JPS61212613A - Energy conversion system - Google Patents
Energy conversion systemInfo
- Publication number
- JPS61212613A JPS61212613A JP5338285A JP5338285A JPS61212613A JP S61212613 A JPS61212613 A JP S61212613A JP 5338285 A JP5338285 A JP 5338285A JP 5338285 A JP5338285 A JP 5338285A JP S61212613 A JPS61212613 A JP S61212613A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- fluid
- gas
- temperature
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K19/00—Regenerating or otherwise treating steam exhausted from steam engine plant
- F01K19/02—Regenerating by compression
- F01K19/08—Regenerating by compression compression done by injection apparatus, jet blower, or the like
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、例えば発電システムの如く、熱エネルギーを
回転又は電力の形で取出すエネルギー転換システムに関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy conversion system for extracting thermal energy in the form of rotation or electric power, such as a power generation system.
従来技術
わが国におけるエネルギー利用形態は電力等の形態が最
も多く、エネルギー源としては原子力、石油、天然ガス
、石炭等の火力及び河川、ダム等の水力が用いられてい
る。しかし、わが国では国産のエネルギー源は需要量に
比してはるかに少な−ため、大量の石油やLPG 、
LNG及びウラン等を海外から輸入している。これらの
エネルギー源の多くは電力、都市ガス、産業用燃料に利
用されている。BACKGROUND OF THE INVENTION The most common form of energy use in Japan is electricity, and energy sources include thermal power such as nuclear power, oil, natural gas, and coal, and hydraulic power from rivers and dams. However, in Japan, domestically produced energy sources are far less than the demand, so large amounts of oil, LPG,
It imports LNG, uranium, etc. from overseas. Many of these energy sources are used for electricity, city gas, and industrial fuel.
さて、燃料を燃焼させて得られる熱エネルギーから動力
を取出し、さらにこれにより発電機を運転して電気を取
出す、エネルギーの転換においては、石油、石炭、LN
GあるpはLPG等は燃料としてタービンを装備するう
/キンサイクルのボイラで燃焼され、あるいはガスター
ビンとランキンサイクルの複合サイクルのガスタービン
で燃焼され、発生した蒸気等により回転される膨張ター
ビンにより駆動される発電機により電気エネルギーに転
換されている。Now, in energy conversion, where power is extracted from the thermal energy obtained by burning fuel, and then electricity is generated by operating a generator, oil, coal, LN,
G and p are LPG, etc., which are combusted in a U/Kin cycle boiler equipped with a turbine as fuel, or in a combined cycle gas turbine and Rankine cycle, and an expansion turbine rotated by the generated steam, etc. It is converted into electrical energy by a driven generator.
こ\で、ランキンサイクルについて簡単に説明する。ど
んな流体でも、圧力とエネルギー状態により液相、気液
混合相、気相の状態になる。第6図は一般的な気体の状
態図の列で、横軸にエンタルピ、たて軸に圧力をとると
、図中の山状の曲線の左側は液相、右側は気相、曲線で
囲まれた部分は気液混合相である。例えば火力発電所で
石油等の燃料を燃焼して得られる熱エネルギーを電力に
転換する場合は、ボイラを使って上記の熱エネルギーで
水を加熱し、加圧して高温、高圧の蒸気とし、この蒸気
を膨張タービン内で膨張させてタービンを回転させ発電
機を駆動し、電力として取出す。Here, I will briefly explain the Rankine cycle. Any fluid can be in a liquid phase, a gas-liquid mixed phase, or a gas phase depending on its pressure and energy state. Figure 6 is a series of general phase diagrams of gases, with enthalpy on the horizontal axis and pressure on the vertical axis.The left side of the mountain-shaped curve in the figure is the liquid phase, and the right side is the gas phase. The lower part is a gas-liquid mixed phase. For example, when converting thermal energy obtained by burning fuel such as oil into electricity at a thermal power plant, a boiler is used to heat water with the above thermal energy, pressurize it and turn it into high-temperature, high-pressure steam. Steam is expanded in an expansion turbine, which rotates the turbine and drives a generator, which generates electricity.
この場合、エネルギーは水を媒体として転換されるが、
その場合の水の圧力、二ンタルどの状態の変化のサイク
ルを第6図中に画く(これをモリエル線図と−う。)。In this case, energy is converted using water as a medium,
The cycle of changes in the water pressure, binary, etc. state in that case is depicted in Figure 6 (this is called a Mollier diagram).
膨張タービンで膨張し、仕事をしてlの状態(エンタル
ピが11、圧力がPlの状態、以下同様)になった蒸気
は、復水器で同じ圧力のま\冷却され、2の状態の液体
(水)になる。これを昇圧ポンプによりエンタルピ一定
のま\3の状態迄昇圧し、高圧の水とする。これをボイ
ラで等圧下で加熱し、4の気化状態を経て5の状態の高
温、高圧の蒸気とし、これを膨張タービンに導入して1
段又は多段に膨張させて仕事をし、温度、圧力が低下し
、再びlの状態に戻る。The steam expands in the expansion turbine, performs work, and becomes a state of l (enthalpy is 11, pressure is Pl, the same applies hereafter), and is cooled to the same pressure in a condenser, and becomes liquid in a state of 2. become (water). The pressure of this water is raised to a state of \3 while keeping the enthalpy constant using a pressure boosting pump, resulting in high-pressure water. This is heated under equal pressure in a boiler, passes through the vaporization state 4 and becomes high temperature, high pressure steam in state 5, which is introduced into an expansion turbine and
It performs work by expanding in stages or in multiple stages, the temperature and pressure decrease, and it returns to the 1 state again.
