JPS6121184B2 - - Google Patents

Info

Publication number
JPS6121184B2
JPS6121184B2 JP55037522A JP3752280A JPS6121184B2 JP S6121184 B2 JPS6121184 B2 JP S6121184B2 JP 55037522 A JP55037522 A JP 55037522A JP 3752280 A JP3752280 A JP 3752280A JP S6121184 B2 JPS6121184 B2 JP S6121184B2
Authority
JP
Japan
Prior art keywords
crystal grains
porcelain
tetragonal
zirconia porcelain
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55037522A
Other languages
Japanese (ja)
Other versions
JPS56134564A (en
Inventor
Tadashi Odagiri
Tetsuo Watanabe
Shunzo Mase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3752280A priority Critical patent/JPS56134564A/en
Priority to US06/245,280 priority patent/US4360598A/en
Priority to CA000373732A priority patent/CA1154793A/en
Priority to EP81301292A priority patent/EP0036786B2/en
Priority to DE8181301292T priority patent/DE3166775D1/en
Publication of JPS56134564A publication Critical patent/JPS56134564A/en
Publication of JPS6121184B2 publication Critical patent/JPS6121184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高強度でかつ特定温度領域における長
時間使用による経時劣化の極めて少ないZrO2
Y2O3系のジルコニア磁器に関するものである。 従来、ZrO2−Y2O3系のジルコニア磁器として
は、立方晶のみより成る完全安定化ジルコニア磁
器と、立方晶と単斜晶より成る部分安定化ジルコ
ニア磁器が知られており、いずれも耐熱材料、固
体電解質等として利用されている。完全安定化ジ
ルコニア磁器は、常温から約1500℃迄の温度範囲
において安定であり、長時間使用による経時劣化
もほとんどないものであるが、強度が低いので例
えば自動車排ガス中の酸素濃度を検出する酸素セ
ンサー用固体電解質として利用した場合、熱衝撃
によつて極めて破損しやすいという欠点があつ
た。一方立方晶と単斜晶よりなる部分安定化ジル
コニア磁器は、完全安定化ジルコニア磁器に較べ
ると強度は大きく耐熱衝撃性もよいものである
が、200℃ないし300℃という特定温度域における
強度の経時劣化が極めて大きく、該温度で長時間
使用した場合、磁器表面に微細なクラツクが多数
発生して吸水性を示すようになり著しく強度が低
下し、ついには破損するという重大な欠点を有し
ているものであつた。 これはZrO2−Y2O3系部分安定化ジルコニア磁
器では約1500℃の焼成温度において正方晶である
結晶粒子が約1500℃から室温への冷却中に500℃
付近で単斜晶に相変態を起こし、その際生ずる体
積変化により磁器中に過大な応力が加わりそのた
め極めて微小なクラツクが結晶粒子内に多数発生
し、このクラツクが200℃ないし300℃の特定温度
領域に長時間おかれると拡大しやがて磁器破壊に
至るものであると考えられる。 本発明はこのような部分安定化ジルコニア磁器
の欠点を解消し、優れた強度を有するとともに
200℃ないし300℃の特定温度領域における強度の
経時劣化を著しく改良したジルコニア磁器であ
り、主としてZrO2とY2O3より成りY2O3/ZrO2
モル比が2/98〜4/96の範囲であつて結晶粒子
が主として正方晶の結晶粒子より成りかつ平均結
晶粒子径が2μ以下であり、200℃ないし300℃に
おける耐久性の優れたジルコニア磁器および主と
してZrO2とY2O3より成るY2O3/ZrO2のモル比が
2/98〜7/93の範囲であつて結晶粒子が主とし
て立方晶の結晶粒子と正方晶の結晶粒子より成り
かつ平均結晶粒子径が2μ以下であり、200℃な
いし300℃における耐久性の優れたジルコニア磁
器である。 すなわち、本発明はZrO2−Y2O3系ジルコニア
磁器においてY2O3/ZrO2のモル比を特定値と
し、平均結晶粒子を特定値以下とすることにより
従来約500℃以下では相変態を起して不安定であ
つた正方晶を500℃から室温迄の温度範囲内で単
斜晶に相変態させることなく安定に存在させたも
のおよび結晶粒子を主として正方晶の結晶粒子と
するかあるいは主として立方晶の結晶粒子と正方
晶の結晶粒子とすることにより極めて高強度でか
つ特定温度領域における経時劣化の極めて少ない
ジルコニア磁器である。 本発明を更に詳しく説明すれば、正方晶が安定
に存在するためには磁器の平均結晶粒子径が2μ
以下好ましくは1μ以下であることが極めて重要
である。 すなわち平均結晶粒子径と抗折強度の関係は第
1図に示すとおり耐久試験前の曲線Aにおいては
平均結晶粒子径が2μ以上であつても強度の急激
な低下は認められないが、200℃〜300℃の特定温
度領域に1500時間保持した耐久試験後の曲線Bに
おいては、平均結晶粒子径が2μを越えると過剰
の単斜晶の生成により微細なクラツクが内存され
ているため強度が急激に低下し経時劣化が著しく
なる。さらに後述の実施例の記載のとおり、平均
結晶粒子径が2μ以下、好ましくは1μ以下であ
ると200℃〜300℃の特定温度領域に放置しても結
晶相がほとんど変化せず、正方晶が安定のまま存
在する。このように本発明において200℃ないし
300℃における耐久性に優れていると称するは200
℃ないし300℃の間の任意の温度において経時劣
化が少ないことを意味する。具体的な測定手段の
一例としては実施例で述べるように200℃ないし
300℃のすべての温度域を網羅するために、大気
中で200℃ないし300℃の間を10℃/分の昇降温速
度で加熱冷却を繰り返す耐久試験を行い、耐久前
と耐久後の抗折強度あるいは結晶相の変化を測定
するのが良い。耐久時間は長い程劣化の程度が増
大するが、1500時間程度で従来のジルコニア磁器
と本発明のジルコニア磁器との差が明瞭となる。
このように結晶粒子を小さくすると正方晶より単
斜晶への変態が起りにくい理由は、結晶粒子が微
小であると粒子の表面自由エネルギーの関係で単
斜晶より正方晶の法が安定になるものと考えられ
る。なお、平均結晶粒子の測定は、次の方法で行
なう。磁器の鏡面研磨面を弗化水素酸でエツチン
グ処理したものの電子顕微鏡写真で粒子を50個以
上含むような一定面積S内にある粒子数nを数
え、粒子1個あたりの平均面積sに等しい面積の
円の直径dを式d=(4s/π)1/2により計算
する。そしてdを同一試料の3ケ所以上の視野に
ついて求めその平均値を平均結晶粒子径とする。
粒子数nは一定面積sに完全に含まれる粒子の数
と一定面積の境界線で切られる。粒子の数の1/2
との和とする。 そしてX線回折線ピーク強度比と抗折強度との
関係は第2図に示すとおり、正方晶の(200)
面、単斜晶の(111)面、立方晶の(200)面の
X線回折線強度をそれぞれT(200)、M(11
1)、C(200)としたとき、本発明の主として正
方晶の結晶粒子よりなるジルコニア磁器Cの強度
は、従来の立方晶の結晶粒子と単斜晶の結晶粒子
よりなるジルコニア磁器の劣化前の強度Dよりも
大きく、また主として立方晶の結晶粒子と正方晶
の結晶粒子とよりなるジルコニア磁器Eは立方晶
の結晶粒子と単斜晶の結晶粒子とよりなるジルコ
ニア磁器の特定温度領域における経時劣化後の強
度Fよりも大である。また本発明のジルコニア磁
器CおよびEは立方晶のみよりなるジルコニア磁
器Gよりも高強度であり、且つ正方晶が多くなる
に従つて強度が向上する。 なお、本発明で主として正方晶より成るジルコ
ニア磁器とは、正方晶のみよりなるものは勿論の
