JPS6121170B2 - - Google Patents

Info

Publication number
JPS6121170B2
JPS6121170B2 JP16966579A JP16966579A JPS6121170B2 JP S6121170 B2 JPS6121170 B2 JP S6121170B2 JP 16966579 A JP16966579 A JP 16966579A JP 16966579 A JP16966579 A JP 16966579A JP S6121170 B2 JPS6121170 B2 JP S6121170B2
Authority
JP
Japan
Prior art keywords
electrode
furnace
sleeve
molten glass
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16966579A
Other languages
Japanese (ja)
Other versions
JPS5692127A (en
Inventor
Susumu Kase
Yoichi Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SASAKI GLASS KK
Original Assignee
SASAKI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SASAKI GLASS KK filed Critical SASAKI GLASS KK
Priority to JP16966579A priority Critical patent/JPS5692127A/en
Publication of JPS5692127A publication Critical patent/JPS5692127A/en
Publication of JPS6121170B2 publication Critical patent/JPS6121170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 本発明はガラスの溶融炉における直接通電加熱
用の電極支持構造に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode support structure for direct current heating in a glass melting furnace.

従来より、ガラスが高温時において電気的に良
導体となることから、溶融ガラス中に電極を挿入
し、該電極を介して溶融ガラスに直接通電したと
きに発生するジユール熱を利用してガラス原料を
全てこのジユール熱で溶融、清澄する方法や、重
油又はガス燃焼による溶融の補助熱源とする方法
が行なわれている。
Conventionally, since glass is a good electrical conductor at high temperatures, glass raw materials have been made by inserting an electrode into the molten glass and using the Joule heat generated when electricity is applied directly to the molten glass through the electrode. The methods used include melting and clarification using this Joule heat, and methods using heavy oil or gas combustion as an auxiliary heat source for melting.

そして溶融ガラス中に電力を供するための電極
の挿入構造については、主として炉床より炉内に
垂直に挿入する形式と炉壁より炉内に水平方向に
挿入する形式とがあげられ、これらは例えばガラ
スに対流を与える効果の点などにおいてそれぞれ
に特有の特徴があり、いずれも一般的に使用され
ている。
Regarding the insertion structure of electrodes for supplying electric power into molten glass, there are two main types: one is to insert them vertically into the furnace from the hearth, and the other is to insert them horizontally into the furnace from the furnace wall. Each type has its own unique characteristics, such as its ability to provide convection to glass, and all are commonly used.

ところで前記後者の炉壁を貫通して炉内に水平
方向に電極を挿入する形式のものでは、炉外より
炉内に貫通する透孔を有する電極挿入レンガを炉
壁の一部に設け、炭素電極を用いる場合は直接そ
の透孔に電極を挿入させ、モリブデン電極を用い
る場合には、これが高温で大気にふれると酸化さ
れやすいために、第1図に示す如く水冷装置2中
に電極1が内装された構成の電極装置3として透
孔に挿入させることが普通である。
By the way, in the latter type where the electrode is inserted horizontally into the furnace by penetrating the furnace wall, an electrode insertion brick having a through hole penetrating into the furnace from outside the furnace is provided in a part of the furnace wall, and the carbon When using an electrode, insert the electrode directly into the through hole. When using a molybdenum electrode, it is easily oxidized when exposed to the atmosphere at high temperatures, so the electrode 1 is inserted into the water cooling device 2 as shown in Figure 1. It is common to insert the electrode device 3 into a through hole as an internally constructed electrode device 3.

