JPS61211957A - Manufacture of gas diffusion electrode - Google Patents
Manufacture of gas diffusion electrodeInfo
- Publication number
- JPS61211957A JPS61211957A JP60052405A JP5240585A JPS61211957A JP S61211957 A JPS61211957 A JP S61211957A JP 60052405 A JP60052405 A JP 60052405A JP 5240585 A JP5240585 A JP 5240585A JP S61211957 A JPS61211957 A JP S61211957A
- Authority
- JP
- Japan
- Prior art keywords
- water
- adhesive
- gas diffusion
- diffusion electrode
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8892—Impregnation or coating of the catalyst layer, e.g. by an ionomer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8896—Pressing, rolling, calendering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、空気電池、燃料電池などに用いられるガス拡
散電極を製造する方法に関し、更に詳しくはガス拡散電
極の触媒層と撥水性多孔Jf!1膜とを強固に接着せし
める方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a gas diffusion electrode used in air cells, fuel cells, etc., and more specifically relates to a method for producing a catalyst layer and a water-repellent porous Jf! gas diffusion electrode. This invention relates to a method for strongly adhering two films.
[発IJJの技術的背景とその問題点]例えば、空気中
のm素を正極活物質として利用する空気電池においては
ガス拡散電極が収納されている。このガス拡散′iTL
極は、概ね、第1図に断面図として示したような構造の
シートである。第1図で、lは集電体として411!能
する例えばニッケルネット、2は活性炭のような触媒体
を例えばポリテトラフロロエチレン(PTFE)樹脂で
結着して成る触媒層のシートである。3は微細な空気透
過孔が分布する撥水性多孔質膜で該膜は接着剤層4を介
して触媒層2に接着されている。[Technical background of IJJ and its problems] For example, in an air battery that uses m elements in the air as a positive electrode active material, a gas diffusion electrode is housed. This gas diffusion′iTL
The poles are generally sheets of construction as shown in cross-section in FIG. In Figure 1, l is 411 as a current collector! For example, the nickel net 2 is a sheet of a catalyst layer formed by binding a catalyst material such as activated carbon with, for example, polytetrafluoroethylene (PTFE) resin. Reference numeral 3 denotes a water-repellent porous membrane in which fine air permeation holes are distributed, and this membrane is adhered to the catalyst layer 2 via an adhesive layer 4.
このような構造のガス拡散電極において、触媒層2と撥
水性多孔質膜3を接着して一体化する方法としては、従
来から次のような方法が知られている。In the gas diffusion electrode having such a structure, the following method is conventionally known as a method for bonding and integrating the catalyst layer 2 and the water-repellent porous membrane 3.
例えば、触媒層の表面に直接撥水性多孔質膜を当接して
これを圧着する方法や、特開昭57−145271号公
報に開示されているように、撥水性多孔質膜の片面に触
媒体粉末とフッ素樹脂のような撥水性の結着剤から成る
ペーストを塗布し、これを 100〜400℃の温度で
熱処理する方法である。For example, there is a method in which a water-repellent porous membrane is directly brought into contact with the surface of the catalyst layer and then pressure-bonded, or a catalyst layer is placed on one side of the water-repellent porous membrane as disclosed in Japanese Patent Application Laid-Open No. 57-145271. This method involves applying a paste consisting of powder and a water-repellent binder such as fluororesin, and heat-treating this at a temperature of 100 to 400°C.
しかしながら、前者の方法にあっては、撥水性多孔質膜
を圧着する際に加える圧力の調節が困難で、この圧着力
が小さすぎると、電池の保存中若しくは放電中に触媒層
と撥水性多孔質膜との間に電解液が溜ってしまい、電池
の放電特性の低下のみならず空気極側から電解液が漏洩
するという事態を招く。However, in the former method, it is difficult to adjust the pressure applied when pressing the water-repellent porous membrane, and if this pressing force is too low, the catalyst layer and the water-repellent porous membrane may be damaged during storage or discharge of the battery. The electrolytic solution accumulates between the electrode and the battery, causing not only a decrease in the discharge characteristics of the battery but also a situation in which the electrolytic solution leaks from the air electrode side.
