JPS6121169B2 - - Google Patents
Info
- Publication number
- JPS6121169B2 JPS6121169B2 JP16966479A JP16966479A JPS6121169B2 JP S6121169 B2 JPS6121169 B2 JP S6121169B2 JP 16966479 A JP16966479 A JP 16966479A JP 16966479 A JP16966479 A JP 16966479A JP S6121169 B2 JPS6121169 B2 JP S6121169B2
- Authority
- JP
- Japan
- Prior art keywords
- melting
- glass
- electrode
- molten glass
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002844 melting Methods 0.000 claims description 50
- 230000008018 melting Effects 0.000 claims description 50
- 239000011521 glass Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000006060 molten glass Substances 0.000 description 40
- 230000007423 decrease Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005352 clarification Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/02—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
- C03B5/027—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
- C03B5/0275—Shaft furnaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Resistance Heating (AREA)
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】
本発明はガラスの直接通電加熱溶融炉及びその
溶融方法に関するものである。くわしくは特にコ
ールドトツプ型式でかつ炉床より炉内溶融ガラス
中に垂直方向に挿入された電気的に対向する棒状
電極を有するガラスの直接通電加熱溶融炉及びそ
の溶融方法に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct current heating melting furnace for glass and a method for melting the same. In particular, the present invention relates to a directly energized glass melting furnace of the cold-top type having electrically opposed rod-shaped electrodes vertically inserted into the molten glass in the furnace from the hearth, and a method for melting the glass.
既知の如く、ガラスは高温になるに従い電気的
抵抗が減少し良電導体になることからこれに電極
を介して直接通電することにより溶融ガラス自体
を電気抵抗発熱体とし、発生するジユール熱を利
用してガラス原料を溶融、清澄する方法が従来よ
り行なわれている。最近では特に溶融槽の溶融ガ
ラス上面をガラス原料バツチで覆う、いわゆるコ
ールドトツプ型式のものが、熱効率も高く、又環
境の汚染が少ない等の利点があり注目されてい
る。 As is known, as glass becomes hotter, its electrical resistance decreases and it becomes a good conductor. By directly passing electricity through an electrode, the molten glass itself becomes an electrical resistance heating element, and the generated Joule heat is utilized. A method of melting and refining glass raw materials has been conventionally used. Recently, the so-called cold-top type melting system, in which the upper surface of the molten glass in the melting tank is covered with a glass raw material batch, has been attracting attention because of its advantages such as high thermal efficiency and low environmental pollution.
このコールドトツプ型式のガラスの直接通電加
熱溶融方法は、溶融炉中の溶融ガラスへの電力の
供給手段からみて例えば特公昭49−25170号又は
特開昭54−3823号に開示されるように炉壁より炉
内溶融ガラス中に水平方向に挿入された電気的に
対向する棒状電極間に電力を供給する方法と、特
公昭28−994号又は特公昭43−12886号に開示され
るように炉床より炉内溶融ガラス中に垂直方向に
挿入された電気的に対向する棒状電極間に電力を
供給する方法が代表的なものとして挙げられる。 This cold-top type glass melting method by direct current heating is based on the method of supplying electric power to the molten glass in the melting furnace. A method of supplying electric power between electrically opposing rod-shaped electrodes inserted horizontally into the molten glass in the furnace from the wall, and a furnace as disclosed in Japanese Patent Publication No. 28-994 or Japanese Patent Publication No. 43-12886. A typical method is to supply power between electrically opposing rod-shaped electrodes inserted vertically into the molten glass in the furnace from the floor.
ところで、前記後者の炉床より炉内溶融ガラス
中に垂直方向に挿入された棒状電極による通電加
熱溶融は、発生するジユール熱により電極を中心
として垂直方向への溶融ガラスのはげしい対流が
起り、この対流により溶融ガラス上面にあるガラ
ス原料バツチ層への熱の伝搬と溶融ガラスの清澄
が行なわれ、この点が前記前者の炉壁より水平方
向に溶融ガラス中に挿入された棒状電極による溶
融方法に対して大きな特徴と同時に利点となつて
いる。 By the way, in the latter type of electrification heating and melting using a rod-shaped electrode inserted vertically into the molten glass in the furnace from the hearth, intense convection of the molten glass in the vertical direction centering on the electrode occurs due to the Joule heat generated. Convection propagates heat to the frit batch layer on the top surface of the molten glass and refines the molten glass. This is a major feature as well as an advantage.