しかし上記の水平電極の挿入形式には次に述べ
る問題点があつた。それは電極挿入レンガ5の溶
融ガラス9側(炉内側)の表面における透孔6を
中心とした部分、特に透孔6の上部が高温の溶融
ガラスで浸食される点である。この浸食は、水平
電極1による直接通電加熱により電極1のまわり
に生ずる溶融ガラス9の対流、特に高温溶融ガラ
スの上昇流が起り、この流れにより電極挿入レン
ガ5の透孔6上部が強く溶解されることにより起
るもので、その浸食部7は炉の稼動と共に深く、
広く進行し、熱シヨツクにより亀裂(水冷装置を
有する場合は特に著しく発生する)が生じてやが
て崩壊の危険を招致することになる。そしてこの
期間は炉壁を構成する他のいわゆるタンクブロツ
クの耐久期間よりも短かく炉の寿命を左右する大
きな要因となつていたのである。
However, the above horizontal electrode insertion method has the following problems. This is because the portion of the surface of the electrode insertion brick 5 on the molten glass 9 side (inner side of the furnace) around the through hole 6, especially the upper part of the through hole 6, is eroded by the hot molten glass. This erosion is caused by the convection of the molten glass 9 that occurs around the electrode 1 due to direct current heating by the horizontal electrode 1, especially the upward flow of high-temperature molten glass, and this flow strongly melts the upper part of the through hole 6 of the electrode insertion brick 5. The erosion part 7 becomes deeper and deeper as the furnace operates.
The cracks will spread widely and the thermal shock will cause cracks (which are especially noticeable in cases with water cooling equipment), eventually leading to the risk of collapse. This period was shorter than the durability period of the other so-called tank blocks that made up the furnace wall, and was a major factor in determining the lifespan of the furnace.

本発明は上記の問題点を解消するためになされ
たものであり、電極挿入レンガの浸食を効果的に
防止できる電極支持構造を提供せんとするもので
ある。
The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide an electrode support structure that can effectively prevent erosion of electrode-inserted bricks.

即ち、本発明の要旨とするところは、炉内に水
平に挿入された電極のまわりに起きる高温溶融ガ
ラスの上昇流が直接電極挿入レンガの表面に接触
することの防止を主眼とし、このために電極挿入
レンガの透孔に電気絶縁耐火物製スリーブを遊貫
し、その一端を溶融ガラス中に一定長突出した状
態で該スリーブ内を貫通する電極(又は電極装
置)を支持する構造とし、電極まわりの高温溶融
ガラスの上昇流が、電極をかこんで炉内に突出し
ているスリーブにより電極挿入レンガの表面より
遠ざけられて電極レンガの浸食を防止させるよう
にしたものである。
That is, the gist of the present invention is to prevent the upward flow of high-temperature molten glass that occurs around the electrode inserted horizontally into the furnace from directly contacting the surface of the electrode-inserted brick, and for this purpose, An electrically insulating refractory sleeve is passed loosely through the through hole of the electrode insertion brick, and the electrode (or electrode device) is supported by penetrating the sleeve with one end protruding a certain length into the molten glass. The upward flow of the surrounding high-temperature molten glass is directed away from the surface of the electrode-inserted brick by a sleeve surrounding the electrode and protruding into the furnace, thereby preventing erosion of the electrode brick.

以下本発明を図面に示す実施例にしたがい詳細
に説明する。
Hereinafter, the present invention will be explained in detail according to embodiments shown in the drawings.

実施例 第3図においてガラス溶融炉10の側壁8の一
部には、炉内溶融ガラス9中にモリブデン製の棒
状電極1を水平に炉内に挿入するための透孔6を
有する電極挿入レンガ5が設けられると共に、該
透孔6には第5図に示される軸方向に2分割され
た分割片20,20′の複数よりなる円筒形の電
気絶縁耐火物製のスリーブ21が、一端を炉内に
一定長突出させて嵌挿されており、前記電極1は
大気にさらされる部分で、また熱伝導により高温
となる部分を筒状の水冷装置2内に内装挿通した
状態で前記透孔6内のスリーブ21を貫通して炉
内に挿入されている。
Embodiment In FIG. 3, a part of the side wall 8 of the glass melting furnace 10 is provided with an electrode insertion brick having a through hole 6 for horizontally inserting the rod-shaped electrode 1 made of molybdenum into the molten glass 9 in the furnace. 5 is provided in the through hole 6, and a cylindrical electrically insulating refractory sleeve 21 consisting of a plurality of divided pieces 20, 20' divided into two in the axial direction shown in FIG. The electrode 1 is inserted into the furnace so as to protrude a certain length, and the part of the electrode 1 which is exposed to the atmosphere and which becomes high temperature due to heat conduction is inserted into the cylindrical water cooling device 2, and the part of the electrode 1 is inserted into the through hole. It passes through the sleeve 21 in 6 and is inserted into the furnace.

