JPS61211707A - Determining method for running speed of unmanned carrying truck - Google Patents

Determining method for running speed of unmanned carrying truck

Info

Publication number
JPS61211707A
JPS61211707A JP60052634A JP5263485A JPS61211707A JP S61211707 A JPS61211707 A JP S61211707A JP 60052634 A JP60052634 A JP 60052634A JP 5263485 A JP5263485 A JP 5263485A JP S61211707 A JPS61211707 A JP S61211707A
Authority
JP
Japan
Prior art keywords
running speed
tact
carrying
acceleration
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60052634A
Other languages
Japanese (ja)
Inventor
Sumio Fujii
藤井 澄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60052634A priority Critical patent/JPS61211707A/en
Publication of JPS61211707A publication Critical patent/JPS61211707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To enable investment of high cost performance by carrying truck system of small number by reading change of tact, simulating basing on the information and controlling after determining optimum running speed and acceleration and deceleration of an unmanned carrying truck. CONSTITUTION:When determining running speed, new tact information is received and simulated at the time of changing type of machine. As to appreciation of capacity of carrying between lines, it has versatility for parameters such as number of production lines, tact, distance of carrying, number of loads, number of unmanned carrying trucks etc., and it is not necessary to change soft itself even when the object is changed. For instance, the tact of a work came out from an annealing furnace 4 is aleays watched by a detector 12, and the running speed and acceleration and deceleration are appreciated by simulation soft incorporated in a controller 13. The determined specification is transmitted to a carrying truck 9 as controlling information, and operated at unique running speed and acceleration and deceleration until next changed type of machine appears.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多種の品目を生産づる複数の生産ラインから
アウ]〜プッ1〜される製品を無人搬送台車で搬送1−
るシステムにおい−C,要求される搬送能力が時間的推
移に伴って大[1]に変動する場合を対象とした無人搬
送台車の士呑走行スビー1〜決定方〜  1 − 法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for transporting products pulled from multiple production lines producing a wide variety of items using an automatic guided vehicle.
This relates to a method for determining the running speed of an unmanned guided vehicle in a system in which the required transport capacity changes significantly [1] over time. .

従来の技術 加工、組立を行なう複数の生産ラインから次−1程に製
品を搬送する場合の手段どして、近年1ノイアウト変更
」の柔軟性から、無人搬送台車が多く使用されている。
In recent years, automated guided vehicles have been widely used due to their flexibility in transporting products from multiple production lines that carry out conventional processing and assembly.

無人搬送台車は、コンベア等の連続型搬送手段に較べ搬
送能力面で欠点を持−)ているが、レイアウト」−の柔
軟性の点で利点を持−)ている。しかしながら、無人搬
送台車を使用しlこシステムは高価となるため、効率的
な運用が求めてられている。
Although unmanned guided vehicles have disadvantages in terms of conveyance capacity compared to continuous conveyance means such as conveyors, they do have advantages in terms of layout flexibility. However, this system using an unmanned guided vehicle is expensive, and therefore efficient operation is required.

従来、加工あるいは組立を行なう各生産ラインが、それ
ぞれ多品種の製品を生産し、生産タクトも多様である場
合には、各生産ラインの最大流量の組合せを無人搬送台
車に要求される能力どして考え、無人搬送台車の仕様上
の走行スビー1〜から、必要な無人搬送台車の台数を求
めていた。
Conventionally, when each production line that performs processing or assembly produces a wide variety of products and the production takt time is also diverse, the combination of the maximum flow rate of each production line is determined by the capacity required of the automatic guided vehicle. Considering this, we calculated the required number of automatic guided vehicles based on the traveling speed of 1~ based on the specifications of the automatic guided vehicles.

第4図は従来例のレイアラ1〜を承り−ものであり、2
11ま複数並設された生産ライン、22は生産ライン2
1からの製品を次1稈23へ搬送Jるための2台の無人
搬送台車で・ある。この無人搬送台車22を11様1−
の走行スピードC゛連用づる場合は、綴人の搬送流量(
パ搬送台車22の台数を設定づる1、lめ、例λは図示
のように2台が必要どなり、搬送のl、:めスペースも
多く必要としていIこ。また走行スピ−1・は一応司変
とイ1っCいるが、通常の運用スピー1川J一定(直重
こ設定されており、Aンフイシリアルタイムt、Xpl
変ぐはなかった。
Figure 4 shows the conventional example of Reira 1~, and 2.
11 is multiple production lines installed in parallel, 22 is production line 2
These are two automated guided vehicles for transporting the products from 1 to the next culm 23. This unmanned guided vehicle 22 is used by 11 people 1-
When using the running speed C' continuously, the transport flow rate of the conveyor (
For setting the number of transport vehicles 22, for example λ, two vehicles are required as shown in the figure, and a large amount of space is also required for transport. In addition, the driving speed 1 is temporarily changed, but in normal operation speed 1 river J is constant (straight weight is set, A speed is set in real time t,
There was no change.

