JPS6121098A - Preparation of enzymic reaction product - Google Patents

Preparation of enzymic reaction product

Info

Publication number
JPS6121098A
JPS6121098A JP59143138A JP14313884A JPS6121098A JP S6121098 A JPS6121098 A JP S6121098A JP 59143138 A JP59143138 A JP 59143138A JP 14313884 A JP14313884 A JP 14313884A JP S6121098 A JPS6121098 A JP S6121098A
Authority
JP
Japan
Prior art keywords
reaction
enzyme
pressure
oil
dry ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59143138A
Other languages
Japanese (ja)
Other versions
JPH0529434B2 (en
Inventor
Kozo Nakamura
中村 厚三
Toshimasa Yano
矢野 俊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP59143138A priority Critical patent/JPS6121098A/en
Publication of JPS6121098A publication Critical patent/JPS6121098A/en
Publication of JPH0529434B2 publication Critical patent/JPH0529434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To advance a reaction in a homogeneous phase and carry out separation after the reaction with ease, by carrying out an enzymic reaction in the presence of a substance capable of being a solvent in the supercritical state. CONSTITUTION:For example, lipase, e.g. Rhizopus delemar, is used as an enzyme, and a fat or oil, e.g. palm oil or beef tallow, is used as a substance subjected to the enzymic reaction. The enzymic reaction is carried out using carbon dioxide as a substance capable of being a solvent in the supercritical state. The lipase and the fat or oil are put into reaction vessels 1 and 1', and gaseous carbon dioxide (critical temperature; 31.1 deg.C, critical pressure; 73atm) is boosted with a liquid chromatographic pump 4, liquefied, fed to the reaction vessels 1 and 1' while controlling the pressure with valves 5-8, and reacted at about 32 deg.C under about 100atm pressure with stirring. After the reaction, the reaction vessels 1 and 1' are cooled with acetone-dry ice, and the reaction product is recovered in the dry ice. The dry ice is sublimed to extract and separate the aimed lipid from the residue.

Description

【発明の詳細な説明】 本発明は酵素反応物の製造方法、更に詳しくは超臨界状
態において酵素反応せしめることを特徴とする酵素反応
物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an enzymatic reaction product, and more particularly to a method for producing an enzymatic reaction product characterized by carrying out an enzyme reaction in a supercritical state.

本発明においては、超臨界状態の溶媒(「超臨界ガス」
と単に略す場合もある)を用いるがこれは臨界温度(T
c)および臨界圧力(Pc)をこえた状態にある流体の
ことをいう。
In the present invention, a supercritical solvent (“supercritical gas”)
(sometimes simply abbreviated as ) is used, but this is based on the critical temperature (T
c) and the fluid in a state exceeding the critical pressure (Pc).

近年超臨界ガスの物理特性を応用した抽出分離技術が種
々開発されている。超臨界ガス抽出は超臨界状態の流体
が多くの物質に対してすぐれた溶解性を示し、温度およ
び圧力の変化によって溶解性が変化する性質を利用した
ものであシ、ホ、フ0、スパイス、ニコチン、カフェイ
ンなどの抽出操作に応用されている。
In recent years, various extraction and separation techniques that apply the physical properties of supercritical gases have been developed. Supercritical gas extraction takes advantage of the fact that supercritical fluid exhibits excellent solubility for many substances, and the solubility changes with changes in temperature and pressure. It is applied to the extraction of nicotine, caffeine, etc.

本発明者らは、酵素反応について種々検討していたが、
超臨界状態(例えば二酸化炭素においては311℃以上
、73気圧以上)という生体にとっては未経験の過酷な
条件においても酵素反応は進行し、かえって、反応後の
分離操作などが容易であること、従来不均一系で行われ
ていた反応が均一相で進イブすること、などのメリット
があることを発見し本発明を完成した。
The present inventors have conducted various studies on enzymatic reactions, but
Enzyme reactions proceed even in supercritical conditions (for example, 311°C or higher and 73 atmospheres or higher for carbon dioxide), which are harsh conditions that living organisms have never experienced before. The present invention was completed after discovering that there are advantages such as the fact that reactions that were previously carried out in a homogeneous system proceed in a homogeneous phase.

即ち本発明は、酵素、酵素反応される物質すなわち基質
、および超臨界状態において溶媒となりうる物質とを含
有する混合物を、超臨界状態にせしめ酵素反応が進行す
る温度に保持することを特徴とする酵素反応物の製造方
法である。
That is, the present invention is characterized in that a mixture containing an enzyme, a substance to be subjected to an enzymatic reaction, that is, a substrate, and a substance that can serve as a solvent in a supercritical state is brought to a supercritical state and maintained at a temperature at which the enzymatic reaction proceeds. This is a method for producing an enzymatic reaction product.