こと(M(111)+C(200))/T(200)のX線
回折線ピーク強度比が0.4以下となるような単斜
晶および立方晶またはそのいずれか一方が存在す
るものも含まれる。上記のX線ピーク強度比の範
囲は単斜晶および立方晶またはその一方が概略20
容積パーセント以下と相当する。 また主として立方晶の結晶粒子と正方晶の結晶
粒子とより成るジルコニア磁器とは、正方晶の結
晶粒子と立方晶の結晶粒子のみよりなるものは勿
論のことT(200)/(T(200)+C(200))の
強度比が0.05以上で、M(111)/T(200)の
強度比が1以下、M(111)/(T(200)+C
(200))の強度比が0.4以下となるような単斜晶が
存在するものも含まれる。上記のX線ピーク強度
比の範囲は、単斜晶の量が全体の概略20容積パー
セント以下に相当する。 又本発明において主としてZrO2とY2O3より成
るジルコニア磁器というのは、ZrO2の安定化剤
としてY2O3を主体として用いたジルコニア磁器
を意味し、Y2O3の約30モル%以下を他の稀土類
元素酸化物、例えばYb2O3、Sc2O3、Nb2O3
Sm2O3等、あるいはCaO、MgOで置換したもの
でよい。また本発明によるジルコニア磁器は
SiO2、Al2O3、粘土等の焼結助剤を磁器全体の30
重量%以下含有するものでもよい。なお磁器を構
成している結晶相は磁器表面を研磨し、鏡面とし
た面を用いてX線回折法によつて同定する。 本発明の数値限定理由は以下のとおりである。
Y2O3/ZrO2のモル比は2/98未満では正方晶の
ジルコニア磁器は得られず、また7/93を越える
と正方晶がほとんど含まれなくなり立方晶のジル
コニア磁器となる。また2/98〜4/96の範囲外
では主として正方晶のジルコニア磁器は得られな
い。 なお、本発明のジルコニア磁器はY2O3/ZrO2
モル比が2/98〜4/96または2/98〜7/93、
結晶粒子が主として正方晶の結晶粒子または主と
して立方晶の結晶粒子と正方晶の結晶粒子より成
り、平均結晶粒子径が2μ以下というY2O3
ZrO2モル比、結晶粒子の結晶相及び平均結晶粒
子径という3要件がすべて備わつた上で200℃な
いし300℃における耐久性が優れたジルコニア磁
器となる。 なお本発明の主として正方晶の結晶粒子または
主として立方晶の結晶粒子および正方晶の結晶粒
子より成る特定値以下の平均結晶粒子径をもつ
200℃ないし300℃における耐久性の優れたジルコ
ニア磁器をつくるには組成はもとより使用する原
料、原料粒度、焼成条件、冷却条件等を選択する
ことにより容易に実施できるものである。 本発明の主として正方晶の結晶粒子より成るジ
ルコニア磁器および主として立方晶の結晶粒子お
よび正方晶の結晶粒子とよりなるジルコニア磁器
は、酸素濃淡電池を構成した場合、いずれも理論
値通りの起電力が得られたため、本発明によるジ
ルコニア磁器は酸素イオン導電性固体電解として
も十分使用できるものである。 次に実施例を述べる。 第1表に示す組成となるようにZrO2、Y2O3
はその化合物を調合しボールミル混合した。その
混合物を800℃で仮焼し、ボールミルにて湿式粉
砕し、乾燥した後その粉末をプレス成形し、1000
℃ないし1400℃にて1時間ないし3時間焼成して
本発明のジルコニア磁器を得た。そしてこれらの
磁器について平均結晶粒子径、X性回折強度、抗
折強度、体積抵抗率は比較測定した。なおX線回
折線強度比は立方晶の(200)面、正方晶の
(200)面および単斜晶の(111)面でのX線回折
線ピーク高さの比とした。抗折強度は磁器を3.5
×3.5×50mmの棒状に仕上げ3点曲げ法にて求め
た。体積抵抗率は4端子法により、大気中400℃
にて測定した。 なお第1表中200℃〜300℃耐久とあるのは200
℃〜300℃の間を、10℃/分の昇降温度速度で加
熱、冷却を繰り返した耐久試験である。各種組成
による測定結果を第1表に示す。第1表には200
℃〜300℃の耐久試験後のX線回折線強度比も記
載する。さらに第1表中「B/A×100」の欄は
耐久試験後の抗折強度を初期の抗折強度に比較し
た割合をパーセントで示し、「C/D」の欄はX
線回折線強度比において単斜晶(111)面/正方
晶(200)面の耐久試験後の値の対する初期値の
割合、すなわち耐久試験による正方晶から単斜晶
への相変態の程度、さらに換言すれば耐久試験に
よる正方晶の減少率を意味し、これが1に近い程
正方晶が安定であることを示す。第1表には本発
明の数値限定範囲外の例を参考例として合わせ記
載した。
The present invention is a ZrO 2
This relates to Y 2 O 3 based zirconia porcelain. Conventionally, as ZrO 2 −Y 2 O 3 system zirconia porcelain, fully stabilized zirconia porcelain consisting only of cubic crystals and partially stabilized zirconia porcelain consisting of cubic crystals and monoclinic crystals are known, both of which are heat resistant. It is used as a material, solid electrolyte, etc. Fully stabilized zirconia porcelain is stable in the temperature range from room temperature to approximately 1500°C, and has almost no deterioration over time due to long-term use. When used as a solid electrolyte for sensors, it has the disadvantage of being extremely susceptible to damage due to thermal shock. On the other hand, partially stabilized zirconia porcelain made of cubic and monoclinic crystals has higher strength and better thermal shock resistance than fully stabilized zirconia porcelain, but its strength over time in a specific temperature range of 200℃ to 300℃ The deterioration is extremely severe, and if it is used for a long time at this temperature, many minute cracks will occur on the porcelain surface, it will become water absorbent, the strength will decrease significantly, and it will eventually break. It was something that existed. This is because in ZrO 2 −Y 2 O 3 system partially stabilized zirconia porcelain, the crystal grains, which are tetragonal at a firing temperature of about 1500°C, are heated to 500°C during cooling from about 1500°C to room temperature.
A phase transformation to monoclinic occurs in the vicinity, and the volume change that occurs at this time applies excessive stress to the porcelain, resulting in many extremely small cracks within the crystal grains, and these cracks occur at a specific temperature of 200°C to 300°C. It is thought that if left in the area for a long time, it will expand and eventually lead to porcelain destruction. The present invention eliminates the drawbacks of partially stabilized zirconia porcelain, has excellent strength, and