発明が解決しJ、うどする問題点 従来、無人搬送台車は瞬間的な最大必要能力で台数設定
されるlこめ、各生産ラインの生産タクトが品種によっ
(大きく変動する場合は、最大流量の搬送量がある時l
こ(」無人搬送台車は高稼動率C動くが、平均的な連用
状態(・は稼動率が悪く、設働投負に灼する一1ス1−
1−パノA−ンンスが卵重【こ悪か)lこ。
Problems solved and improved by the invention Conventionally, the number of automatic guided vehicles was set based on the instantaneous maximum required capacity. When there is a conveyance amount
This automated guided vehicle operates at a high operating rate, but under average continuous operation (-), the operating rate is poor and the installation investment is eroded.
1- Pano A-nse is egg weight.

ぞこ(゛本発明は、1p均的に要求されるlll!ll
送能力(・台車の数を設定し、高速搬送を要求される場
合は小節に必要どされる走行スビ−1〜を評価し、無人
搬送台車(J信号を与え(対応づること龜こより、この
無人搬送台車の削減による投資の]ストトパフォーマン
スのアップを図るとともに、常時高速で搬送lず、通常
は低速搬送しである時間帯のみ高速搬送することにより
、周辺作業者への安全性を確保リ−ることを目的とする
ものて゛ある。
(゛The present invention is applicable to 1p uniformly required lll!ll
Conveying capacity (・If high-speed conveyance is required, set the number of trolleys, evaluate the travel speed required for the measure, and apply the J signal to the unmanned guided vehicle (corresponding to In addition to improving storage performance by reducing the number of unmanned guided vehicles, safety for surrounding workers is ensured by transporting at high speed only during times when transport is normally performed at low speed, instead of transporting at high speed all the time. - There are things whose purpose is to

問題点を解決するだめの手段 上記問題点を解決するために本発明の無人搬送台車の走
行スピード決定方法は、生産タクトの異なる多種の品目
を生産する複数の加工、組立用の生産ラインにJ51.
jる前記生産タクトを検出し、前記生産ラインからアラ
1−プツトされる完成品を次工程に搬送する無人搬送台
車に対して前記タクト検出信号にもとづいて要求される
能力を、シミコレ−9日ンにより評価し、必要と1−る
前記無人搬送台車の走行スピードを制御するものCある
Means for Solving the Problems In order to solve the above problems, the method for determining the traveling speed of an automatic guided vehicle according to the present invention provides a method for determining the traveling speed of an automatic guided vehicle that uses J51 on multiple processing and assembly production lines that produce a variety of items with different production takt times. ..
Based on the takt detection signal, the system detects the production takt and provides the required capability based on the takt detection signal to the unmanned guided vehicle that transports finished products arranged from the production line to the next process. There is a system C that controls the running speed of the automatic guided vehicle according to the required speed.

作用 このようにすると、従来定速走行で最大ピークに必要な
搬送能力に合わせ算出していた無人搬送台車数に対し、
無人搬送台車に必要な走行スピードをリアルタイムに制
御することにより、瞬間的イ1高速II!!l送、定常
状態(・の中、低速搬送を行なえ、結果的に(よ少ない
無人搬送台車により低ゴ」スト、省スヘースの搬送シメ
Tムを実現Jることか(゛さる。
Effect By doing this, the number of unmanned guided vehicles, which was previously calculated according to the transport capacity required for the maximum peak when traveling at a constant speed, is reduced.
By controlling the travel speed required for the automated guided vehicle in real time, instantaneous A1 high speed II! ! It is possible to perform low-speed transport in a steady state, and as a result, a low-cost, space-saving transport system can be realized using fewer automated guided vehicles.