次に本発明装置の使用方法について説明する。 Next, a method of using the device of the present invention will be explained.

電極1とこれに電気的に対向する電極(図示せ
ず)間に通電する事により溶融ガラス9は加熱さ
れ、電極1の炉内挿入部のまわりに高熱溶融ガラ
スの上昇流が起きる。しかしこの上昇流は従来装
置の場合のように電極挿入レンガ5の表面に直接
接することはなく、炉内に一定長突出したスリー
ブ21により電極挿入レンガ5より離れた位置で
上昇することとなる。
The molten glass 9 is heated by passing current between the electrode 1 and an electrode (not shown) electrically opposing the electrode 1, and an upward flow of high-temperature molten glass occurs around the insertion portion of the electrode 1 into the furnace. However, this upward flow does not come into direct contact with the surface of the electrode insertion brick 5 as in the case of the conventional device, but rises at a position away from the electrode insertion brick 5 due to the sleeve 21 projecting a certain length into the furnace.

しかしこのような構成においても経時変化によ
りスリーブ21の炉内突出部分は高温の溶融ガラ
スにより漸次浸食されて短縮し、電極挿入レンガ
5からの高温の溶融ガラスの上昇流を遠ざける効
果が減少する。この時点でスリーブ21の炉外の
部分を一定長炉内に押し入れ浸食により短縮した
部分を補うことにより上昇流を遠ざける効果は回
復される。
However, even in such a configuration, the protruding portion of the sleeve 21 in the furnace is gradually eroded and shortened by the high temperature molten glass due to changes over time, and the effect of keeping the upward flow of the high temperature molten glass away from the electrode insertion brick 5 is reduced. At this point, the effect of keeping the upward flow away is restored by pushing the part of the sleeve 21 outside the furnace into the long furnace to compensate for the shortened part due to erosion.

この時、スリーブ21の分割片の1組20,2
0′の1単位長さを押し込み浸食された先端部位
の1組を炉内に落し込み、次位の新しい1組を先
端に位置させることも可能である。又いずれの場
合にも押し込んだ長さがスリーブ21の分割片の
1単位の長さにいたれば1組追加貫装できること
は勿論である。
At this time, one set 20, 2 of the divided pieces of the sleeve 21
It is also possible to push one unit length of 0' and drop one set of eroded tip sections into the furnace, and then position a new set at the tips. In any case, if the pushed length is equal to the length of one unit of the divided pieces of the sleeve 21, it goes without saying that one additional set can be inserted.

この上記押し込み操作は、溶融ガラスの引上量
がほぼ一定であるガラス溶融炉にあつてはスリー
ブ21の炉内突出部の浸食が一定の速度で進行す
るので、一定期間を定めて行なえば足りるもので
ある。
In the case of a glass melting furnace in which the amount of molten glass pulled up is approximately constant, the pushing operation described above only needs to be carried out for a fixed period of time because the erosion of the in-furnace protrusion of the sleeve 21 progresses at a constant speed. It is something.

以上述べたように本発明装置によれば、スリー
ブ21を定期的に炉内に押し出して該スリーブ2
1の浸食分を補うことにより電極レンガ5が高温
の溶融ガラスの上昇流により浸食されることを防
止でき、しかも水冷装置による冷却が電極挿入レ
ンガに直接影響して電極挿入レンガに亀裂を生じ
させるという問題もスリーブの断熱効果により解
決されるという利点がある。したがつて従来装置
の如く電極挿入レンガが浸食と亀裂により崩壊の
危険から炉の寿命を短縮する問題が解消されると
いう著しい効果を有するものである。
As described above, according to the apparatus of the present invention, the sleeve 21 is periodically pushed out into the furnace and the sleeve 21 is
By compensating for the erosion amount in step 1, it is possible to prevent the electrode brick 5 from being eroded by the upward flow of high-temperature molten glass, and furthermore, the cooling by the water cooling device directly affects the electrode insertion brick and causes cracks in the electrode insertion brick. This problem has the advantage of being solved by the heat insulating effect of the sleeve. Therefore, this device has the remarkable effect of eliminating the problem of shortening the life of the furnace due to the danger of the electrode-inserted bricks collapsing due to erosion and cracking, which is the case with conventional devices.