このようなサイクルをランキンサイクルと云う。Such a cycle is called a Rankine cycle.
上記のランキンサイクルにおいて、lから2に至る低圧
蒸気の冷却液化工程では、エンタルピを11から12に
減少させるが、その熱量(il−il)は海水に投棄さ
れ利用されることなく捨てられる。In the above-mentioned Rankine cycle, the enthalpy is reduced from 11 to 12 in the cooling and liquefaction process of low-pressure steam from 1 to 2, but the amount of heat (il-il) is dumped into seawater and is wasted without being used.
−万、3の状態の高圧の水を5の状態の高温高圧の蒸気
にするには、外部の高温熱源からエンタルピ増分(iB
−il)に相当する熱量を与える必要があり、実際の火
力発電ではボイラにより燃料の燃焼による熱エネルギー
を水に与えている。したがってランキンサイクルのエネ
ルギー効率は、となるが、現実には氷から水蒸気に変化
する際の蒸発潜熱が大きいため(iB−i3)の値が大
きく、結果としてエネルギー効率ηは低く抑えられる。- In order to turn high-pressure water in state 3 to high-temperature, high-pressure steam in state 5, an enthalpy increment (iB
-il), and in actual thermal power generation, a boiler provides thermal energy to water by burning fuel. Therefore, the energy efficiency of the Rankine cycle is as follows. However, in reality, since the latent heat of vaporization when changing from ice to water vapor is large, the value of (iB-i3) is large, and as a result, the energy efficiency η is kept low.
このため〜(il−11)を大きくして、これにより効
率ηを高めようとの目的で3の圧力を出来るだけ高くし
て、5のエンタルピを高めるようにしているが、現状で
は、ポンプやタービンの機械損失や配管の摩擦損失も含
めると、発電システム全体の効率はせいぜい40乃至4
2%程度にしかならない。For this reason, the pressure of 3 is made as high as possible to increase the enthalpy of 5 in order to increase the efficiency η by increasing ~(il-11). Including the mechanical loss of the turbine and the friction loss of the piping, the efficiency of the entire power generation system is at most 40 to 4.
It only amounts to about 2%.
エネルギー源の輸入に多額の費用を掛けているわが国に
とっては、その効率の向上、換言すれば回収エネルギー
の増大化は極めて重要である。For Japan, which spends a large amount of money importing energy sources, it is extremely important to improve their efficiency, or in other words, increase the amount of recovered energy.
発明の目的
本発明は、従来のランキンサイクルによる発電システム
等のエネルギー転換システムの上述の問題点にかんがみ
、エネルギー効率の向上が可能であり、かつ従来利用で
きなかった海水等の低温の顕熱エネルギーはもとより太
陽熱等あるいはより高品質の高温エネルギーに至る各種
の熱エネルギーを回転エネルギー、電気エネルギーに転
換することのできるエネルギー転換システムを提供する
ことを目的とする。Purpose of the Invention In view of the above-mentioned problems of energy conversion systems such as power generation systems using the conventional Rankine cycle, the present invention makes it possible to improve energy efficiency and utilizes low-temperature sensible heat energy such as seawater, which has not been available in the past. The purpose of the present invention is to provide an energy conversion system that can convert various types of thermal energy, including solar heat and higher-quality high-temperature energy, into rotational energy and electrical energy.
本発明は、上記の目的を達成させるため、液状の流体を
昇圧、加熱気化させた後ポリトロープ膨張させる工程を
含むサイクルを使用して、上記加熱気化工程で外部熱源
よ゛す・熱エネルギーを取入れ、膨張工程で動力エネル
ギーに転換し外部に取出すエネルギー転換システムにお
いて、上記膨張工程の出口側で低圧気体となった流体を
、上記の主プロセスと同一種の流体を使用した補助プロ
セスにより、上記加熱気化工程における流体の温度より
高温の高圧液体となし、その流路と加熱気化工程の流体
の流路との間に設けた熱交換手段を介して加熱気化工程
の流体に熱を与えて上記高温高圧流体を冷却することに
より冷却工程が形成され上記の補助プロセスの径路は、
高圧流体が循環し昇圧ポンプと該昇圧ポンプで昇圧され
た循環流体により前記主プロセスの膨張工程出口側の低
圧気体を吸収混合液化する気体吸入混合部と主プロセス
の加熱気化工程の流路との間に設けた高圧熱交換器とを
有する循環系統と、上記熱交換器の出口側で上記循環系
統の経路より分岐し膨張弁を経てジュールトムソン効果
により低温低圧状態を得、気液槽を経て低温低圧液体を
前記主プロセスの昇圧工程のポンプに供給する経路と膨
張時にフラツシユガスとして生じる低温低圧気体を圧縮
機により中低圧に圧縮しその前後で主プロセスの膨張工
程出口側の低圧気体と混合した上で上記気体吸入混合部
の人口側に供給する経路より成る等エンタルピ膨張系統
より構成される。In order to achieve the above object, the present invention utilizes a cycle including the steps of increasing the pressure of a liquid fluid, heating and vaporizing it, and then polytropically expanding it, and in the heating and vaporizing step, thermal energy from an external heat source is taken in. In an energy conversion system that converts into power energy in the expansion process and extracts it to the outside, the fluid that has become a low-pressure gas at the outlet side of the expansion process is heated by the auxiliary process using the same type of fluid as the main process. A high-pressure liquid with a temperature higher than that of the fluid in the vaporization process is formed, and heat is applied to the fluid in the heating vaporization process through a heat exchange means provided between the flow path of the high-pressure liquid and the flow path of the fluid in the heating vaporization process to achieve the above-mentioned high temperature. The cooling process is formed by cooling the high-pressure fluid, and the path of the above auxiliary process is
A gas suction mixing section in which high-pressure fluid circulates and the low-pressure gas on the outlet side of the expansion step of the main process is absorbed and liquefied by a booster pump and the circulating fluid pressurized by the booster pump, and a flow path of the heating vaporization step of the main process. A circulation system having a high-pressure heat exchanger installed in between, and a path branching from the circulation system at the outlet side of the heat exchanger, passing through an expansion valve to obtain a low-temperature and low-pressure state by the Joule-Thomson effect, and passing through a gas-liquid tank. A route for supplying the low-temperature, low-pressure liquid to the pump in the pressure increase step of the main process, and a compressor to compress the low-temperature, low-pressure gas generated as flash gas during expansion to medium-low pressure, and mix it with the low-pressure gas at the outlet of the expansion step of the main process before and after that. It is composed of an isenthalpic expansion system consisting of a path supplying the gas to the artificial side of the gas suction mixing section.