Zirconia porcelain is a zirconia porcelain that has significantly improved its strength over time in a specific temperature range of 200℃ to 300℃, and is mainly composed of ZrO 2 and Y 2 O 3 with a molar ratio of Y 2 O 3 /ZrO 2 of 2/98 to 4/ Zirconia porcelain with a temperature range of 96, consisting mainly of tetragonal crystal grains, an average crystal grain size of 2 μ or less, and excellent durability at 200°C to 300°C, and mainly containing ZrO 2 and Y 2 O 3 The molar ratio of Y 2 O 3 /ZrO 2 is in the range of 2/98 to 7/93, the crystal grains are mainly composed of cubic crystal grains and tetragonal crystal grains, and the average crystal grain size is 2 μ or less It is a zirconia porcelain with excellent durability at 200℃ to 300℃. That is, the present invention sets the molar ratio of Y 2 O 3 /ZrO 2 to a specific value in ZrO 2 -Y 2 O 3 system zirconia porcelain, and sets the average crystal grain to a specific value or less, thereby preventing phase transformation at temperatures below about 500°C. The tetragonal crystal, which was unstable due to the oxidation, is made to exist stably without phase transformation to monoclinic crystal within the temperature range from 500℃ to room temperature, and the crystal grains are mainly tetragonal crystal grains. Alternatively, it is a zirconia porcelain that has extremely high strength and extremely little deterioration over time in a specific temperature range due to the fact that it mainly consists of cubic crystal grains and tetragonal crystal grains. To explain the present invention in more detail, in order for the tetragonal crystal to exist stably, the average crystal grain size of the porcelain must be 2 μm.
It is extremely important that the thickness is preferably 1μ or less. In other words, the relationship between the average crystal grain size and the bending strength is as shown in Figure 1. In curve A before the durability test, no rapid decrease in strength is observed even when the average crystal grain size is 2 μ or more, but at 200°C Curve B after a durability test held in a specific temperature range of ~300℃ for 1500 hours shows that when the average crystal grain size exceeds 2μ, the strength sharply increases due to the presence of fine cracks due to the formation of excessive monoclinic crystals. and deterioration over time becomes significant. Furthermore, as described in the Examples below, if the average crystal grain size is 2μ or less, preferably 1μ or less, the crystal phase will hardly change even if left in a specific temperature range of 200℃ to 300℃, and the tetragonal crystal will not change. It remains stable. In this way, in the present invention, the
200 is said to have excellent durability at 300℃.
This means that there is little deterioration over time at any temperature between ℃ and 300℃. As an example of a specific measurement method, as described in the examples, 200℃ or
In order to cover the entire temperature range of 300°C, we conducted an endurance test in which heating and cooling were repeated between 200°C and 300°C at a rate of 10°C/min in the air, and the bending stress was measured before and after durability testing. It is better to measure changes in strength or crystal phase. The longer the durability time, the greater the degree of deterioration, but the difference between the conventional zirconia porcelain and the zirconia porcelain of the present invention becomes clear after about 1500 hours.