本発明で用いる酵素は、生体細胞が生産するタンパク質
性高分子有機触媒であればよく、特に本発明では超臨界
状態の溶媒中でもその構造・性質を保持しているような
構造的に安定な酵素が有用である。具体的には加水分解
酵素、転移酵素、リアーゼおよびシンテターゼ、イソメ
ラーゼなどを挙げることができる。
The enzyme used in the present invention may be any proteinaceous polymer organic catalyst produced by living cells. In particular, the present invention uses a structurally stable enzyme that maintains its structure and properties even in a supercritical solvent. is useful. Specific examples include hydrolase, transferase, lyase, synthetase, and isomerase.

上記酵素に対応して酵素反応される物質、一般には基質
として知られている物質を用いる。以下、酵素としてり
・ぐ−ゼ、酵素反応される物質として油脂または、油脂
および脂肪酸の一種または二種以上を用いる場合を記載
するが、本発明はこれに限定されるものではない。
A substance that undergoes an enzymatic reaction corresponding to the above-mentioned enzyme, generally known as a substrate, is used. Hereinafter, a case will be described in which gauze is used as an enzyme, and oil or fat, or one or more types of oil and fat and fatty acids are used as the substance to be subjected to the enzymatic reaction, but the present invention is not limited thereto.

まず、リパーゼについては、リゾプス・デレマー、リゾ
ゲス・アルヒザス、アスペルギルス・ニガー、キャンデ
ィダ・シリンドラソセ、ジョオートリカム・キャンディ
ダムなどを用いることができる。油脂としては、iR−
石油、大豆油、菜種油、オリーブ油、ヤシ油、コーン油
、綿実油、サフラワー油などの植物油、牛脂、豚脂、無
脂などの動物油脂、トリラウリン・トリステアリン・ト
リオレインなどの合成油脂をいい、更に脂肪酸としては
炭素数8ないし20の直鎖のもので、パルミチン酸、ス
テアリン酸、オレイン酸、リノール酸、リルイン酸など
をいい、これらの一種または二種以上を用いることがで
きる。
First, regarding the lipase, Rhizopus deremer, Rhizoges alhizas, Aspergillus niger, Candida cylindrasose, Jootricum candium, etc. can be used. As fats and oils, iR-
Petroleum, vegetable oils such as soybean oil, rapeseed oil, olive oil, coconut oil, corn oil, cottonseed oil, and safflower oil; animal fats and fats such as beef tallow, lard, and fat-free; and synthetic oils and fats such as trilaurin, tristearin, and triolein. Further, the fatty acid is a straight chain fatty acid having 8 to 20 carbon atoms, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and liluic acid, and one or more of these can be used.

酵素の使用量は、市販酵素剤を用いる場合には原料の油
脂または脂肪酸に対して0.025ないし5重量係(油
脂100gに対し5X102ないし5×105unit
の脂質分解性を有する酵素量)を用いる。
When using a commercially available enzyme agent, the amount of enzyme used is 0.025 to 5 units by weight based on the raw material oil or fatty acid (5 x 102 to 5 x 105 units per 100 g of oil or fat).
(amount of enzyme with lipolytic properties) is used.

更にとのIJ 、A?−ゼによる油脂のエステル交換反
応を不活性有機溶媒および/または担体の共存下で行う
ことにより反応を促進することができる。
Furthermore, IJ with A? The reaction can be promoted by carrying out the transesterification reaction of fats and oils with the enzyme in the presence of an inert organic solvent and/or a carrier.

不活性有機溶媒としては石油ベンジン、n−へキサン、
石油エーテルなど、担体としてはセライト、活性炭、ア
ルミナ、ケイ酸、セルロースなト常態で使用されている
ものを用いることが・できる。
Petroleum benzine, n-hexane,
Petroleum ether and other commonly used carriers such as celite, activated carbon, alumina, silicic acid, and cellulose can be used.

酵素、および酵素反応される物質に加えて超臨界状態に
おいて溶媒となりうる物質を混合する。
In addition to the enzyme and the substance to be reacted with the enzyme, a substance that can serve as a solvent in a supercritical state is mixed.

具体的にはエタン・エチレン・プロパン・プロピレン・
酸化窒素などがあげられるが、二酸化炭素が無害の不活
性力スであること、臨界点が室温近傍でアシ酵素反応が
進行する温度に保持するのに好適であることから最も扱
いやすい。
Specifically, ethane, ethylene, propane, propylene,
Examples include nitrogen oxide, but carbon dioxide is the easiest to handle because it is a harmless inert gas and has a critical point near room temperature, which is suitable for maintaining the temperature at which the reed enzyme reaction proceeds.