また、他の方法として、触媒層若しくは撥水性多孔質1
1りの片面に例えば60%PTFEディスパージョンを
均一に吹きつけ、加熱処理を施したのち。In addition, as another method, a catalyst layer or a water-repellent porous 1
After uniformly spraying, for example, 60% PTFE dispersion onto one side of the sheet and subjecting it to heat treatment.
両者を圧着して一体化する方法も知られている。A method of crimping and integrating the two is also known.
この方法によれば、上記した不都合な事態はある程度解
消される。しかし、ディスパージョン中のPTFE粉末
を撥水性多孔質膜によ〈接着するが他力の触媒層表面と
はなじまないので、一体化シートにおける両者間の接着
力は必ずしも充分とはいえない。According to this method, the above-mentioned inconvenient situation can be solved to some extent. However, although the PTFE powder in the dispersion adheres to the water-repellent porous membrane, it does not blend with the surface of the catalyst layer due to other forces, so the adhesive force between the two in the integrated sheet is not necessarily sufficient.
両者間の接着強度を高めるためには両者を圧着する力を
大きくすればよいが、しかしその場合には、撥水性多孔
質膜が備える微細孔をつぶしてしまい、その結果、酸素
の流入が抑制され電池からは必要とする電流が取りだせ
なくなる。In order to increase the adhesive strength between the two, it is possible to increase the force that presses them together, but in that case, the micropores in the water-repellent porous membrane will be crushed, and as a result, the inflow of oxygen will be suppressed. As a result, the required current cannot be extracted from the battery.
このようなことから、撥水性多孔質膜の微細孔をつぶす
ことなく該膜と触媒層とを強固に接着する方法の改善が
強く求められている。For these reasons, there is a strong demand for an improved method for firmly adhering a water-repellent porous membrane to a catalyst layer without crushing the micropores of the membrane.
[発明の目的]
本発明は、上記要請に応え、触媒層と撥水性多孔質膜と
が強固に接着されたガス拡散電極の製造方法の提供を目
的とする。[Object of the Invention] In response to the above-mentioned needs, the present invention aims to provide a method for manufacturing a gas diffusion electrode in which a catalyst layer and a water-repellent porous membrane are firmly bonded.
[発明の概要]
本発明のガス拡散電極の製造方法は、触媒層と撥水性多
孔質膜とを接着剤を介して接着するガス拡散電極の製造
方法において、該触媒層の表面に該vc着剤を塗布し、
該接着剤塗布面に圧力を印加して該接着剤を該触媒層に
接着させ、ついで、その上に該撥水性多孔質膜を載置し
て圧着することを特徴とする。[Summary of the Invention] The method for producing a gas diffusion electrode of the present invention is a method for producing a gas diffusion electrode in which a catalyst layer and a water-repellent porous membrane are bonded together via an adhesive. Apply the agent,
The method is characterized in that pressure is applied to the adhesive-applied surface to adhere the adhesive to the catalyst layer, and then the water-repellent porous membrane is placed and pressure-bonded thereon.
本発明方法における触媒層は、通常空気電池等に用いら
れているものであれば何であってもよいが、例えば所定
粒径の活性炭粉末のような触媒体と撥水性の結着樹脂を
所定量混合したのち、この混合物を圧延して成形したシ
ー!・があげられる。The catalyst layer in the method of the present invention may be of any material that is normally used in air batteries, etc.; After mixing, this mixture was rolled and formed into a sheet!・Can be mentioned.
このシートを例えばニッケルネットのような集電体に圧
着し両者を一体化したのち、触媒層の他方の面に接着剤
を塗布する。After this sheet is pressed onto a current collector such as a nickel net to integrate the two, an adhesive is applied to the other surface of the catalyst layer.
用いる接着剤としては、撥水性樹脂ディスパージョン又
は撥水性樹脂粉末である。前者の好適例としては20〜
60%のPTFEのディスパージョン。The adhesive used is a water-repellent resin dispersion or a water-repellent resin powder. A suitable example of the former is 20~
60% PTFE dispersion.