The reason why transformation to monoclinic crystals is less likely to occur when crystal grains are made smaller than that of tetragonal crystals is that when crystal grains are small, the crystal grains become more stable than monoclinic crystals due to the surface free energy of the particles. considered to be a thing. Note that the average crystal grains are measured by the following method. Count the number n of particles within a certain area S that contains 50 or more particles in an electron micrograph of a mirror-polished porcelain surface etched with hydrofluoric acid, and calculate the area equal to the average area s per particle. Calculate the diameter d of the circle using the formula d = (4s/π) 1/2 . Then, d is determined for three or more visual fields of the same sample, and the average value is taken as the average crystal grain size.
The number of particles n is cut by the boundary line between the number of particles completely included in the constant area s and the constant area. 1/2 of the number of particles
be the sum of The relationship between the X-ray diffraction line peak intensity ratio and the bending strength is as shown in Figure 2.
The X-ray diffraction line intensities of the monoclinic (111) plane, and the cubic (200) plane are T(200) and M(11), respectively.
1), C(200), the strength of the zirconia porcelain C mainly made of tetragonal crystal grains of the present invention is the strength before deterioration of the conventional zirconia porcelain made of cubic crystal grains and monoclinic crystal grains. The strength D of zirconia porcelain E, which is larger than the strength D and is mainly composed of cubic crystal grains and tetragonal crystal grains, is greater than the strength D of zirconia porcelain E, which is mainly composed of cubic crystal grains and tetragonal crystal grains. This is greater than the strength F after deterioration. Furthermore, the zirconia porcelains C and E of the present invention have higher strength than the zirconia porcelain G made of only cubic crystals, and the strength increases as the number of tetragonal crystals increases. In the present invention, zirconia porcelain mainly composed of tetragonal crystals refers to zirconia porcelain mainly composed of tetragonal crystals, as well as those whose X-ray diffraction line peak intensity ratio of (M(111)+C(200))/T(200) is 0.4. Also included are monoclinic and/or cubic crystals as shown below. The above X-ray peak intensity ratio range is approximately 20% for monoclinic and/or cubic crystals.
Equivalent to volume percent or less. Also, zirconia porcelain, which is mainly composed of cubic crystal grains and tetragonal crystal grains, is not only composed of only tetragonal crystal grains and cubic crystal grains, but also T(200)/(T(200)). +C(200)) intensity ratio is 0.05 or more, M(111)/T(200) intensity ratio is 1 or less, M(111)/(T(200)+C
(200)) includes monoclinic crystals with an intensity ratio of 0.4 or less. The above range of X-ray peak intensity ratio corresponds to an amount of monoclinic crystals of approximately 20% by volume or less of the total. Also, in the present invention, zirconia porcelain mainly composed of ZrO 2 and Y 2 O 3 means zirconia porcelain mainly using Y 2 O 3 as a stabilizer for ZrO 2 , and about 30 mol of Y 2 O 3 . % or less of other rare earth element oxides, such as Yb 2 O 3 , Sc 2 O 3 , Nb 2 O 3 ,
It may be substituted with Sm 2 O 3 or the like, or with CaO or MgO. Furthermore, the zirconia porcelain according to the present invention is
Add sintering aids such as SiO 2 , Al 2 O 3 , and clay to 30% of the entire porcelain
It may contain less than % by weight. The crystalline phase constituting the porcelain is identified by X-ray diffraction using a mirror-polished surface of the porcelain. The reasons for limiting the numerical values of the present invention are as follows.