しかし、この後者方法の溶融炉における問題点
の一つとして、溶融ガラス上面に熱と有害気体の
放散を防止する一定厚さのガラス原料バツチ層を
維持しつつガラス溶融を進行させる場合にある大
きさの溶融層に対しては炉床より垂直に挿入され
る棒状電極の高さと供給電力量と溶融ガラスの引
上量についての最適条件があり、従つてこれをは
ずすと幾つかの不具合を生ずることが挙げられ
る。この問題は溶融ガラスの引上量を常に一定に
維持出来れば良いのであるが、現実の生産におい
てはその成形品種の変更によりその都度引上量を
変更せざるを得ないのが実状である。このような
溶融炉からの引上量の変更に対しては、原則的に
は供給電力量を引上量の増加に従い増加させ、あ
るいは引上量の減少に従い減少させれば良いが、
実際には以下の理由でその許容巾は狭くせいぜい
20〜30%程度である。すなわち引上量の増加に伴
い供給電力の増加操作を行なえば第4図の曲線c
に示す如く溶融槽内のその時の溶融ガラス垂直方
向温度分布は最適な引上量の場合の温度分布曲線
bより全体に高温となり、高温域での温度上昇は
炉材の溶解を著しく促進させ、特にスロート10
の炉材を侵食し炉の寿命を短縮させる結果とな
る。 However, one of the problems with the latter method of melting furnaces is that the glass must be melted while maintaining a layer of frit powder with a constant thickness on the top surface of the molten glass to prevent the dissipation of heat and harmful gases. For the molten layer, there are optimal conditions for the height of the rod-shaped electrode inserted perpendicularly from the hearth, the amount of power supplied, and the amount of molten glass pulled up, so if these are removed, several problems will occur. This can be mentioned. This problem can be solved if the amount of molten glass pulled up is always kept constant, but in actual production, the amount of pulled up must be changed every time the molded product is changed. In order to change the pulling amount from the melting furnace, in principle, it is sufficient to increase the amount of power supplied as the pulling amount increases, or decrease it as the pulling amount decreases.
In reality, the permissible range is narrow at best for the following reasons.
It is about 20-30%. In other words, if the power supply is increased as the amount of pull is increased, the curve c in Figure 4
As shown in , the vertical temperature distribution of the molten glass in the melting tank at that time is generally higher than the temperature distribution curve b in the case of the optimum pulling amount, and the temperature increase in the high temperature range significantly accelerates the melting of the furnace material. especially throat 10
This results in erosion of the furnace material and shortens the life of the furnace.
又、逆に引上量の減少に伴い供給電力の減少操
作を行なえば、第4図の曲線aに示す如く温度分
布曲線は必然的に炉内溶融ガラス全体の温度低下
を引き起して清澄効果がそこなわれ、他方この清
澄効果の低下防止のために電力供給量を増加させ
ると溶融ガラス上面のガラス原料バツチ層の厚さ
が薄くなり熱効率の著しい低下を引き起こす結果
となる。 On the other hand, if the power supply is reduced as the pulling amount decreases, the temperature distribution curve as shown in curve a in Figure 4 will inevitably cause a decrease in the temperature of the entire molten glass in the furnace, resulting in a decrease in fining. On the other hand, if the power supply amount is increased in order to prevent the deterioration of this fining effect, the thickness of the frit batch layer on the upper surface of the molten glass becomes thinner, resulting in a significant decrease in thermal efficiency.