後者のそれは粒径l〜5−のPTFE粉末をあげること
ができる。これら接着剤の塗布量があまり少なすぎると
接着剤層の厚ふが薄くなり触媒層と後述の撥水性多孔質
膜間の接着力の低下を招き、またあまりに多すぎると接
着剤層の厚みが大きくなって酸素透過使の低下をきたし
電池性能が落ちるので、通常は7〜40g/rn’程度
の塗布量であることが好ましい。塗布方法としては、吹
き付け、刷℃塗り、スクリーン印刷゛等常法が適用でき
る。The latter may include PTFE powder with a particle size of 1 to 5. If the amount of these adhesives applied is too small, the thickness of the adhesive layer will become thin, leading to a decrease in the adhesive force between the catalyst layer and the water-repellent porous membrane described below. If the size increases, oxygen permeability decreases and battery performance deteriorates, so it is usually preferable that the coating amount be about 7 to 40 g/rn'. As a coating method, conventional methods such as spraying, printing, screen printing, etc. can be applied.
本発明方法にあっては、ついで、接着剤層の上から圧力
を印加して該接着剤を触媒層に強く接着せしめる。この
工程を必須とすることが本発明方法の最大の特徴である
。In the method of the present invention, pressure is then applied from above the adhesive layer to firmly adhere the adhesive to the catalyst layer. The greatest feature of the method of the present invention is that this step is essential.
この圧力印加は1通常ローラーを用いて行なわれる。こ
のとき、接着剤層に単純に圧力を印加するだけではなく
、該接着剤を触媒層の中にすり込むような運動を付加す
ると接着剤と触媒層との接着力が高まるので有効である
。This pressure application is usually carried out using a roller. At this time, it is effective not only to simply apply pressure to the adhesive layer, but also to add movement such as rubbing the adhesive into the catalyst layer, since this increases the adhesive force between the adhesive and the catalyst layer.
なお、接着剤の塗布面に圧力を印加する前又は印加した
のち、全体を 150〜350℃の温度で10〜30分
間熱処理することが好ましい、これは、例えばPTFE
ディスパージョンのような接着剤に含まれている各種の
界面活性剤を除去して触媒層と後述の撥水性多孔質膜と
の間の接着強度を高めるために有効な処理である。しか
しながら、処理温度が350℃より高い場合には、触媒
層の結着剤であるPTFEが融解してしまい触媒層の強
度低下を引起こして結局は接着強度の低下を招く、また
、 150℃未満の温度でもやはり高い接着強度は得ら
れない。In addition, before or after applying pressure to the surface to which the adhesive is applied, it is preferable to heat-treat the entire adhesive at a temperature of 150 to 350°C for 10 to 30 minutes.
This treatment is effective for removing various surfactants contained in adhesives such as dispersions and increasing the adhesive strength between the catalyst layer and the water-repellent porous membrane described below. However, if the treatment temperature is higher than 350°C, the PTFE, which is the binder of the catalyst layer, will melt, causing a decrease in the strength of the catalyst layer and eventually resulting in a decrease in adhesive strength. High adhesive strength cannot be obtained even at a temperature of .
本発明方法は、最後に、このようにして形成した接着剤
層の上に撥水性多孔質膜を載置し、所定の圧力でこれを
圧着する。Finally, in the method of the present invention, a water-repellent porous membrane is placed on the adhesive layer formed in this way, and is crimped with a predetermined pressure.
用いる撥水性多孔質膜は、撥水性で微細孔が分布する膜
であれば何であってもよいが、従来から空気電池に使用
されているようなもの、例えばPTFEの多孔質膜が好
適である。The water-repellent porous membrane used may be any membrane as long as it is water-repellent and has fine pores distributed, but a porous membrane conventionally used in air batteries, such as a PTFE porous membrane, is suitable. .
圧E時に印加する圧力は撥水性多孔質膜の微細孔がつぶ
れない程度の圧力であることが必要で、例えば、 20
0〜350kg/c7I!程度でよい、また圧力印加に
際してはローラーを用いることが好ましい。The pressure applied during pressure E needs to be a pressure that does not crush the micropores of the water-repellent porous membrane, for example, 20
0~350kg/c7I! It is preferable to use a roller when applying pressure.