作 用 以下に本発明の作用を図面に基いて詳細に説明する。For production The operation of the present invention will be explained in detail below based on the drawings.
第1図は本発明のエネルギー変換システムのサイクルを
示すモリエル線図であり、横軸にエンタルピ、たて軸に
圧力をとって示す。FIG. 1 is a Mollier diagram showing the cycle of the energy conversion system of the present invention, with enthalpy plotted on the horizontal axis and pressure plotted on the vertical axis.
図中の1.2.3.4.5は第6図に示したランキンサ
イクルの同じ符号の位置に対応する。本発明のシステム
の主プロセスでは、ランキンサイクルと対比すると1か
ら直接2に進む冷却液化工程が欠けている。これを補う
ために、このシステムでは、図中にA−+B−4B゛で
示す高温高圧液体が示される等エンタルピ膨張系統とよ
り成る補助プロセスが設けられ、この補助プロセスの循
環系統により主プロセスのぎりトロープ膨張工程5→l
で低圧気体となった流体は、加熱気化工程3→5での流
体より高温のAの状態の高圧液体になり、循m系統の流
体と一終にA−+B (又はC)と進み、この間に補助
プロセスの流路と主プロセスの加熱気化工程の流路との
間に設けた熱交換器により加熱気化工程の流体に熱エネ
ルギーを与え自らに冷却される。更に、補助プロセスを
流れる液状流体はB(又はC)において循環系統と等エ
ンタルピ膨張系統に分岐し、循環系統の流体は昇圧ポン
プを経て気体吸入混合部に至り、再度上述のF→Aの低
圧気体吸収動作を行なうが、等エンタルピ膨張系統の流
体は膨張弁を経てジュールトムソン効果により低温低圧
の液体とフラッシュガス(気体)となり、気液槽にて両
相は分離される。1.2.3.4.5 in the figure correspond to the positions of the same sign in the Rankine cycle shown in FIG. In contrast to the Rankine cycle, the main process of the system of the present invention lacks a cooling liquefaction step that goes directly from 1 to 2. To compensate for this, this system is equipped with an auxiliary process consisting of an isenthalpic expansion system, where the high-temperature, high-pressure liquid is shown as A-+B-4B in the figure, and the circulation system of this auxiliary process is used to control the main process. Giritrope expansion process 5→l
The fluid that has become a low-pressure gas in the heating vaporization process 3 → 5 becomes a high-pressure liquid in the state A, which is higher temperature than the fluid in the heating vaporization process 3 → 5, and it progresses to A-+B (or C) with the fluid in the circulation m system, and during this time A heat exchanger provided between the flow path of the auxiliary process and the flow path of the heating vaporization step of the main process gives thermal energy to the fluid in the heating vaporization step, and the fluid is cooled by itself. Furthermore, the liquid fluid flowing through the auxiliary process is branched into a circulation system and an isenthalpic expansion system at B (or C), and the fluid in the circulation system passes through a boost pump and reaches the gas suction mixing section, where it returns to the above-mentioned low pressure from F to A. Gas absorption is performed, and the fluid in the isenthalpic expansion system passes through the expansion valve and becomes a low-temperature, low-pressure liquid and flash gas (gas) due to the Joule-Thomson effect, and the two phases are separated in a gas-liquid tank.
気液槽の液体はD→2のルートで主プロセスの昇圧工程
のポンプに流入し、一方、気液槽の気体は圧縮機により
中低圧に圧縮され、次いで気体吸入混合部の入口側に至
り、D→E−+F−eAのルートで補助プロセ、スの循
環流体に吸収される。The liquid in the gas-liquid tank flows into the pump for the pressurization step of the main process via route D→2, while the gas in the gas-liquid tank is compressed to medium-low pressure by the compressor, and then reaches the inlet side of the gas suction mixing section. , D→E-+F-eA is absorbed into the circulating fluid of the auxiliary process.
すなわち、本発明のシステムでは、第1図例では
の手iでプロセスが構成され、ランキンサイクルの冷却
液化工程に代替している。That is, in the system of the present invention, the process is configured in step i in the example of FIG. 1, and is replaced by the cooling liquefaction step of the Rankine cycle.