If the molar ratio of Y 2 O 3 /ZrO 2 is less than 2/98, tetragonal zirconia porcelain cannot be obtained, and if it exceeds 7/93, almost no tetragonal crystals are contained, resulting in cubic zirconia porcelain. Furthermore, if the ratio is outside the range of 2/98 to 4/96, mainly tetragonal zirconia porcelain cannot be obtained. In addition, the zirconia porcelain of the present invention is Y 2 O 3 /ZrO 2
Molar ratio is 2/98 to 4/96 or 2/98 to 7/93,
A Y 2 O 3 /
Zirconia porcelain has excellent durability at 200°C to 300°C while meeting all three requirements: ZrO 2 molar ratio, crystal phase of crystal grains, and average crystal grain size. Note that the present invention mainly consists of tetragonal crystal grains, or mainly cubic crystal grains and tetragonal crystal grains, and has an average crystal grain size of not more than a specific value.
Creating zirconia porcelain with excellent durability at 200°C to 300°C can be easily achieved by selecting the composition, raw materials used, raw material particle size, firing conditions, cooling conditions, etc. The zirconia porcelain mainly composed of tetragonal crystal grains and the zirconia porcelain mainly composed of cubic crystal grains and tetragonal crystal grains of the present invention both have an electromotive force according to the theoretical value when an oxygen concentration battery is constructed. Therefore, the zirconia ceramic according to the present invention can be fully used as an oxygen ion conductive solid electrolyte. Next, an example will be described. ZrO 2 , Y 2 O 3 or their compounds were prepared and mixed in a ball mill so as to have the composition shown in Table 1. The mixture was calcined at 800°C, wet-pulverized in a ball mill, dried, and the powder was press-molded.
The zirconia porcelain of the present invention was obtained by firing at a temperature of 1 to 3 hours at a temperature of 1 to 1400 degrees Celsius. The average crystal grain size, X-ray diffraction intensity, bending strength, and volume resistivity of these porcelains were comparatively measured. The X-ray diffraction line intensity ratio was defined as the ratio of the peak heights of the X-ray diffraction lines on the cubic (200) plane, the tetragonal (200) plane, and the monoclinic (111) plane. The bending strength of porcelain is 3.5
A bar shape of ×3.5 × 50 mm was finished using a three-point bending method. Volume resistivity was determined using the 4-terminal method at 400℃ in the atmosphere.
Measured at In addition, in Table 1, 200℃ to 300℃ durability means 200℃.
This is a durability test in which heating and cooling were repeated between ℃ and 300℃ at a rate of temperature rise and fall of 10℃/min. Table 1 shows the measurement results for various compositions. Table 1 shows 200
The X-ray diffraction line intensity ratio after the durability test at ℃ to 300℃ is also described. Furthermore, in Table 1, the "B/A x 100" column shows the ratio of the bending strength after the durability test to the initial bending strength as a percentage, and the "C/D" column shows the ratio of the bending strength after the durability test to the initial bending strength.
The ratio of the initial value to the value after the durability test of the monoclinic (111) plane/tetragonal (200) plane in the line diffraction line intensity ratio, that is, the degree of phase transformation from tetragonal to monoclinic by the durability test, In other words, it means the reduction rate of tetragonal crystals by durability test, and the closer this value is to 1, the more stable the tetragonal crystals are. Table 1 also lists examples outside the numerically limited range of the present invention as reference examples.