[発明の実施例]
(1)ガス拡散電極の製造
平均粒径15μsの活性炭粉末70重量部と、平均粒径
l−のPTFE粉末30重量部とを混合し、得られた混
合物を圧延して厚み0.3mmの触媒層シートにした。[Embodiments of the invention] (1) Production of gas diffusion electrode 70 parts by weight of activated carbon powder with an average particle size of 15 μs and 30 parts by weight of PTFE powder with an average particle size of 1− are mixed, and the resulting mixture is rolled. A catalyst layer sheet with a thickness of 0.3 mm was prepared.
このシートラ、l[lo、l冒■で網目が60メツシユ
のニッケルネットの片面に圧着した。This sheet ladle was crimped onto one side of a 60-mesh nickel net with l [lo, l vulcanization].
ついで、ニッケルネットとの圧着面と反対側のシート面
に、60%PTFEディスパージョンを塗布量7 g/
rn’で塗布したのち、全体を空気中にて300℃で1
0分間加熱した。Next, apply 60% PTFE dispersion to the sheet surface opposite to the crimped surface with the nickel net in an amount of 7 g/
After coating with rn', the whole was heated in air at 300℃ for
Heated for 0 minutes.
その後、60%PTFEディスパージョンの乾繰塗布面
に240kg/dの圧力でローラーを走査させた。Thereafter, a roller was scanned at a pressure of 240 kg/d over the dry coating surface of the 60% PTFE dispersion.
ついで、塗布面の上に厚みO,ImmのPTFE多孔質
膜を載せ、該膜の上から圧力240kg10ffでロー
ラーを走らせて接着処理を施し、第1図に示した構造の
本発明方法によるガス拡散電極を製造した。Next, a porous PTFE membrane with a thickness of 0.1 mm was placed on the coated surface, and a roller was run over the membrane at a pressure of 240 kg and 10 ff to perform an adhesion treatment, and gas diffusion according to the method of the present invention having the structure shown in Fig. 1 was performed. The electrode was manufactured.
比較のために、同一の触媒層シートに同種のPTFE多
孔質膜を直接重ねて240kg/cmの力で圧着した従
来法によるガス拡散電極も製造した。For comparison, a gas diffusion electrode was also manufactured using a conventional method in which a porous PTFE membrane of the same type was directly stacked on the same catalyst layer sheet and pressed with a force of 240 kg/cm.
(2)性能
まず、触媒層とPTFE多孔質膜との接着強度を測定し
た。測定法は、試料を輻1cmに裁断し、PTFE膜と
触媒層を 180°方向に、l cs+/sinの速度
で引張り1 この時の剥離強度を測定という方法である
。その結果、本発明方法による場合の力は90g重であ
り、比較例の場合は 10g重であった。未発I51方
法の適用により接着強度が約9倍も向上することが判明
した。(2) Performance First, the adhesive strength between the catalyst layer and the PTFE porous membrane was measured. The measurement method was to cut the sample into pieces with a diameter of 1 cm, pull the PTFE membrane and catalyst layer in a 180° direction at a speed of 1 cs+/sin, and then measure the peel strength. As a result, the force in the case of the method of the present invention was 90 g force, and in the case of the comparative example, it was 10 g force. It has been found that the application of the undeveloped I51 method improves the adhesive strength by about 9 times.
つぎに、製造したガス拡散電極を第2図に示したR44
5空気電池に実装し、その電池の放電性能及び漏液発生
率を測定した。Next, the manufactured gas diffusion electrode was R44 shown in Figure 2.
The battery was mounted on a No. 5 air battery, and the discharge performance and leakage rate of the battery were measured.
第2図において、11は正極端子を兼ねる正極缶で底部
には空気供給孔12が穿設されている。13はガス拡散
電極であって、第1図に示したように。In FIG. 2, reference numeral 11 denotes a positive electrode can which also serves as a positive electrode terminal, and an air supply hole 12 is bored in the bottom thereof. 13 is a gas diffusion electrode, as shown in FIG.