なお、上記実施例ではスリーブ21を軸方向と
軸方向に直角な面で分割した分割片20,20′
の複数個を集積して構成したが、場合によつては
一体のスリーブで構成しても良く又単に軸方向に
二分割して上部と下部の押し込み長さをそれぞれ
自由に調整することも可能であり、更に軸方向に
直角な分割面(軸方向の連続接合面)に互に嵌合
する凹凸形状をつけ、スリーブ押入時に回転を与
え挿入を要易にする事も可能なものである。
In the above embodiment, the sleeve 21 is divided into divided pieces 20, 20' in the axial direction and in a plane perpendicular to the axial direction.
Although the sleeve is constructed by integrating multiple sleeves, in some cases it may be constructed as an integrated sleeve, or it may be simply divided into two parts in the axial direction and the pushing lengths of the upper and lower parts can be freely adjusted. Moreover, it is also possible to provide a concave and convex shape that fits each other on the dividing surface (continuous joint surface in the axial direction) perpendicular to the axial direction, so that rotation is applied when the sleeve is pushed in, thereby making insertion easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造の電極挿入レンガ部の断面形
状を示す。第2図は同電極挿入レンガ部を炉内よ
り見た正面図を示す。第3図は本発明の実施例に
よる電極挿入レンガ部の断面形状を示す。第4図
は同実施例による電極挿入レンガ部を炉内より見
た正面図を示す。第5図は同実施例によるスリー
ブの1単位の説明図である。 1……電極、2……水冷装置、3……電極装
置、4……電源接続部、5……電極挿入レンガ、
6……透孔、7……浸食部、8……炉壁、9……
溶融ガラス、10……溶融炉、11……炉床、1
2……亀裂、20,20′……スリーブ分割片、
21……スリーブ。
FIG. 1 shows the cross-sectional shape of the electrode insertion brick part of the conventional structure. FIG. 2 shows a front view of the electrode insertion brick section as seen from inside the furnace. FIG. 3 shows a cross-sectional shape of an electrode insertion brick part according to an embodiment of the present invention. FIG. 4 shows a front view of the electrode insertion brick part according to the same embodiment as seen from inside the furnace. FIG. 5 is an explanatory diagram of one unit of the sleeve according to the same embodiment. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Water cooling device, 3... Electrode device, 4... Power connection part, 5... Electrode insertion brick,
6... Through hole, 7... Erosion part, 8... Furnace wall, 9...
Molten glass, 10... Melting furnace, 11... Hearth, 1
2... Crack, 20, 20'... Sleeve division piece,
21...Sleeve.

Claims (1)