【表】【table】

【表】【table】

【表】 第3図には第1表中に記載の例について平均結
晶粒子径に対するC/Dの値を図示し、第4図に
は同様に平均結晶粒子に対するB/A×100の値
を図示する。第3図、第4図中の各点についてい
る数字は実施例のNo.を示す。 第1表および第3図、第4図から明らかなとお
り、本発明のジルコニア磁器は高強度で、かつ
200℃〜300℃という特定の温度領域に放置しても
結晶相、抗折強度ともほとんど変化がない。 さらにこのように特定温度領域で安定であるた
めには磁器の平均結晶粒子径が2μ以下、好まし
くは1μ以下であることが必要であると判明し
た。さらに体積抵抗率も低いものであることが確
認された。 以上述べたとおり本発明のジルコニア磁器は特
定のY2O3/ZrO2のモル比において主として正方
晶の結晶粒子または主として正方晶の結晶粒子お
よび立方晶の結晶粒子とより成り、かつその結晶
粒子径が特定値以下であることにより極めて高強
度でかつ200℃〜300℃の特定温度域における経時
劣化も著しく少ないものであり、高強度かつ耐熱
特性が要求される用途、例えば酸素濃淡電池用固
体電解質、内燃機関機構部品、サーミスタ、切削
バイト等広く工業材料として好適であり、産業上
極めて有用なものである。
[Table] Figure 3 shows the value of C/D with respect to the average crystal grain size for the examples listed in Table 1, and Figure 4 shows the value of B/A x 100 with respect to the average crystal grain. Illustrated. The numbers attached to each point in FIGS. 3 and 4 indicate the number of the example. As is clear from Table 1 and Figures 3 and 4, the zirconia porcelain of the present invention has high strength and
Even when left in a specific temperature range of 200°C to 300°C, there is almost no change in crystal phase or bending strength. Furthermore, it has been found that in order to be stable in a specific temperature range, the average crystal grain size of the porcelain must be 2 μ or less, preferably 1 μ or less. Furthermore, it was confirmed that the volume resistivity was also low. As described above, the zirconia porcelain of the present invention is composed of mainly tetragonal crystal grains or mainly tetragonal crystal grains and cubic crystal grains at a specific Y 2 O 3 /ZrO 2 molar ratio, and Because the diameter is below a certain value, it has extremely high strength and has very little deterioration over time in a specific temperature range of 200℃ to 300℃, and is suitable for applications that require high strength and heat resistance, such as solid for oxygen concentration batteries. It is suitable as an industrial material for a wide range of applications such as electrolytes, internal combustion engine mechanical parts, thermistors, cutting tools, etc., and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジルコニア磁器の平均結晶粒子径と抗
析強度との耐久試験前後の関係を示す説明図、第
2図は立方晶(200)面と正方晶(200)面のX線
回折線の強度比と抗折強度との関係および立方晶
(200)面と単斜晶(111)面のX線回折線の強度
比と経時劣化前後の抗折強度との関係を示す説明
図である。第3図は本発明のジルコニア磁器のX
線回折線強度比の初期値(C)と耐久試験後の値(D)と
の比(C/D)と平均結晶粒子径との関係を示す
特性図、第4図は同じく本発明のジルコニア磁器
の抗折強度(A)と耐久試験後の抗折強度(B)とのB/
A×100%と平均結晶粒子径との関係を示す特性
図である。
Figure 1 is an explanatory diagram showing the relationship between the average crystal grain size and anti-deposition strength of zirconia porcelain before and after the durability test, and Figure 2 shows the X-ray diffraction lines of the cubic (200) and tetragonal (200) planes. FIG. 4 is an explanatory diagram showing the relationship between the intensity ratio and the transverse strength, and the relationship between the intensity ratio of the X-ray diffraction lines of the cubic (200) plane and the monoclinic (111) plane and the transverse strength before and after aging. Figure 3 shows the X of the zirconia porcelain of the present invention.
A characteristic diagram showing the relationship between the ratio (C/D) of the initial value (C) of the line diffraction line intensity ratio and the value (D) after the durability test and the average crystal grain size, and FIG. B/ of the bending strength of porcelain (A) and the bending strength after durability test (B)
FIG. 2 is a characteristic diagram showing the relationship between A×100% and average crystal grain size.