このような溶融ガラスの引上量の変動に伴う前
記問題点の解決方法としては、特公昭28−994号
に開示されている如く炉床より垂直に挿入された
棒状電極の挿入高さを適宜調節するか、又は数群
の垂直電極をその上端が溶融ガラス内の異なるレ
ベルの位置させる方法があるが、この方法では炉
床の電極挿入穴と挿入電極とを滑合可能な状態に
維持することが極めて困難なこと、又溶融ガラス
を炉床より層状に温度制御することがむつかしい
等充分な解決が得られず、結果的には常に一定の
引上量を維持するしかなく、前記のような引上量
の変動特に減少が出来ないことが電極垂直挿入方
式のコールドトツプ形式における直接通電加熱溶
融炉の大きな欠点となつていた。 As a method for solving the above-mentioned problems caused by variations in the amount of molten glass pulled up, as disclosed in Japanese Patent Publication No. 28-994, the insertion height of a rod-shaped electrode inserted perpendicularly from the hearth can be adjusted appropriately. There are several methods of adjusting or positioning several groups of vertical electrodes with their upper ends at different levels in the molten glass, which maintain a sliding fit between the electrode insertion holes in the hearth and the insertion electrodes. It is extremely difficult to do so, and it is difficult to control the temperature of the molten glass in layers from the hearth, so no satisfactory solution has been found, and as a result, the only way to solve this problem is to maintain a constant pulling amount, as mentioned above. The inability to reduce fluctuations in the pulling amount, especially the inability to reduce the fluctuation, has been a major drawback of direct current heating melting furnaces of the cold top type with vertical electrode insertion.
本発明は前記問題点を解決したガラスの直接通
電加熱溶融炉とその溶融方法を提供するものであ
る。 The present invention provides a directly energized glass melting furnace and a method for melting glass, which solves the above-mentioned problems.
既ち、本発明はコールドトツプ型式のガラスの
直接通電加熱溶融炉において、溶融槽の炉床より
炉内溶融ガラス中に垂直に挿入される多数の電極
をそれぞれ高さが異なる複数の電極群に区分する
と共に、これら各電極群の実質的な電極部分が垂
直方向について重複しないように構成し、棒状電
極の対流効果を失うことなく溶融槽内溶融ガラス
の垂直方向の温度分布を各高さにおける棒状電極
に供給する電力量を調節することにより自由に制
御することを可能としたものである。 Already, the present invention relates to a cold-top glass direct current heating melting furnace, in which a large number of electrodes are inserted perpendicularly into the molten glass in the furnace from the hearth of the melting tank into a plurality of electrode groups each having a different height. At the same time, each electrode group is constructed so that the substantial electrode portions do not overlap in the vertical direction, and the vertical temperature distribution of the molten glass in the melting tank is controlled at each height without losing the convection effect of the rod-shaped electrodes. This allows for free control by adjusting the amount of power supplied to the rod-shaped electrode.
以下本発明を図面に示す実施例に従い詳細に説
明する。 Hereinafter, the present invention will be explained in detail according to embodiments shown in the drawings.
実施例
第1図に示されるように、溶融炉1はガラス原
料バツチを溶融、清澄する溶融槽9と、溶融ガラ
ス6を引き出す作業槽11と、これらをその底部
において連結するスロート10と、溶融槽9の炉
床2より垂直に挿入された低位の棒状電極3と、
同じく炉床2より垂直に挿入された高位の棒状電
極4とを備え、この高位の電極群をなす棒状電極
4は、前記低位の電極群をなす棒状電極3の電極
部分l1に相当する部分を耐火絶縁物8により電気
的に絶縁されてその上部(l2=l−l1)が実質的に
電極を構成するように設けられている。Embodiment As shown in FIG. 1, a melting furnace 1 includes a melting tank 9 for melting and clarifying batches of frit, a working tank 11 for drawing out molten glass 6, a throat 10 connecting these at the bottom, and a lower rod-shaped electrode 3 inserted vertically from the hearth 2 of the tank 9;
Similarly, a rod-shaped electrode 4 at a higher level is inserted perpendicularly from the hearth 2, and the rod-shaped electrode 4 forming this higher-level electrode group corresponds to the electrode portion l1 of the rod-shaped electrode 3 forming the lower electrode group. are electrically insulated by a fireproof insulator 8, and the upper part ( l2 =l- l1 ) thereof substantially constitutes an electrode.