なJ−3、従来無人搬送台車の必要台数を求める場合(
4二、最大必要能力で゛設定するか、あるいはタフ1−
の変動が少イ)′い場合は平均的な能力に安全係数を勘
案し求めていたが、条件が多くあり、必要台数が非線形
曲線で表わされ、数式上求まりにくく、勘に頼っていI
このて゛あるが、本発明においでは、このJ、うな問題
点を定量的、厳密に神1IllIりへく、シミュレーシ
ョンソノ1〜を採用することができる。
J-3, when calculating the required number of conventional unmanned guided vehicles (
42. Set with maximum required ability or tough 1-
In cases where the fluctuation is small, the safety factor was calculated based on the average capacity, but there are many conditions, and the required number is expressed by a nonlinear curve, which makes it difficult to calculate mathematically, and it is necessary to rely on intuition.
However, in the present invention, it is possible to employ simulation methods 1 to 1 to quantitatively and strictly address these problems.

実施例 以上、本発明の無人搬送台車の走行スピード決定方法の
一実施例について、図面を参照しながら説明Jる。
Embodiment In the above, an embodiment of the method for determining the running speed of an automatic guided vehicle according to the present invention will be described with reference to the drawings.

第1図は、走(jスピードを決定覆るにあIこり、機種
切M時に新しいタフ1へ情報をもら〕でシミュレーシュ
1ンJる基本[1シツクを示しており、本発明の主要と
<kる部分である。ライン間搬送の能力評価については
、生産ライン本数、タクト、搬送距離、積載数、無人搬
送台車数等のパラメータに対し汎用性を持っており、対
象が変わってもソノ1〜そのものを修正する必要がなく
、データだけで対象を表現することができる。本シミコ
レーションソノ1−では、夕1〜りが変わった時に、走
行スピード、加減速について試行Ill誤的にデータを
変え、搬送持ちの許容時間内におさまるまで自動的に相
合せが計算され、その結果が次に機種切替が発生するま
で無人搬送台車に伝達され、運用される。
Figure 1 shows the basics of running a simulation (determining the speed, getting information to the new Tough 1 when the model is turned off), and is the main feature of the present invention. This is the part where the performance of line-to-line transfer is evaluated.It is versatile for parameters such as the number of production lines, takt time, transfer distance, number of loads, and number of unmanned guided vehicles. There is no need to modify 1~ itself, and the object can be expressed only with data.In this simulation sono 1-, when the evening 1~ri changes, the running speed, acceleration/deceleration, etc. will be trialled. The system automatically calculates the matching until it is within the allowable time for transport, and the result is transmitted to the automatic guided vehicle and operated until the next model change occurs.

第2図は上記ソフトを組みこlυだ無人搬送台車の適用
実施例を示す。第2図はプラスチックレンズ生産ライン
の成形、アニール後、次の工程に搬送するシステムのレ
イアラ1〜を示す。
Figure 2 shows an application example of an unmanned guided vehicle incorporating the above software. FIG. 2 shows the layerer 1 of the system for conveying to the next process after molding and annealing in a plastic lens production line.

本生産ライン14は8本あり、各生産ライン14とも機
種切替しながら多品種の生産を行っている。
There are eight production lines 14, and each production line 14 produces a wide variety of products while switching models.

以上に流れの概要を説明Jる。The outline of the flow is explained above.

成型機1で成形されたプラスチックレンズは、取出し機
2により治具パレットに移載され、タクト送りの搬送コ
ンベア3よりアニール炉4に搬送される。タフ1へ送り
により所定時的のアーーーーリングをされたワークは、
アヤ」/、レーションi=J能<rフリ−ノD−:]ン
ベノノ5に送られ、先頭に開拓づるど、積載1−Jボッ
I・6により、位置決め規制装置7−1.: t=の)
(いるレンズ収納箱8に整列しながら移載される。収納
箱8が満杯になると、移載駆動fjき)It(人搬送台
車9(以手搬送台巾と呼ぶ)により次丁程に搬送され、
出庫コンベア10に送られる。
The plastic lens molded by the molding machine 1 is transferred to a jig pallet by the take-out machine 2, and is transported to the annealing furnace 4 by the tact-feeding transport conveyor 3. Workpieces that have been sent to Tough 1 and subjected to periodic arching are
Aya'/, ration i=J<rfree-no-D-:] Sent to Nbenono 5, developed by the front, loaded 1-J-bot I/6, positioning regulating device 7-1. : t='s)
(The lens is transferred to the lens storage box 8 while being lined up. When the storage box 8 is full, the transfer drive fj starts.) is,
It is sent to the delivery conveyor 10.