Claims (1)

【特許請求の範囲】 1 主としてZrO2とY2O3より成り、Y2O3/ZrO2
のモル比が2/98〜4/96の範囲であつて結晶粒
子が主として正方晶の結晶粒子より成り、かつ平
均結晶粒子径が2μ以下であり、200℃ないし300 ℃における耐久性に優れていることを特徴とする
ジルコニア磁器。 2 主としてZrO2とY2O3より成り、Y2O3/ZrO2
のモル比が2/98〜7/93の範囲であつて結晶粒
子が主として立方晶の結晶粒子および正方晶の結
晶粒子とより成り、かつ平均結晶粒子径が2μ以
下であり、200℃ないし300℃における耐久性に優
れていることを特徴とするジルコニア磁器。
[Claims] 1. Mainly composed of ZrO 2 and Y 2 O 3 , Y 2 O 3 /ZrO 2
The molar ratio is in the range of 2/98 to 4/96, the crystal grains are mainly composed of tetragonal crystal grains, and the average crystal grain size is 2 μ or less, and has excellent durability at 200 ° C to 300 ° C. Zirconia porcelain is characterized by: 2 Mainly composed of ZrO 2 and Y 2 O 3 , Y 2 O 3 /ZrO 2
The molar ratio of is in the range of 2/98 to 7/93, the crystal grains are mainly composed of cubic crystal grains and tetragonal crystal grains, and the average crystal grain size is 2 μ or less, and the temperature is 200°C to 300°C. Zirconia porcelain is characterized by its excellent durability at ℃.
JP3752280A 1980-03-26 1980-03-26 Zirconia ceramics Granted JPS56134564A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3752280A JPS56134564A (en) 1980-03-26 1980-03-26 Zirconia ceramics
US06/245,280 US4360598A (en) 1980-03-26 1981-03-19 Zirconia ceramics and a method of producing the same
CA000373732A CA1154793A (en) 1980-03-26 1981-03-24 Zirconia ceramics and a method of producing the same
EP81301292A EP0036786B2 (en) 1980-03-26 1981-03-25 Zirconia ceramics and a method of producing the same
DE8181301292T DE3166775D1 (en) 1980-03-26 1981-03-25 Zirconia ceramics and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3752280A JPS56134564A (en) 1980-03-26 1980-03-26 Zirconia ceramics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63278551A Division JPH01157072A (en) 1988-11-05 1988-11-05 Oxygen concentration cell

Publications (2)

Publication Number Publication Date
JPS56134564A JPS56134564A (en) 1981-10-21
JPS6121184B2 true JPS6121184B2 (en) 1986-05-26

Family

ID=12499870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3752280A Granted JPS56134564A (en) 1980-03-26 1980-03-26 Zirconia ceramics

Country Status (1)