第3図は電源装置を示し、交流電源をトランス
20,20′によりそれぞれ対向する電極間に適
宜な電力として配分できるように設けられてい
る。なおスイツチ21及びスイツチ22の操作に
より低位電極3,3′間か高位の電極4,4′間の
いずれか一方又は双方への電力の供給が可能なこ
とは当然である。 FIG. 3 shows a power supply device, which is provided so that alternating current power can be distributed between opposing electrodes as appropriate power by transformers 20 and 20'. It goes without saying that by operating the switches 21 and 22, it is possible to supply power to either or both of the lower electrodes 3 and 3' or the higher electrodes 4 and 4'.
次に本発明による溶融炉1におけるガラスの溶
融方法について説明する。 Next, a method for melting glass in the melting furnace 1 according to the present invention will be explained.
ガラス原料バツチは、溶融ガラス6の引上量に
追従して溶融槽9の上面開口部より溶融ガラス上
面に平面的に投入され、ガラス原料バツチ層7を
形成する。溶融ガラス6の引上量が溶融槽9の溶
融能力の平均的最適量である時は、低位の電極
3,3′間と高位の電極4,4′間とには略等しい
電力量が供給される。この時の溶融槽中の垂直方
向の温度分布は第5図に示す温度曲線d(第4図
の曲線bに相等しい)の如くである。 The frit batch is flatly thrown onto the upper surface of the molten glass from the upper opening of the melting tank 9 following the amount of the molten glass 6 pulled up, thereby forming the frit batch layer 7 . When the amount of molten glass 6 pulled up is the average optimum amount for the melting capacity of the melting tank 9, approximately the same amount of power is supplied between the lower electrodes 3 and 3' and between the higher electrodes 4 and 4'. be done. The temperature distribution in the vertical direction in the melting tank at this time is like the temperature curve d shown in FIG. 5 (equal to the curve b in FIG. 4).
生産の都合で溶融ガラス6の引上量が減少した
場合について述べると、この場合ガラス原料バツ
チの投入量は当然に減少する。この時前記と同一
の条件で電力の供給を続けると溶融槽9中の溶融
ガラスの温度が上昇すると共に、ガラス原料バツ
チ層7の厚さが減少する。したがつてこれを防止
するために高位の電極4,4′間への供給電力量
を減少させ溶融ガラスの上部の温度を上昇させな
いようにガラス原料バツチ層7の厚さを一定に保
持させる。この時の溶融槽9内溶融ガラスの垂直
方向の温度分布は第5図に示す温度曲線eの如く
である。この時溶融槽9の上部の温度が低下する
ことにより、清澄に問題が生じる時は低位の電極
3,3′間への供給電力量を増加することにより
完全な清澄を維持させる。 Regarding the case where the amount of molten glass 6 pulled up is reduced due to production reasons, in this case the amount of glass raw material batch input naturally decreases. At this time, if power is continued to be supplied under the same conditions as above, the temperature of the molten glass in the melting tank 9 will rise and the thickness of the frit batch layer 7 will decrease. Therefore, in order to prevent this, the amount of power supplied between the higher electrodes 4 and 4' is reduced, and the thickness of the frit batch layer 7 is maintained constant so as not to increase the temperature of the upper part of the molten glass. At this time, the vertical temperature distribution of the molten glass in the melting tank 9 is as shown in the temperature curve e shown in FIG. At this time, if a problem arises in clarification due to a drop in the temperature at the upper part of the melting tank 9, complete clarification is maintained by increasing the amount of power supplied between the lower electrodes 3 and 3'.
逆に生産の都合で溶融ガラス6の引上量が増大
する場合はそれに伴つてガラス原料バツチの投入
が増えることにより溶融槽9内の溶融ガラスの温
度が低下すると共に、ガラス原料バツチ層7の厚
さが増し清澄に問題が生じる。これを防止するた
めには高位の電極4,4′間に供給する電力量を
増加させる。 On the other hand, when the amount of molten glass 6 to be pulled up increases due to production reasons, the amount of frit batches added increases accordingly, which lowers the temperature of the molten glass in the melting tank 9 and lowers the temperature of the frit batch layer 7. Thickness increases and fining problems arise. In order to prevent this, the amount of power supplied between the higher electrodes 4 and 4' is increased.