また、空箱供給コンベア11がら空の収納箱8を受11
′y、す、空になった位置決め規制装置7に供給する。
Also, the empty storage boxes 8 are transferred from the empty box supply conveyor 11 to the receiving 11.
'y, S, is supplied to the empty positioning regulating device 7.

次に搬送台車9の走行スピード制御についで説明づる。Next, the traveling speed control of the transport vehicle 9 will be explained.

、アニール炉4から出lこワークのタフ1−は帛に検出
器12により監視されりており、機種切替によりタフi
〜が変ねつlζ時は、検出器12からタクト情報が無人
搬送台車用]ン1〜ローラ13(以l: コントローラ
ど呼ぶ)に転送される。転送されたタクト情報に基づき
、]]ン1−〇−ラ1に内蔵されている前述のシミュレ
ーションソフ(〜により、走行スビー1−1加減速が評
価され、決定された(1様が搬送台車9に制御情報どし
て流れ、次の機種切饅が発生されるまで一意的な走行ス
ピードと加減速で運用される。
, the toughness 1- of the workpiece taken out from the annealing furnace 4 is constantly monitored by the detector 12, and the toughness
When ~ changes lζ, tact information is transferred from the detector 12 to the unmanned conveyance vehicle unit 1 to roller 13 (hereinafter referred to as controller). Based on the transferred tact information, the acceleration/deceleration of traveling speed 1-1 is evaluated and determined by the above-mentioned simulation software (~ built in ]]n 1-○-ra 1. The control information is sent to 9, and the machine is operated at a unique running speed and acceleration/deceleration until the next model cutoff occurs.

シミュレーションソフトによる評価は、前述したごとく
、要求したラインでサービスを受【〕るまでの最大持ち
数の予測値で評価される。最大待ち数がフリーフローコ
ンベア5のアキュムレーションバッファ数内であれば問
題はないが、オーバーした場合は成形機1、アニール炉
4等に影響を及ぼし、その工程を停止させるが、プラス
チックレンズの成形の場合は停止させることが許されな
い。
As mentioned above, the evaluation using simulation software is based on the predicted value of the maximum number of devices that can be used until service is received on the requested line. There is no problem if the maximum number of waiting times is within the number of accumulation buffers of the free flow conveyor 5, but if it exceeds the number, it will affect the molding machine 1, annealing furnace 4, etc. and stop the process. It is not allowed to stop it.

第3図は、シミュレーションに必要なデータ構成を示す
。ここで、処理コードは、搬送システムの構成をパター
ン化しており、該当する処理パターンを示す。満杯数は
収納箱8の人数、累積人数は現時点までの収納箱8への
累積人数、収斂は冶具パレット上での積載数をそれぞれ
示す。次設備NOは搬送システムの各構成要素のつなが
りを示すリンク関係を表わす。次設備との搬送距離、空
箱供給工程との搬送距離は、搬送台車9が走行する距離
を示す。
FIG. 3 shows the data structure necessary for simulation. Here, the processing code is a pattern of the configuration of the transport system, and indicates a corresponding processing pattern. The full number indicates the number of people in the storage box 8, the cumulative number of people indicates the cumulative number of people in the storage box 8 up to the present time, and the convergence indicates the number of items loaded on the jig pallet. The next equipment number represents a link relationship indicating the connection of each component of the transport system. The transport distance to the next facility and the transport distance to the empty box supply process indicate the distance traveled by the transport vehicle 9.