Country Link
JP (1) JPS56134564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536271A (en) * 2006-05-19 2009-10-08 メッツォ ペーパー インコーポレイテッド Electrostatic dehydrating element for paper web forming machine and method for coating electrostatic dehydrating element designed for paper web forming machine
JP2014055096A (en) * 2012-08-17 2014-03-27 Tosoh Corp Zirconia sintered compact and method for producing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048471B2 (en) * 1980-12-25 1985-10-28 東レ株式会社 Zirconia sintered body
JPS5832066A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPS58111630A (en) * 1981-12-25 1983-07-02 東レ株式会社 Guide for fishing line
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body
JPS58138697A (en) * 1982-02-13 1983-08-17 三菱鉛筆株式会社 Pen point made of ceramic
JPS58156577A (en) * 1982-03-11 1983-09-17 日本化学陶業株式会社 Strong and endurable zirconia sintered body
JPS5935065A (en) * 1982-08-24 1984-02-25 日本特殊陶業株式会社 Partially stabilized zirconium oxide sintered body
JPS59107966A (en) * 1982-12-06 1984-06-22 東芝セラミツクス株式会社 Manufacture of zirconia ceramics
JPS59135195A (en) * 1983-01-24 1984-08-03 京セラ株式会社 Ball pen ball made of zirconia ceramics
JPS59141013U (en) * 1983-03-11 1984-09-20 鐘淵化学工業株式会社 foam molded container
JPS59213673A (en) * 1983-05-17 1984-12-03 松下電器産業株式会社 Zirconia ceramic
JPH0772102B2 (en) * 1983-06-20 1995-08-02 東ソー株式会社 Method for manufacturing zirconia sintered body
JPS6020240U (en) * 1983-07-20 1985-02-12 日本特殊陶業株式会社 Ceramic screw-type intraosseous implant
JP2602036B2 (en) * 1987-10-29 1997-04-23 京セラ株式会社 Manufacturing method of high strength zirconia ceramic
JPH0672050B2 (en) * 1990-10-12 1994-09-14 株式会社東芝 Bonding capillaries and optical connector parts
JP2557290B2 (en) * 1991-03-29 1996-11-27 株式会社ニッカトー Abrasion resistant zirconia sintered body
JP4089261B2 (en) * 2002-03-27 2008-05-28 住友金属工業株式会社 Free-cutting ceramics, manufacturing method thereof, and probe guide parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128612A (en) * 1977-04-15 1978-11-09 Nippon Denso Co Sintered zirconia for oxygen sensor
JPS54138007A (en) * 1978-04-18 1979-10-26 Nippon Denso Co Zirconia sintered body for oxygen concentration sensor
JPS55140762A (en) * 1979-04-13 1980-11-04 Kogyo Gijutsuin Zirconia cutting tool material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128612A (en) * 1977-04-15 1978-11-09 Nippon Denso Co Sintered zirconia for oxygen sensor
JPS54138007A (en) * 1978-04-18 1979-10-26 Nippon Denso Co Zirconia sintered body for oxygen concentration sensor
JPS55140762A (en) * 1979-04-13 1980-11-04 Kogyo Gijutsuin Zirconia cutting tool material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536271A (en) * 2006-05-19 2009-10-08 メッツォ ペーパー インコーポレイテッド Electrostatic dehydrating element for paper web forming machine and method for coating electrostatic dehydrating element designed for paper web forming machine
JP2014055096A (en) * 2012-08-17 2014-03-27 Tosoh Corp Zirconia sintered compact and method for producing the same

Also Published As

Publication number Publication date
JPS56134564A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
JPS6121184B2 (en)
US4360598A (en) Zirconia ceramics and a method of producing the same
JPS6116125B2 (en)
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
US4113928A (en) Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
JPH08208333A (en) Conductive material for oxygen ion and its production
JPS6022302A (en) Oxide semiconductor for thermistor
JPH0258232B2 (en)
US6204748B1 (en) Yttrium chromite chromia thermistors
JPS6353148B2 (en)
JPS6121185B2 (en)
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH0371386B2 (en)
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
JPH034505B2 (en)
JP3201477B2 (en) Composition for thermistor
JPH0446918B2 (en)
JPH04139062A (en) Zirconia porcelain
JPS6353147B2 (en)
JPH0235702B2 (en)
JP3956676B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JPH06316457A (en) Heat generating element made of ceramics
JP3202492B2 (en) Beta alumina electrolyte
JPH0235701B2 (en)
JP3121967B2 (en) Ceramic heating element