【特許請求の範囲】 1 溶融ガラスを直接通電加熱するための水平電
極又は電極装置を、溶融炉の側壁を貫通して炉内
溶融ガラス中に挿入させた型式のガラス溶融炉に
おいて、前記溶融炉の側壁の一部に電極挿入用の
透孔を有する電極挿入レンガを配設し、この透孔
には一端が炉内溶融ガラス中に一定長突出される
電気絶縁耐火物製のスリーブを嵌挿させ、更に前
記電極又は電極装置を該スリーブ内に嵌挿させか
つ実質的に電極となす部分を溶融ガラス中に挿出
するよう支持せしめたことを特徴とする電極支持
構造。 2 電気絶縁耐火物製のスリーブが軸方向に分割
された分割片により構成されていることを特徴と
する特許請求の範囲第1項記載の電極支持構造。 3 電気絶縁耐火物製のスリーブが軸方向に直角
に分割された分割片により構成されていることを
特徴とする特許請求の範囲第1項又は第2項記載
の電極支持構造。 4 電気絶縁耐火物製のスリーブが、軸方向に直
角に分割された分割面で互に嵌合可能な凹凸形状
をなすことを特徴とする特許請求の範囲第2項又
は第3項記載の電極支持構造。
[Scope of Claims] 1. In a glass melting furnace of the type in which a horizontal electrode or an electrode device for directly heating molten glass by passing through a side wall of the melting furnace and inserted into the molten glass in the furnace, An electrode insertion brick having a through hole for electrode insertion is arranged in a part of the side wall of the furnace, and an electrically insulating refractory sleeve with one end protruding a certain length into the molten glass in the furnace is inserted into this through hole. An electrode support structure characterized in that the electrode or electrode device is further fitted into the sleeve and supported so that a portion substantially forming the electrode is inserted into the molten glass. 2. The electrode support structure according to claim 1, wherein the sleeve made of electrically insulating refractory is constituted by divided pieces in the axial direction. 3. The electrode support structure according to claim 1 or 2, wherein the sleeve made of electrically insulating refractory material is constituted by divided pieces divided at right angles in the axial direction. 4. The electrode according to claim 2 or 3, characterized in that the sleeve made of electrically insulating refractory material has a concavo-convex shape that can be fitted to each other on divided surfaces that are divided at right angles in the axial direction. Support structure.
JP16966579A 1979-12-26 1979-12-26 Electrode supporting structure Granted JPS5692127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16966579A JPS5692127A (en) 1979-12-26 1979-12-26 Electrode supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16966579A JPS5692127A (en) 1979-12-26 1979-12-26 Electrode supporting structure

Publications (2)

Publication Number Publication Date
JPS5692127A JPS5692127A (en) 1981-07-25
JPS6121170B2 true JPS6121170B2 (en) 1986-05-26

Family

ID=15890649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16966579A Granted JPS5692127A (en) 1979-12-26 1979-12-26 Electrode supporting structure

Country Status (1)

Country Link
JP (1) JPS5692127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197165A (en) * 1987-01-30 1988-08-16 ジーメンス・アクチエンゲゼルシヤフト Optical scanner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346337B4 (en) * 2003-10-06 2014-06-12 Schott Ag Aggregate, designed as a melting or refining unit, distribution system or gutter system for conductively heated glass melts
JP5735662B2 (en) * 2012-09-27 2015-06-17 AvanStrate株式会社 Manufacturing method of glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197165A (en) * 1987-01-30 1988-08-16 ジーメンス・アクチエンゲゼルシヤフト Optical scanner

Also Published As

Publication number Publication date
JPS5692127A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
BRPI0923132B1 (en) Continuous casting method and nozzle heating device
US4655812A (en) Electric heating of glass forehearth
JPS5920605B2 (en) hearth electrode assembly
US11530152B2 (en) Method for manufacturing glass article, and melting furnace
US4426217A (en) Electric melting of solidified glass in melting units
JP2018193268A (en) Production method of glass article, and molten glass leakage detector
JPS6121170B2 (en)
JP6792825B2 (en) Manufacturing method of glass articles and melting furnace
US4017674A (en) Method for starting operation of a resistance melter
JP5114748B2 (en) Casting nozzle preheating method
EP0157767B1 (en) Electrical melting of solidified glass in melting units
KR100629542B1 (en) Method and apparatus for the thermal treatment of an object such as an optical fiber preform
US3409725A (en) Furnace electrode assembly
US4672627A (en) Electrode heater
KR0126475B1 (en) Heat radiation tube
SU1343664A1 (en) Oven of gasostatic apparatus
US3527590A (en) Apparatus for melting glass
RU198256U1 (en) ELECTRIC HOLDER FOR GAS ELECTRIC FURNACE
US898691A (en) Electric-furnace process.
CN216409718U (en) Heating structure of roller kiln
WO2022118781A1 (en) Glass melting furnace monitoring method and glass article manufacturing method
WO2020017204A1 (en) Method for controlling temperature of heating element, and method for manufacturing glass article
KR100502645B1 (en) Glass Melting Equipment
JP2024039288A (en) Residual thickness measuring apparatus, method for measuring residual thickness and method for manufacturing glass
CA1065610A (en) Method and apparatus for making molten glass