このような混合物を超臨界状態にせしめ、酵素反応が進
行する温度に保持する。具体的には10℃ないし50℃
の範囲が好ましい。二酸化炭素を用いた場合、臨界温度
(T)31.1℃、臨界圧力(Pc)73気圧であシ゛
特に好ましいが、水を用いた反応系には二酸化炭素が溶
解してしまうので、PHも酵素反応に適した値となるよ
うに調整する必要がある。
Such a mixture is brought into a supercritical state and maintained at a temperature at which the enzymatic reaction proceeds. Specifically, 10℃ to 50℃
A range of is preferred. When carbon dioxide is used, it is particularly preferable to have a critical temperature (T) of 31.1°C and a critical pressure (Pc) of 73 atm, but since carbon dioxide will dissolve in a reaction system using water, the pH will also be lower. It is necessary to adjust the value to be suitable for the enzyme reaction.

反応物は該反応系の圧力および/または温度を上昇およ
び/または低下させることにより回収することができる
。この回収プロセスは一般の超臨界27スの抽出操作を
応用することができ、減圧による方法、温度上昇によっ
て分離する方法、分離槽中に目的成分のみを吸着する吸
着剤を入れて分離する方法などによって行なうことがで
きる。
Reactants can be recovered by increasing and/or decreasing the pressure and/or temperature of the reaction system. This recovery process can be applied to general supercritical extraction operations, such as a method using reduced pressure, a method that separates by increasing temperature, a method that separates by placing an adsorbent that adsorbs only the target component in a separation tank, etc. This can be done by

本発明の酵素反応は超臨界状態で行なうので酵素を固定
化しておいたほうが、後の分離工程などにおいて取扱い
易い。酵素の固定化用担体としてはセルロースなどの多
糖類、多孔質ガラス、イオン交換樹脂などの担体を用い
ることができ、これに酵素を物理的吸着、イオン結合、
あるいは共有結合させることによって固定化させること
ができる。担体の多くは粒状であるが、膜状、板状、管
状あるいは繊維状にすることもできる。また、酵素を2
官能基を有する試薬と反応させて橋かけする方法、酵素
をケ゛ルの格子の中に包み込むかあるいは選択透過性の
ポリマーの皮膜で被覆する方法などのうち超臨界状態の
溶媒中で機能する方法によって固定化させてもよい。酵
素反応装置としてはパッチ法による方法でもよいが、固
定化酵素カラムを用いたシ、限外涙過膜を用いて酵素を
循環使用したりして連続的に反応させることも可能であ
る。
Since the enzyme reaction of the present invention is carried out in a supercritical state, it is easier to handle the enzyme in subsequent separation steps if it is immobilized. As carriers for immobilizing enzymes, carriers such as polysaccharides such as cellulose, porous glass, and ion exchange resins can be used.
Alternatively, it can be immobilized by covalent bonding. Most carriers are in the form of particles, but they can also be in the form of films, plates, tubes, or fibers. In addition, 2 enzymes
Methods that function in a supercritical state of solvent include methods of cross-linking by reacting with reagents having functional groups, methods of encasing the enzyme in a cell lattice, or coating it with a selectively permeable polymer film. It may be fixed. As an enzyme reaction device, a patch method may be used, but it is also possible to carry out a continuous reaction by using an immobilized enzyme column or by circulating the enzyme using an ultralacrimal membrane.

次に本発明方法を図面を用いて説明する。第1図に示し
たような温度調節が可能な反応容器1に原料をフィード
する。原料はマグネチックスターラ−2によって攪拌す
ることができる。二酸化炭素ボンベ3より供給される二
酸化炭素ガスは、液クロポンプ4によシ昇圧しながら、
二次圧力調節弁5、ストップ弁6、微量調節弁7、安全
弁8、ストップ弁6′、6“、6″などにより圧力制御
されて反応容器1に供給される。一定時間超臨界状態で
酵素反応させた後、反応容器を冷却し二酸化炭素を反応
物と共に1゛ライアイス化させ、更に弁を開放した後ド
ライアイスを室温で昇華させることにより反応物を回収
する。反応物はへキサンなどで抽出することにより脂質
を分離することができる。
Next, the method of the present invention will be explained using the drawings. Raw materials are fed into a reaction vessel 1 whose temperature can be controlled as shown in FIG. The raw materials can be stirred using a magnetic stirrer 2. The carbon dioxide gas supplied from the carbon dioxide cylinder 3 is pressurized by the liquid chromatography pump 4 while
The pressure is controlled by the secondary pressure control valve 5, stop valve 6, trace control valve 7, safety valve 8, stop valves 6', 6", 6", etc., and then supplied to the reaction vessel 1. After the enzymatic reaction is carried out in a supercritical state for a certain period of time, the reaction vessel is cooled to convert carbon dioxide together with the reactants into 1' dry ice, and after opening the valve, the reactants are recovered by sublimating the dry ice at room temperature. Lipids can be separated from the reactant by extraction with hexane or the like.