発明の効果 以上のJ、うに本発明によると、タクトの変化を読みと
り、その情報によりシミュレーションし、最適な無人搬
送台車の走行スピードと加減速を決定し、制御すること
により、より少ない搬送台車システムによるロス1〜パ
フオーマンスの高い投資を行うことができ、また常時高
速搬送するシステムでなく、常時は中低速搬送で瞬間的
に高速搬送するので、周辺作業者にも安全であるシステ
ムを構築覆ることができる。また、将来ライン数が変わ
るか、あるいは生産品種が変わっても、適用することが
できる。
According to the present invention, by reading changes in takt time, simulating using that information, and determining and controlling the optimal traveling speed and acceleration/deceleration of the automatic guided vehicle, the number of guided vehicle systems can be reduced. It is possible to make a high investment with a loss of 1 ~ performance due to the system, and it is not a system that constantly transports at high speed, but it is always medium-low speed transport, and high-speed transport is instantaneous, so it is possible to build a system that is safe for surrounding workers. I can do it. Furthermore, it can be applied even if the number of lines or production types changes in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における搬送台車システムの走行スピー
ド、加減速を評価するシミュレーションソノ1〜の基本
ロジックを示す図、第2図は搬送台車システムの実施具
体レイアラ1〜事例を示す図、第3図はシミュレーショ
ンソノ(−に使うデータ例を示ず図、第4図は従来の搬
送台車システム事例を示1図である。 9・・・無人搬送台車、12・・・検出器、13・・・
コントローラ、14・・・生産ライン 代理人   森  本  義  弘 第2図 q−g人11区台ヤ t2−橙倣暮 /3− コントローラ /4−−一庄、荒うAン 第、3図
FIG. 1 is a diagram showing the basic logic of simulation software 1 to evaluate the traveling speed and acceleration/deceleration of the transport vehicle system in the present invention, FIG. The figure does not show an example of data used for simulation sono (-), and Figure 4 is a diagram showing an example of a conventional transport vehicle system. 9...Automated guided vehicle, 12...Detector, 13...・
Controller, 14...Production line agent Yoshihiro Morimoto Figure 2 q-g person 11 ward machine t2-Orange imitation/3- Controller/4--Ichisho, Arau A, Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、生産タクトの異なる多種の品目を生産する複数の加
工、組立用の生産ラインにおける前記生産タクトを検出
し、前記生産ラインからアウトプットされる完成品を次
工程に搬送する無人搬送台車に対して前記タクト検出信
号にもとづいて要求される能力を、シミュレーションに
より評価し、必要とする前記無人搬送台車の走行スピー
ドを制御することを特徴とする無人搬送台車の走行スピ
ード決定方法。
1. Detects the production takt on multiple processing and assembly production lines that produce a variety of items with different production takt times, and applies it to an automated guided vehicle that transports finished products output from the production line to the next process. A method for determining the running speed of an automatic guided vehicle, characterized in that the required capacity is evaluated by simulation based on the tact detection signal, and the required running speed of the automated guided vehicle is controlled.
JP60052634A 1985-03-15 1985-03-15 Determining method for running speed of unmanned carrying truck Pending JPS61211707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052634A JPS61211707A (en) 1985-03-15 1985-03-15 Determining method for running speed of unmanned carrying truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052634A JPS61211707A (en) 1985-03-15 1985-03-15 Determining method for running speed of unmanned carrying truck

Publications (1)

Publication Number Publication Date
JPS61211707A true JPS61211707A (en) 1986-09-19

Family

ID=12920252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052634A Pending JPS61211707A (en) 1985-03-15 1985-03-15 Determining method for running speed of unmanned carrying truck

Country Status (1)

Country Link
JP (1) JPS61211707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132314A (en) * 1986-11-25 1988-06-04 Toyota Motor Corp Method for controlling operation of unmanned carrier car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132314A (en) * 1986-11-25 1988-06-04 Toyota Motor Corp Method for controlling operation of unmanned carrier car

Similar Documents

Publication Publication Date Title
CN109789545B (en) Method and system for controlling speed of a transport path
JP2007094824A (en) Article carrying facility
JP2013049500A (en) Simulation system and simulation method for guided vehicle system
JPH0899792A (en) Running control method and device of unmanned vehicle in branch of unmanned conveyer system
JPS61211707A (en) Determining method for running speed of unmanned carrying truck
CN202837998U (en) Centralized control system of carrying roller automatic production line
EP1184754A2 (en) Control system for a machine for producing hollow glass articles
JP3546093B2 (en) Goods sorting device
CN101976083B (en) Multi-motor positioning cooperation control system of four-axis driving electric trolley
JPH06127659A (en) Transferring equipment
JP2707025B2 (en) Work transfer method on assembly line
JPH07164035A (en) Method for controlling physical distribution in production line
CN206013886U (en) The device and the line production system for TFT LCD substrate glass of control travelling bogie
JPH10254545A (en) Control method and simulation method
JP2002087539A (en) Carrying system
Song Design of automated logistics system based on PLC
JPH07267334A (en) Conveyor speed control method
JP2003212334A (en) Conveyor system
JPS6219359A (en) Manufacture process layout fixed type process formation switching system
KR102277215B1 (en) Method of controlling operations of transport vehicle
JPH029556A (en) Work indicating system
JPH08112728A (en) Work transport method and transport controller
JP4577000B2 (en) Work area setting device and work area setting method in flow work
JPH06102930A (en) Material transfer system
JPS6274559A (en) System for determining kind of introduced article in multiproduct production line