第2図Fi第1図に示したサイクルに対するエネルギー
転換システムの概略構成を示す系統図であって、図の左
側に主として補助プロセス系統を、右側に主プロセス系
統を示す。両プロセスの流体は同一の流体が使用されそ
の流路の傍に記されたl、2.・・・、5及びA、B、
・・・、Fの符号の位置Fi第1図の腺図上の符号と対
応する。FIG. 2 Fi is a system diagram showing a schematic configuration of the energy conversion system for the cycle shown in FIG. 1, with the auxiliary process system mainly shown on the left side of the figure and the main process system shown on the right side. The same fluid is used in both processes, and the 1, 2. ..., 5 and A, B,
. . , the position of the symbol F corresponds to the symbol on the gland diagram in FIG.
補助プロセスは、高圧流体が循環し、昇圧ポンプP−2
と、これにより昇圧された液体で駆動されるジェットポ
ンプJP−1の如き気体吸入混合部と主プロセスの加熱
気化工程の流路3−44との間に設けられた高圧熱交換
器の1つE−2を有する循環系統と、上記熱交換器E−
2を出た後上記循環系統より分岐し、等エンタルピ膨張
弁(ジュールトムソン弁)JT−V、気液槽V−1を経
て、主プロセスの昇圧工程の昇圧ポンプP−1に接続さ
れた低温低圧液体経路と、中低圧用圧縮機C−1tUで
ジェットポンプJP −1の低圧側(吸入側)に接続さ
れたフラッシュガスの気体径路を有する等エンタルピ膨
張系統より成る。図の例では、高圧熱交換器は分岐点よ
り下流側に更に1基E−1が設けられている。気液槽V
−1における7ラフシユガスは圧縮機C−1で中低圧気
体とされた後、主プロセスの膨張工程の低圧気体1と混
合されるが、流路1と補助プロセス系統の接続方法はこ
れに限定されるものではなく、流路lを一度気液槽V−
1に導びき双方の気体を混合した上で圧縮機C−1に導
びいてもよく、或は流路】を気液槽V−1と圧縮機の中
間位に接続してもよい。。In the auxiliary process, high pressure fluid circulates and boost pump P-2
One of the high-pressure heat exchangers installed between the gas suction mixing section such as the jet pump JP-1 driven by the pressurized liquid and the flow path 3-44 of the heating vaporization step of the main process. A circulation system having E-2 and the heat exchanger E-
2, it branches off from the above circulation system, passes through an isenthalpic expansion valve (Joule-Thomson valve) JT-V, a gas-liquid tank V-1, and is connected to a boost pump P-1 in the pressure boost step of the main process. It consists of an isenthalpic expansion system having a low-pressure liquid path and a flash gas gas path connected to the low-pressure side (suction side) of the jet pump JP-1 by means of a medium-low pressure compressor C-1tU. In the illustrated example, one high-pressure heat exchanger E-1 is further provided downstream from the branch point. Gas liquid tank V
The 7 rough gas in -1 is made into medium and low pressure gas by compressor C-1, and then mixed with low pressure gas 1 in the expansion step of the main process, but the connection method between flow path 1 and the auxiliary process system is limited to this. The flow path l is once connected to the gas-liquid tank V-.
1, the two gases may be mixed and then introduced to the compressor C-1, or the flow path may be connected to an intermediate position between the gas-liquid tank V-1 and the compressor. .
気液槽V−1の下端には主プロセスの昇圧ポンプP−1
に接続する流路を設けるか、或は昇圧ポンプP−1をサ
ブマージド式として気液槽の液中に設置する。At the bottom of the gas-liquid tank V-1 is the main process boost pump P-1.
A flow path is provided to connect to the gas-liquid tank, or the boost pump P-1 is installed as a submerged pump in the liquid of the gas-liquid tank.
主プロセス系統においては昇圧ポンプP−1の吐出側の
流路は加熱気化工程に接続し、加熱気化サイクルの流体
流路のうち3→4の部分には高圧熱交換器E−1,E−
2が設けられ、その下流の4嗜5間には、外部熱源より
熱エネルギーを取入れるための昇温用熱交換器E−3が
設けられている。膨張工程5.1の間の気体流路には発
IEiG−1に回転エネルギーを供給する膨張ターピ/
T−1が設けられている。In the main process system, the flow path on the discharge side of the booster pump P-1 is connected to the heating vaporization process, and the high-pressure heat exchanger E-1, E-
A heating heat exchanger E-3 for taking in thermal energy from an external heat source is provided between the four and five downstream thereof. During the expansion step 5.1, the gas flow path is provided with an expansion turret/turbine that supplies rotational energy to the source IEiG-1.
T-1 is provided.
以下に、このエネルギー転換システムの作用全説明する
。The entire operation of this energy conversion system will be explained below.
