2013174867A (en) Optical fiber and optical fiber base material
JPH044988B2 (en)
US5048923A (en) Image fiber, image fiber preform, and manufacturing processes thereof
Lazay et al. Developments in single-mode fiber design, materials, and performance at Bell Laboratories
JPH0214850A (en) Radiation-resistant multiple fiber
US20180224598A1 (en) Multicore optical fiber and method of producing multicore optical fiber
JP2542356B2 (en) Radiation resistant method for silica optical fiber glass
KR890003438B1 (en) Process for the preparation of image fiber
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
JPS61191543A (en) Quartz base optical fiber
JPS61212804A (en) Radiation-resistant image fiber
CN105866879B (en) A kind of ultralow attenuation large effective area single-mode fiber
JPH0471019B2 (en)
CA1209090A (en) Exposing fibre bundles of glass and optical fibres to radiation
JPH10139472A (en) Glass composition for clad of refractive index distribution type optical element having core/clad structure
JPS63129035A (en) Production of optical fiber
TW421724B (en) Tantala doped waveguide and method of manufacture
JPH02311801A (en) Distributed index type circular columnar lens of quartz glass system and production thereof
JP2770092B2 (en) Radiation-resistant image fiber
JP2745415B2 (en) Image fiber manufacturing method
JPS60218607A (en) Image guide of two-layer structure
JP3408855B2 (en) Image fiber strand
JPS60142302A (en) Manufacture of image guide
JPS63313103A (en) Image fiber
JPS6110036A (en) Preform for optical fiber