二酸化炭素は、並列に連結され酵素反応用原料をフィー
ドした第二の反応容器に適当な再昇圧装置を介して供給
することもできる。
Carbon dioxide can also be supplied via a suitable repressurization device to a second reaction vessel connected in parallel and fed with raw materials for enzyme reaction.

なお、固定化酵素を用いる場合の反応器・分離器のシス
テムは第2図のようにすることもできる。
Incidentally, when using an immobilized enzyme, the reactor/separator system can also be configured as shown in FIG.

この場合は、連続反応によって生成する物質は、超臨界
流体の特性を生かして圧力および/または温度の上昇お
よび/または低下によりて分離器1および分離器2にお
いて分離することが可能である。即ち反応容器1内に固
定化酵素カラム10を、二酸化炭素供給ラインに基質注
入口11を、更に一定期間連続反応後洗浄する為のライ
ン12及び弁(三方弁)13を設ける。酵素反応物はラ
インフィルター14、六方弁15,15’、り・イック
コネクター16 、16’を通過し、分離器17 、1
7’内で二酸化炭素と分離される。圧力の調節は六方弁
i 5 、15’、−次圧力調節弁5′、圧力計9//
 、 90/流量計18、三方弁13′々どによシ適宜
調節される。
In this case, the substances produced by the continuous reaction can be separated in separator 1 and separator 2 by increasing and/or decreasing pressure and/or temperature by taking advantage of the characteristics of supercritical fluid. That is, an immobilized enzyme column 10 is provided in the reaction vessel 1, a substrate inlet 11 is provided in the carbon dioxide supply line, and a line 12 and a valve (three-way valve) 13 for washing after continuous reaction for a certain period of time are provided. The enzyme reaction product passes through the line filter 14, the six-way valves 15, 15', the liquid connectors 16, 16', and the separators 17, 1.
It is separated from carbon dioxide within 7'. Pressure is adjusted using six-way valves i5, 15', - next pressure regulating valve 5', and pressure gauge 9//
, 90/flow meter 18, three-way valve 13', etc., as appropriate.

従来法は、反応が常温常圧で行なっていたので反応系は
流動性に富んだ均一な液状になる場合は少なく、反応性
が劣るものであったが、本発明の超臨界状態において酵
素反応を行なうことにより反応系を均−系とすることが
可能となる。また、超臨界ガスは液体溶剤よシ低粘度で
高い拡散係数をもつため、固体中にも浸透しやすく、反
応が平衡に達する時間が短かい。更に超臨界ガスと反応
物との分離が容易であシ、分別工程が簡単である。
In the conventional method, the reaction was carried out at room temperature and pressure, so the reaction system rarely became a homogeneous liquid with high fluidity, resulting in poor reactivity, but the enzyme reaction in the supercritical state of the present invention By performing this, it becomes possible to make the reaction system homogeneous. In addition, supercritical gases have lower viscosity and higher diffusion coefficients than liquid solvents, so they can easily penetrate solids and the time it takes for reactions to reach equilibrium is short. Furthermore, it is easy to separate the supercritical gas and the reactants, and the fractionation process is simple.

酵素反応によって得られた不揮発性成分や熱に対して敏
感な反応物も常温に近い温度で処理できるなどのメリッ
トがある。更に、超臨界状態という生体にとっては過酷
な条件においても酵素の活性作用は衰えず酵素反応が進
行することを見い出したものである。
This method has the advantage that non-volatile components obtained through enzymatic reactions and reactants sensitive to heat can be processed at temperatures close to room temperature. Furthermore, it has been discovered that even in a supercritical state, which is harsh for living organisms, the activity of the enzyme does not decline and the enzymatic reaction proceeds.