主プロセスの気液槽V−1の底部より出て3゜4.5を
経て1の低圧気体になる迄の流路を流れる流体の流量を
q0七し、補助プロセスの循環系統流路B、B’、Aを
流れる流体の流量をq、、Bで分岐し、気液槽V−1に
至る流体の流量をql、気液槽V−1を出て、圧縮機C
−1を経てジェットポンプJP−1の吸入側に至る流路
を流れる流体の流量を△q、とする。なお、この△q、
は膨張弁におけるジュールトムソン効果に伴なうフラッ
シュガスに相当する流量であり、主プロセスの流量q0
と合流してq、になる◎すなわち−q、+Δq、 w
ql1であるO
ジェットポンプJP −1では高圧循環流体(流量q、
)が中低圧気体(流量q0+ΔQ、=Q、)を吸収混
合液化し、従ってAからBの間a q、 + q、の流
量の液体が流れることになる。The flow rate of the fluid flowing through the flow path from the bottom of the main process gas-liquid tank V-1 through 3°4.5 to become a low pressure gas of 1 is q07, and the auxiliary process circulation system flow path B, B', the flow rate of the fluid flowing through A is branched at q,, the flow rate of the fluid reaching the gas-liquid tank V-1 is ql, and the flow rate of the fluid flowing through the gas-liquid tank V-1 is ql, and the flow rate of the fluid flowing through the gas-liquid tank V-1 is transferred to the compressor C.
Let Δq be the flow rate of the fluid flowing through the flow path that passes through -1 and reaches the suction side of jet pump JP-1. Furthermore, this △q,
is the flow rate corresponding to the flash gas due to the Joule-Thomson effect in the expansion valve, and the flow rate of the main process q0
merges with q to become ◎, that is, −q, +Δq, w
In the jet pump JP-1, high-pressure circulating fluid (flow rate q,
) absorbs and liquefies medium and low pressure gas (flow rate q0+ΔQ,=Q,), and therefore, a liquid with a flow rate of a q, + q, flows between A and B.
さて、図示せぬ適宜の制御弁によりB点で循環系統径路
に分岐導入された流量q2の高圧流体は昇圧ポンプP−
,2によりモリエル線図でB′で示される圧力迄昇圧さ
れ、ジェットポンプJP−1のノズルから噴出される。Now, the high-pressure fluid with a flow rate q2 branched into the circulation system path at point B by an appropriate control valve (not shown) is transferred to the boost pump P-
, 2 to the pressure indicated by B' in the Mollier diagram, and is ejected from the nozzle of jet pump JP-1.
これにより、ジェットポンプJP−1のノズル開口を囲
繞するポンプ室中の中低圧流体はベルヌーイの定理によ
りノズルから噴出する流体に吸引され、ジェットポンプ
JP −1の中低圧側に接続された流路よりq、の流量
の中低圧ガスが連続的に吸引され、ノズルより噴出した
q2の流量の高圧液体と混然一体となりq、+q2の量
のA点で示される高温、高圧の液体となってAB間の径
路を流れ、その間に高圧熱交換器E−2を介して主プロ
セスの加熱気化工程3−4間の径路を流れる流体に熱エ
ネルギーを与え、自らは冷却される。第2図のB点で循
環径路にq、の流量を分離した後、さらに他の高圧熱交
換器E−1を介して熱エネルギーを主プロセスの加熱気
化工程の前段部の低温の流体に与えてさらに温度が低下
した後、等エンタルピ膨張弁JT−Vにより等エンタル
ピ膨張し第1図中りで示される低圧低温状態に至り、液
体とフラッシュガス又は液体のみの状態となる。As a result, the medium and low pressure fluid in the pump chamber surrounding the nozzle opening of the jet pump JP-1 is attracted by the fluid ejected from the nozzle according to Bernoulli's theorem, and a flow path connected to the medium and low pressure side of the jet pump JP-1 is created. Medium and low pressure gas with a flow rate of q is continuously sucked in, and mixes with the high pressure liquid with a flow rate of q2 ejected from the nozzle, becoming a high temperature, high pressure liquid with an amount of q, +q2 as shown at point A. The fluid flows through the path between AB and cools itself by giving thermal energy to the fluid flowing through the path between heating and vaporization steps 3 and 4 of the main process via the high-pressure heat exchanger E-2. After separating the flow rate q into the circulation path at point B in Figure 2, thermal energy is further applied to the low-temperature fluid in the first stage of the heating vaporization step of the main process via another high-pressure heat exchanger E-1. After the temperature further decreases, isenthalpic expansion is performed by the isenthalpic expansion valve JT-V, resulting in a low pressure and low temperature state shown in the middle of FIG. 1, where there is only liquid and flash gas or liquid.
この流!q1の流体は気液槽V −1に入り、その下部
−よりqoの流量分が取り出され、昇圧ポンプP −−
1により3の状態に迄昇圧され、主プロセスの加熱気化
工程に供給され、3.4の間で補助プロセス系統側の高
温液体より高圧熱交換器E−1,E−2より熱エネルギ
ーを与えられ、さらに4.5の間で昇温用熱交換器E−
3を介して外部熱源より入熱され、5の状態の高温、高
圧のガスとなり、膨張タービンT−1により膨張し、膨
張タービデを回転させ発電機G−1を駆動する。気液槽
V −1中のフラツシユガス相当量の気体Δq1は圧縮
機C−1で中低圧に圧縮されFに至るが、その前後で主
プロセスの膨張工程の吐出気体q0と混合し、ジェット
ポンプJP −1を介して再度流量q、の高温高圧液体
に吸引される。This style! The fluid of q1 enters the gas-liquid tank V-1, and the flow rate of qo is taken out from the lower part of the tank V-1, and the fluid is sent to the boost pump P--
It is pressurized to the state of 3 by 1 and supplied to the heating vaporization step of the main process, and during 3.4, heat energy is given from the high-temperature liquid in the auxiliary process system by high-pressure heat exchangers E-1 and E-2. and further between 4.5 and 4.5, the heating heat exchanger E-
Heat is input from an external heat source through 3, and the gas becomes high temperature and high pressure in the state 5, and is expanded by the expansion turbine T-1 to rotate the expansion turbine and drive the generator G-1. The gas Δq1, which is equivalent to the flash gas in the gas-liquid tank V-1, is compressed to medium-low pressure by the compressor C-1 and reaches F, but before and after that, it is mixed with the discharged gas q0 from the expansion step of the main process, and the jet pump JP -1, and is again sucked into the high-temperature, high-pressure liquid at a flow rate of q.