上面がニッケルネットで以下触媒層、 PTFE接着剤
層、 PTFE多孔賀多孔圧膜されて成る一体化物であ
る。14は電解液保持材で、保液性を有するとともに耐
アルカリ性を備えた不織布からなり、苛性アルカリ電解
液を保持し、ゲル状亜鉛微粉の負極15と接している。It is an integrated product consisting of a nickel net on the top surface, a catalyst layer, a PTFE adhesive layer, and a PTFE porous pressure membrane. Reference numeral 14 denotes an electrolyte holding material, which is made of a nonwoven fabric having liquid holding properties and alkali resistance, holds a caustic alkaline electrolyte, and is in contact with the negative electrode 15 made of gelled zinc fine powder.
16は通気性が優れた紙で、上面はガス拡散電極13の
PTFE多孔質膜を介して触媒層と接触し、下面は正極
缶11の底面と接触している。Reference numeral 16 is paper with excellent air permeability, the upper surface of which is in contact with the catalyst layer via the PTFE porous membrane of the gas diffusion electrode 13, and the lower surface of which is in contact with the bottom surface of the positive electrode can 11.
17は負極端子も兼ねる負極缶で、絶縁材料から成るガ
スケット18を介して正極缶11の開口部を折曲して電
池全体が封口されている。A negative electrode can 17 also serves as a negative electrode terminal, and the opening of the positive electrode can 11 is bent through a gasket 18 made of an insulating material to seal the entire battery.
このようなR44型空気電池100個を20℃及び45
℃でそれぞれ250Ωの負荷に接続して連続放電を行な
い、そのときの電池容量を測定した。その平均値を表に
示した。100 such R44 type air batteries were heated at 20°C and 45°C.
Each battery was connected to a load of 250 Ω at a temperature of 0.degree. C. for continuous discharge, and the battery capacity at that time was measured. The average values are shown in the table.
また、上記の連続放電後、電池を温度45℃、相対湿度
90%の環境下に14日間放置し、そのときの電池から
の漏液発生の有無を観察した。漏液した電池の個数をか
ぞえ発生率を算出し、その値な表に示した。Further, after the above continuous discharge, the battery was left in an environment with a temperature of 45° C. and a relative humidity of 90% for 14 days, and the presence or absence of leakage from the battery was observed at that time. The number of leaking batteries was counted to calculate the incidence rate, and the values are shown in the table.
従来のガス拡散電極を実装した場合についても同様の試
験を行ないその結果も表に併記した。Similar tests were conducted for the case where a conventional gas diffusion electrode was mounted, and the results are also listed in the table.
[発明の効果]
以上の説明で明らかなように、本発明方法で製造したガ
ス拡散電極は触媒層と撥水性多孔質膜との接着強度が著
しく大きくなり、またそれを実装した空気電池は、従来
のものに比べて、その放電性能が向上するとともに漏液
発生率が著しく低下して長期保存性が優れ信頼性の高い
ものとなる。[Effects of the Invention] As is clear from the above explanation, the gas diffusion electrode manufactured by the method of the present invention has a significantly increased adhesive strength between the catalyst layer and the water-repellent porous membrane, and the air battery equipped with the same has a significantly increased adhesive strength. Compared to conventional products, its discharge performance is improved and the rate of leakage is significantly reduced, resulting in excellent long-term storage stability and high reliability.
したがって、本発明方法の工業的価値は極めて大きいと
いうことができる。Therefore, it can be said that the industrial value of the method of the present invention is extremely large.
第1図はガス拡散電極の構造を説明するための一部断面
図であり、第2図は第1図のガス拡散電極を実装した空
気電池の一部切欠断面図である。FIG. 1 is a partial cross-sectional view for explaining the structure of a gas diffusion electrode, and FIG. 2 is a partial cross-sectional view of an air cell in which the gas diffusion electrode of FIG. 1 is mounted.