したがつて溶融槽9内の上層部の温度は高くな
るが、低位の電極3,3′間への供給電力量は清
澄に問題のないレベルにまで減少させることが可
能であり、供給電力量を増加させると第4図の曲
線bに示すような溶融槽9の低部においてまで高
温となり炉材、特にスロート10の炉材を著しく
侵略する従来方法の如きおそれがなくなる。この
時の溶融槽9内の溶融ガラスの垂直方向における
温度分布は第5図に示す温度曲線fの如くであ
る。 Therefore, although the temperature in the upper layer of the melting tank 9 increases, the amount of power supplied between the lower electrodes 3 and 3' can be reduced to a level that does not cause problems with fining, and the amount of power supplied can be reduced. By increasing the temperature, the temperature reaches the lower part of the melting tank 9 as shown by the curve b in FIG. 4, and there is no fear that the furnace material, especially the throat 10 material, will be significantly invaded as in the conventional method. At this time, the temperature distribution of the molten glass in the melting tank 9 in the vertical direction is as shown by a temperature curve f shown in FIG.
上記操作方法により、一定高さの棒状電極を用
いた従来方法でガラスの溶融量の変動が25%の減
少しか出来なかつたものが、本発明例では40%の
減少させた場合においても完全に清澄された溶融
ガラスを引き上げる事が出来た。 With the above operating method, the conventional method using a rod-shaped electrode of a constant height could only reduce the fluctuation of glass melting amount by 25%, but in the example of the present invention, even when the fluctuation was reduced by 40%, it was completely reduced. We were able to pull up the clarified molten glass.
以上説明したように本発明のガラスの直接通電
加熱溶融炉とその溶融方法は、溶融ガラスの引上
量の変動がある場合も溶融ガラス上面のガラス原
料バツチ層の厚さを一定に保つことが容易である
と共に、溶融ガラスの温度の上昇を押えるること
が可能であり、引き上げガラスの品質を低下させ
ることなく引上量の大巾な変動範囲の拡大を可能
となしたこと、及び炉の寿命の延長等卓越した効
果を有するものである。 As explained above, the glass direct current heating melting furnace and its melting method of the present invention are capable of keeping the thickness of the frit batch layer on the top surface of the molten glass constant even when the amount of molten glass pulled up varies. It is easy to use, it is possible to suppress the rise in temperature of molten glass, it is possible to widen the range of variation in the amount of pulled glass without deteriorating the quality of pulled glass, and it is possible to suppress the rise in temperature of molten glass. It has outstanding effects such as extending life.
なお前記実施例においては電極を高位と低位の
2つに区分した電極群としたが、必要に応じて、
中位又はそれぞれ高さが異なりかつ低位の実質的
な電極部分をのぞく上部が実質的に電極を構成す
る棒状電極をもつて多段構成の電極群を構成しう
る事は当然である。 In the above embodiment, the electrodes were divided into two groups, high and low, but if necessary,
It goes without saying that a multi-tiered electrode group can be constructed with rod-shaped electrodes whose upper portions substantially constitute electrodes except for the middle or lower substantial electrode portions that have different heights.
第1図は本発明によるガラスの直接通電加熱溶
融炉の縦断面説明図、第2図は第1図A−A′線
断面説明図、第3図は本発明によるガラスの直接
通電加熱溶融炉への電力供給装置の説明図、第4
図は従来装置における溶融槽内溶融ガラスの垂直
方向の温度分布を表わす図、第5図は本発明装置
による溶融槽内溶融ガラスの垂直方向の温度分布
を表わす図である。
1……溶融炉、2……炉床、3,3′……低位
の電極、4,4′……高位の電極、6……溶融ガ
ラス、7……ガラス原料バツチ層、8……耐火絶
縁物。
Fig. 1 is an explanatory longitudinal cross-sectional view of a direct current heating melting furnace for glass according to the present invention, Fig. 2 is an explanatory cross sectional view taken along line A-A' in Fig. 1, and Fig. 3 is a direct current heating melting furnace for glass according to the present invention. Explanatory diagram of the power supply device for the 4th
This figure shows the vertical temperature distribution of the molten glass in the melting tank in the conventional apparatus, and FIG. 5 shows the vertical temperature distribution of the molten glass in the melting tank in the apparatus of the present invention. 1... Melting furnace, 2... Hearth, 3, 3'... Lower electrode, 4, 4'... Higher electrode, 6... Molten glass, 7... Glass raw material batch layer, 8... Fireproofing Insulator.