以上の如く、本発明のエネルギー転換システムでは、膨
張工程終了後の中低圧気体を補助プロセスに設けた気体
吸入混合部により高温高圧液体の状態にもたらし、熱交
換完了後の温度T0を主プロセスの加熱気化工程開始時
の流体の温度T3より高くしたことにより、冷却液化工
程A−B−Cの流体の熱は自然に加熱気化工程3−5の
流体に移動し、結果として1の状態の高いエンタルピは
無駄に捨てられることがなく、システム内で活用される
。補助プロセス経路に設けられた昇圧ポンプP−2を駆
動するに要するエネルギーは、従来のランキンサイクル
によるエネルギー転換シス゛テムで海水等の冷却水に捨
てられるエネルギーよりはるかに少ないので、システム
全体のエネルギー効率は従来のシステムに比して向上す
る。As described above, in the energy conversion system of the present invention, the medium and low pressure gas after the completion of the expansion process is brought into a high temperature and high pressure liquid state by the gas suction mixing section provided in the auxiliary process, and the temperature T0 after the completion of heat exchange is set to the temperature T0 of the main process. By setting the temperature of the fluid higher than T3 at the start of the heating vaporization process, the heat of the fluid in the cooling liquefaction process A-B-C naturally moves to the fluid in the heating vaporization process 3-5, resulting in a high temperature of state 1. Enthalpy is not wasted, but is utilized within the system. The energy required to drive the boost pump P-2 installed in the auxiliary process path is much less than the energy discarded into cooling water such as seawater in a conventional Rankine cycle energy conversion system, so the energy efficiency of the entire system is Improved compared to traditional systems.
さらに、本発明のエネルギー転換システムでは、ジェッ
トポンプに吸引されるガスの全体又は一部を吸引に先立
って圧縮機により温度、エンタルピ、圧力をあるレベル
迄高めるようにしたので、気体吸入混合部で高圧循環液
体と混合して得られる流体の圧力、エンタルピ、温度レ
ベルの設定に自由度ができ、機能設計上及び経済設計上
の効果が高い。Furthermore, in the energy conversion system of the present invention, the temperature, enthalpy, and pressure of all or part of the gas sucked into the jet pump are increased to a certain level by the compressor before being sucked. There is a degree of freedom in setting the pressure, enthalpy, and temperature levels of the fluid obtained by mixing with the high-pressure circulating liquid, which is highly effective in terms of functional and economical design.
このシステムでは、主プロセス及び補助プロセスを流れ
る流体は同一の流体で、異る工程間で自身により昇温あ
るいは冷部するようにされているので、流体の種類を選
択することにより従来使用できなかった低温熱源を外部
熱源として使用することができる。例えばサイクルに使
用する流体としてエチレンXflエタンを使用すること
により1海水の顕熱や太陽熱、風力によるジュール熱等
の自然のエネルギーを利用することも可能になり石油や
石炭などの化石燃料の消費を減少し、又これらが燃焼し
た時に発生するNOx、 Co、を減らし、又自然界の
熱バランスの維持に効果がある。In this system, the fluid flowing through the main process and the auxiliary process is the same fluid, and the temperature is raised or cooled by itself between different processes, so by selecting the type of fluid, it is possible to A low temperature heat source can be used as an external heat source. For example, by using ethylene, It also reduces NOx and Co, which are generated when these are burned, and is effective in maintaining the heat balance in nature.
実m例
第】図及び第2図に示したシステムでは、高圧熱交換器
を2式設けて、その間から補助プロセスの循環系統径路
を分岐するようにしたが、2式の熱交換器を1つのケー
シング内に収納し、その中間から循環系統径路を分岐す
るようにしてもよく、或は単一の熱交換器の中間から循
環系統流体を油流してもよい。又、第3図に示す如く、
単−又は複数の高圧熱交換WE−1を通過した後の点C
から流Jiq、を流す循環系統経路を分岐するようにし
てもはヌ同じ効果が得られる。第4図はその場合のモリ
エル線図である。In the system shown in Figures 1 and 2, two sets of high-pressure heat exchangers are installed, and the circulation system route for the auxiliary process is branched from between them. The heat exchanger may be housed in two casings and the circulation system path may be branched from the middle thereof, or the circulation system fluid may be flowed from the middle of a single heat exchanger. Also, as shown in Figure 3,
Point C after passing through one or more high pressure heat exchangers WE-1
The same effect can be obtained by branching the circulation system path that carries the air flow Jiq. FIG. 4 is a Mollier diagram in that case.