Claims (1)
るガス拡散電極の製造方法において、該触媒層の表面に
該接着剤を塗布し、 該接着剤塗布面に圧力を印加して該接着剤を該触媒層に
接着させ、ついで、その上に 該撥水性多孔質膜を載置して圧着することを特徴とする
ガス拡散電極の製造方法。 2、該撥水性多孔質膜の載置に先立ち、該接着剤の層を
150〜350℃の温度に加熱する特許請求の範囲第1
項記載のガス拡散電極の製造方法。 3、該接着剤が撥水性樹脂ディスハージョン又は撥水性
樹脂粉末である特許請求の範囲第1項又は第2項記載の
ガス拡散電極の製造方法。 4、該撥水性樹脂ディスパージョンがポリテトラフロロ
エチレンディスパージョンである特許請求の範囲第3項
記載のガス拡散電極の製造方5、該撥水性多孔質膜がポ
リテトラフロロエチレン多孔質膜である特許請求の範囲
第1項又は第2項記載のガス拡散電極の製造方法。[Claims] 1. A method for manufacturing a gas diffusion electrode in which a catalyst layer and a water-repellent porous membrane are bonded via an adhesive, comprising: applying the adhesive to the surface of the catalyst layer; A method for producing a gas diffusion electrode, which comprises applying pressure to a surface to adhere the adhesive to the catalyst layer, and then placing and pressing the water-repellent porous membrane thereon. 2. Prior to placing the water-repellent porous membrane, the adhesive layer is heated to a temperature of 150 to 350°C. Claim 1
The method for manufacturing the gas diffusion electrode described in Section 1. 3. The method for manufacturing a gas diffusion electrode according to claim 1 or 2, wherein the adhesive is a water-repellent resin dispersion or a water-repellent resin powder. 4. A method for producing a gas diffusion electrode according to claim 3, wherein the water-repellent resin dispersion is a polytetrafluoroethylene dispersion. 5. The water-repellent porous membrane is a polytetrafluoroethylene porous membrane. A method for manufacturing a gas diffusion electrode according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052405A JPS61211957A (en) | 1985-03-18 | 1985-03-18 | Manufacture of gas diffusion electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60052405A JPS61211957A (en) | 1985-03-18 | 1985-03-18 | Manufacture of gas diffusion electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61211957A true JPS61211957A (en) | 1986-09-20 |
Family
ID=12913876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60052405A Pending JPS61211957A (en) | 1985-03-18 | 1985-03-18 | Manufacture of gas diffusion electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61211957A (en) |
-
1985
- 1985-03-18 JP JP60052405A patent/JPS61211957A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3555999B2 (en) | Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell | |
JP3922451B2 (en) | Manufacturing method of membrane-electrode-gasket assembly for fuel cell | |
KR100201572B1 (en) | Method producing electrode for fuel cell with method mixing coating and rolling | |
JPS6145356B2 (en) | ||
JPS61211957A (en) | Manufacture of gas diffusion electrode | |
JPS61211958A (en) | Manufacture of gas diffusion electrode | |
JP2585250B2 (en) | Sealant for air battery | |
CN1318877A (en) | Cylindrical alkaline primary zinc-air battery and manufacturing method thereof | |
JPS59141168A (en) | Manufacturing method of gas diffusion type air pole | |
JP4262942B2 (en) | Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same | |
JPS61290658A (en) | Manufacture of air electrode | |
JPS61126777A (en) | Gas diffusion electrode for air cell | |
JP4639372B2 (en) | Air battery manufacturing method | |
JPS62126544A (en) | Manufacture of battery | |
JPS61200672A (en) | Manufacture of gas diffusion electrode | |
JPH01251564A (en) | Manufacture of gas diffusion electrode for cell | |
JP2877809B2 (en) | Manufacturing method of button type air battery | |
JPS5983354A (en) | Manufacture of organic electrolyte battery | |
CN116315169A (en) | Pole piece and battery | |
JPS603866A (en) | Flat type battery | |
JPS61216275A (en) | Button type air battery | |
JPH02253573A (en) | Air battery | |
JPS59180973A (en) | Gas diffusion electrode for battery | |
JPS6252860A (en) | Gas diffusion electrode and manufacture thereof | |
JPH0766814B2 (en) | Method for manufacturing fuel cell electrode |