Claims (1)
極を有するコールドトツプ型のガラスの直接通電
加熱溶融炉において、前記電極を、高さの異なる
複数の電極群に区分すると共に、最低位のものを
除く電極群は次低位の電極高以下の部分が絶縁被
覆されるように設け、前記各電極群の実質的電極
部分が垂直方向について重複しないように構成し
たことを特徴とするガラスの直接通電加熱溶融
炉。 2 溶融槽の炉床より垂直に挿入された多数の電
極を、高さの異なる複数の電極群に区分すると共
に、最低位のものを除く電極群は次低位の電極高
以下の部分が絶縁被覆されるように設けたガラス
の直接通電加熱溶融炉において、これら複数の電
極群への独立した電力供給により、槽内垂直方向
の温度勾配を炉床部分から炉頂側に漸次上昇又は
漸次低下の範囲で選択しうるよう構成したことを
特徴とするガラスの溶融方法。[Scope of Claims] 1. In a cold-top glass direct current heating melting furnace having a large number of electrodes inserted vertically from the hearth of the melting tank, the electrodes are divided into a plurality of electrode groups having different heights. In addition, the electrode groups except the lowest one are provided so that the portion below the height of the next lowest electrode is covered with insulation, and the electrode groups are configured so that the substantial electrode portions of each electrode group do not overlap in the vertical direction. Features a direct current heating and melting furnace for glass. 2. A large number of electrodes inserted vertically from the hearth of the melting tank are divided into multiple electrode groups with different heights, and in the electrode groups except the lowest one, the part below the next lowest electrode height is covered with insulation. In a directly energized heating and melting furnace for glass, the temperature gradient in the vertical direction inside the tank can be gradually increased or decreased from the hearth to the furnace top by independently supplying power to these multiple electrode groups. A method for melting glass, characterized in that a method can be selected within a range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16966479A JPS5692126A (en) | 1979-12-26 | 1979-12-26 | Direct electroheating melting furnace of glass and melting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16966479A JPS5692126A (en) | 1979-12-26 | 1979-12-26 | Direct electroheating melting furnace of glass and melting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5692126A JPS5692126A (en) | 1981-07-25 |
JPS6121169B2 true JPS6121169B2 (en) | 1986-05-26 |
Family
ID=15890633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16966479A Granted JPS5692126A (en) | 1979-12-26 | 1979-12-26 | Direct electroheating melting furnace of glass and melting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5692126A (en) |
-
1979
- 1979-12-26 JP JP16966479A patent/JPS5692126A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5692126A (en) | 1981-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3742111A (en) | Method and furnace for the electric melting of glass | |
US2993079A (en) | Electric heating method and apparatus for uniformly heating glass | |
US2244267A (en) | Electric furnace | |
EP0148197B1 (en) | Electric glass melting furnace | |
AU577714B2 (en) | Electric heating of glass forehearth | |
US4809294A (en) | Electrical melting technique for glass | |
US4528013A (en) | Melting furnaces | |
US3524206A (en) | Method and apparatus for melting thermoplastic materials | |
US3683093A (en) | Furnaces for heating glass | |
US4025713A (en) | Electric glass-melting furnaces | |
US2559683A (en) | Electric enamel furnace | |
US3842180A (en) | Apparatus and method for starting an electric glass melting furnace | |
JPS6121169B2 (en) | ||
US4607372A (en) | Technology of electric fusion of glass | |
US2313217A (en) | Electric furnace for melting glass | |
US3888650A (en) | Glass melting furnaces | |
US3961126A (en) | Apparatus and method for increasing electric power in an electric glass-melting furnace | |
EP0325055B1 (en) | Glass melting furnace | |
US4638490A (en) | Melting furnaces | |
GB2024197A (en) | Electrically melting glass | |
JPS63185831A (en) | Electric melting apparatus | |
US4421538A (en) | Device for the manufacture of glass filaments | |
US4514851A (en) | Arc circuit electrodes for arc glass-melting furnace | |
US2281408A (en) | Method and apparatus for manufacture and treatment of glass and analogous substances | |
US4741753A (en) | Method and apparatus for electrically heating molten glass |