膨張工程完了後の中低圧気体流路lは前記の列では圧縮
機C−1とジェットポンプP、−1の間に接続したが、
第7図(a)に示すごとく一度気液槽V−1に接続し、
膨張工程完了後の気体lと気液槽の中のフラツシユガス
を混合した後、これを圧縮機に導き中低圧としてもよく
、この場合、該当部のモリエル線図は第7図(b)の如
くになる。After the expansion process is completed, the medium and low pressure gas flow path l is connected between the compressor C-1 and the jet pumps P and -1 in the above row, but
Once connected to the gas-liquid tank V-1 as shown in Figure 7(a),
After the gas l after the completion of the expansion process is mixed with the flash gas in the gas-liquid tank, it may be introduced into the compressor to create a medium-low pressure. In this case, the Mollier diagram of the relevant part will be as shown in Figure 7 (b). become.
また、同様にして第8図のように膨張工程完了後の気体
1を気液槽V−tと圧縮機C−1の間に接続してもよく
1この場合のモリエル線図も第7図(b)とほぼ同様で
ある・
又、第5図に示すごとく、高圧熱交換工程の中間にて等
エンタルピ膨張系統流路を分岐するようにしてもほぼ同
じ効果が得られる。Similarly, the gas 1 after the completion of the expansion process may be connected between the gas-liquid tank V-t and the compressor C-1 as shown in FIG. 8. The Mollier diagram in this case is also shown in FIG. This is almost the same as (b). Also, as shown in FIG. 5, almost the same effect can be obtained even if the isenthalpic expansion channel is branched in the middle of the high-pressure heat exchange process.
なお、上記の各図に示したシステムの例は本発明の基本
概念を示すものであってシステム上の付属設備、たとえ
ばバッファータンク、弁、計器、スタートアンプ用設備
などは記載が省略されている。Note that the system examples shown in each of the figures above illustrate the basic concept of the present invention, and descriptions of attached equipment on the system, such as buffer tanks, valves, meters, start amplifier equipment, etc., are omitted. .
また、本発明tit図面に概念的に示され次構成の他、
これらのシステムを複数組合わせたもの、他のエネルギ
ー転換システムと組合せたものをも含むものである。In addition to the following configurations conceptually shown in the drawings of the present invention,
It also includes combinations of multiple of these systems and combinations with other energy conversion systems.
効果
以上の如く、本発明によれば、発電システムの如き熱エ
ネルギーを動力エネルギーに転換するシステムのエネル
ギー効率を向上させることができるのみならず、従来利
用されなかった各種の外部熱源の利用が可能になるので
、石油等の化石燃料の使用量を減少させ、その結果自然
環境の保全にも効果が得られる。Effects As described above, according to the present invention, it is possible not only to improve the energy efficiency of a system that converts thermal energy into motive energy, such as a power generation system, but also to use various external heat sources that have not been used conventionally. Therefore, the amount of fossil fuels such as oil used can be reduced, and as a result, an effect can be obtained on the conservation of the natural environment.
第1図は本発明のシステムのモリエル、Ii図、第2図
はそのシステムの基本概念を示す系統図、第3図は本発
明の他の実施例の系統図、第4図はそのモリエル線図、
第5図は本発明の他の実施例のモリエル線図、第6図は
公知のランキンサイクルのモリエル線図、第7図(a)
(b)は本発明の変形実施例の一部系統図及びモリエ
ル線図、第8図は他の変形実施例の一部系統図である。
2→3→5→l・・・主プロセス、
A−C・・・冷却工程、2−3・・・昇圧工程、3−4
−5・・・加熱気化工程、
5−1・・・膨張工程、T−1・・・膨張タービン、E
−1,E−2・・・高圧熱交換器(第3図ではE−1)
、
E−3・・・外部熱源からの入熱手段(第3図ではE−
2)、
P−1,P−2・・・昇圧ポンプ、
JP−1・・・ジェットポンプ、JT−V・・・膨張弁
、V−1・・−気液槽、C−1・・・圧縮機第1図
エンタルピ i
第5図
エンタルピ亀Figure 1 is a Mollier diagram of the system of the present invention, Ii diagram, Figure 2 is a system diagram showing the basic concept of the system, Figure 3 is a system diagram of another embodiment of the present invention, and Figure 4 is its Mollier line. figure,
FIG. 5 is a Mollier diagram of another embodiment of the present invention, FIG. 6 is a Mollier diagram of a known Rankine cycle, and FIG. 7(a)
(b) is a partial system diagram and Mollier diagram of a modified embodiment of the present invention, and FIG. 8 is a partial system diagram of another modified embodiment. 2→3→5→l... Main process, A-C... Cooling process, 2-3... Pressure increasing process, 3-4
-5... Heating vaporization process, 5-1... Expansion process, T-1... Expansion turbine, E
-1, E-2...High pressure heat exchanger (E-1 in Figure 3)
, E-3...Heat input means from an external heat source (E-3 in Figure 3)
2), P-1, P-2...boost pump, JP-1...jet pump, JT-V...expansion valve, V-1...-gas-liquid tank, C-1... Compressor Figure 1 Enthalpy i Figure 5 Enthalpy turtle
Claims (2)
プ膨張させる工程を含むサイクルを使用して、上記加熱
気化工程で外部熱源より熱エネルギーを取入れ、膨張工
程で動力エネルギーに転換し外部に取り出すエネルギー
転換システムにおいて、上記膨張工程の出口側で低圧気
体となつた流体を、上記の主プロセスと同一極の流体を
使用した補助プロセスにより、上記加熱気化工程におけ
る流体の温度より高温の高圧液体となし、その流路と加
熱気化工程の流体の流路との間に設けた熱交換手段を介
して加熱気化工程の流体に熱を与えて上記高温高圧流体
を冷却することにより冷却工程が形成され上記の補助プ
ロセス径路は、高圧流体が循環し昇圧ポンプと該昇圧ポ
ンプで昇圧された循環流体により前記主プロセスの膨張
工程出口側の低圧気体を吸収混合する気体吸入混合部と
前記主プロセスの加熱気化工程の流路との間に設けた高
圧熱交換器とを有する循環系統と、上記高圧熱交換器の
出口側で上記循環系統より分岐し膨張弁と気液槽を経て
低温低圧液体を前記主プロセスの昇圧工程に供給する経
路とフラツシユした低温低圧気体を圧縮機で中低圧に圧
縮し次いで上記気体吸入混合部の入口側に供給する経路
より成る等エンタルピ膨張系統より構成されることを特
徴とするエネルギー転換システム。(1) Using a cycle that includes the steps of increasing the pressure of a liquid fluid, heating and vaporizing it, and then subjecting it to polytropic expansion, thermal energy is taken in from an external heat source in the heating and vaporization step, converted into power energy in the expansion step, and taken out to the outside. In an energy conversion system, the fluid that has become a low-pressure gas at the outlet side of the expansion process is converted into a high-pressure liquid at a higher temperature than the temperature of the fluid in the heating vaporization process by an auxiliary process using a fluid with the same polarity as the main process. None, the cooling process is formed by cooling the high-temperature, high-pressure fluid by applying heat to the fluid in the heating vaporization process via a heat exchange means provided between the flow path and the flow path for the fluid in the heating vaporization process. The above-mentioned auxiliary process path includes a gas suction mixing section in which high-pressure fluid circulates and absorbs and mixes low-pressure gas on the expansion stage outlet side of the main process with a boost pump and the circulating fluid pressurized by the boost pump, and a heating of the main process. A circulation system has a high-pressure heat exchanger installed between the flow path of the vaporization process, and the circulation system branches off from the above-mentioned circulation system at the outlet side of the high-pressure heat exchanger, and passes through an expansion valve and a gas-liquid tank to supply the low-temperature and low-pressure liquid to the above. It is characterized by an isenthalpic expansion system consisting of a path that supplies the pressure boosting step of the main process, and a path that compresses the flashed low-temperature, low-pressure gas to medium-low pressure using a compressor, and then supplies it to the inlet side of the gas suction mixing section. energy conversion system.
において循環系統流路と等エンタルピ膨張系統流路を分
岐することを特徴とする特許請求の範囲第1項に記載の
エネルギー転換システム。(2) The energy conversion system according to claim 1, wherein the circulation system flow path and the isenthalpic expansion system flow path are branched at an intermediate portion of the high-pressure heat exchange step of the auxiliary process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5338285A JPS61212613A (en) | 1985-03-19 | 1985-03-19 | Energy conversion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5338285A JPS61212613A (en) | 1985-03-19 | 1985-03-19 | Energy conversion system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61212613A true JPS61212613A (en) | 1986-09-20 |
Family
ID=12941270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5338285A Pending JPS61212613A (en) | 1985-03-19 | 1985-03-19 | Energy conversion system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61212613A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024897A (en) * | 2008-07-16 | 2010-02-04 | Tlv Co Ltd | Power generating device by steam |
-
1985
- 1985-03-19 JP JP5338285A patent/JPS61212613A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024897A (en) * | 2008-07-16 | 2010-02-04 | Tlv Co Ltd | Power generating device by steam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2680792B2 (en) | POWER GENERATION METHOD AND POWER GENERATION DEVICE | |
US6305158B1 (en) | Combustion turbine power plant operable at full power using supplemental compressed air | |
JP2880925B2 (en) | Hydrogen combustion gas turbine plant | |
WO2000060226A1 (en) | Brayton or brayton-rankine combined cycle with hot-gas recirculation and inverse mixing ejector | |
Ulizar et al. | A semiclosed-cycle gas turbine with carbon dioxide–argon as working fluid | |
CA2288839A1 (en) | An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle | |
JPS61212613A (en) | Energy conversion system | |
JPS61212612A (en) | Energy conversion system | |
CN109882292A (en) | A kind of LNG gas turbine coupling cold energy generation system and electricity-generating method | |
US20240183289A1 (en) | H2 power plant with o2 integration | |
JPH09144561A (en) | Hydrogen combustion gas turbine plant | |
CN107366832A (en) | A kind of LNG satellite stations cold energy generation skid makeup is put | |
CN210509312U (en) | Cold formula LNG cold energy power generation system returns based on joint cycle method | |
JPS61212614A (en) | Energy conversion system | |
JPS61212610A (en) | Energy conversion system | |
JPS61212611A (en) | Energy conversion system | |
JPH05240004A (en) | Optimum operation method for heat recovering power generation system plant | |
JPS63179104A (en) | Energy conversion system | |
JPH0240007A (en) | Power system | |
CN118148727A (en) | Supercritical carbon dioxide combined cooling heating power compressed air energy storage power generation system and method | |
Freund et al. | 6.5 Compressed air energy storage (CAES) | |
JPS61212609A (en) | Energy conversion system | |
Kruglikov et al. | Selecting the basic schematic solutions for a coal-fired power unit designed to operate at ultrasupercritical steam conditions | |
JPH11294114A (en) | Turbine plant | |
KR20240010235A (en) | Ammonia combustion power generation apparatus |