実施例 1 実験方法 内容積40m1の攪拌可能な液クロカラム充填器を反応
容器1,1′とし、2個並列につないて使用した。第1
図に実験装置の概略図を示す。この反応容器中にトリオ
レイン(牛丼化学製)0.2g、Rh1zopus d
e(emar起源のリパーゼ(生化学工業製、コード番
号100890 ) 0.1 gまたは0.2 g、0
.3MTES緩衝液(和光紬薬製、pH6,8) 0.
2ml、セライト(和光紬薬製)Igを入れた。反応容
器中に液状の二酸化炭素を液クロポンプ(日本分光(株
)TRIROTAR) 4を用いて昇圧し々から送り、
圧力100気圧に達したら攪拌を開始し、32℃にて表
1に示す一定時間反応を行なわせた。反応中は連続して
ポンプを働かせ、二次圧力調節弁5と安全弁8とを使用
し反応容器内の圧力を一定に保った。
Example 1 Experimental Method A stirrable liquid chromatography column packing device with an internal volume of 40 ml was used as the reaction vessels 1 and 1', two of which were connected in parallel. 1st
The figure shows a schematic diagram of the experimental setup. In this reaction vessel, 0.2 g of triolein (manufactured by Gyudon Kagaku), Rh1zopus d
e (Emar origin lipase (Seikagaku Corporation, code number 100890) 0.1 g or 0.2 g, 0
.. 3MTES buffer (manufactured by Wako Tsumugi Pharmaceutical, pH 6,8) 0.
2 ml of Celite (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.) Ig was added. Liquid carbon dioxide was gradually pumped into the reaction vessel using a liquid chromatography pump (TRIROTAR, JASCO Corporation) 4, and the pressure was increased.
When the pressure reached 100 atm, stirring was started, and the reaction was carried out at 32° C. for a certain period of time shown in Table 1. During the reaction, the pump was operated continuously, and the pressure inside the reaction vessel was kept constant using the secondary pressure control valve 5 and the safety valve 8.

反応終了後、容器をアセトン・ドライアイスで冷却し、
反応物をドライアイス中に回収したが、ドライアイス化
は圧力計9で確認した。ドライアイスを室温で昇華させ
たのち、残渣をヘキサンで抽出し、脂質を分離した。
After the reaction is complete, cool the container with acetone and dry ice.
The reaction product was collected in dry ice, and the formation of dry ice was confirmed using a pressure gauge 9. After sublimating dry ice at room temperature, the residue was extracted with hexane to separate lipids.

分析方法 ヘキサン中に分離された反応生成物を、7%含含水フロ
リシル牛丼化学、60〜80メツシユ、309)のカラ
ムに加え、容積比20:80のジエチルエーテル・ヘキ
サンの混合溶媒で展開し、その40〜8omlの両分を
集め、減圧濃縮した。
Analysis method: The reaction product separated in hexane was added to a 7% hydrous Florisil Gyudon Kagaku, 60-80 mesh, 309) column, and developed with a mixed solvent of diethyl ether and hexane at a volume ratio of 20:80. Both 40-8 ml portions were collected and concentrated under reduced pressure.

濃縮物の少量をTLCプレート(シリカケ8ルー60゜
A、 5747 、 Merck )上に打ち、容積比
70:30:1のヘキサン・エチルエーテル・酢酸の混
合溶媒で展開し、モノグリセリドおよびジグリセリドが
含まれていないことを確認した。
A small amount of the concentrate was poured onto a TLC plate (Silica Kake 8×60°A, 5747, Merck) and developed with a mixed solvent of hexane, ethyl ether, and acetic acid in a volume ratio of 70:30:1 to detect monoglycerides and diglycerides. I confirmed that it was not.

上記濃縮物を乾固後、BF3・メタノール法(日本油脂
基準分析法2,4,20.2−77 )で脂肪酸メチル
エステルを調製し、ガスクロマトグラフィーによって定
量分析を行った。ガスクロマトグラフィーの分析は、2
0%DEGS Diasolid L、 80〜100
メソシユ(ガスクロ工業)を充填したカラム(内径3醒
、長さ2m)のカラムを用い、注入口、検出器(FID
)およびカラムの各温度をそれぞれ200℃、210℃
および190℃に保って行った。ガスクロマトグラフィ
ーの使用機種は日立663・30であった。
After drying the concentrate, fatty acid methyl ester was prepared by the BF3/methanol method (NOF Standard Analysis Method 2, 4, 20.2-77), and quantitative analysis was performed by gas chromatography. Gas chromatography analysis is 2
0%DEGS Diasolid L, 80-100
A column (inner diameter 3 mm, length 2 m) packed with Mesoyu (Gas Kuro Kogyo) was used, and the inlet, detector (FID)
) and column temperatures of 200°C and 210°C, respectively.
and maintained at 190°C. The model of gas chromatography used was Hitachi 663.30.

オレイン酸メチルに対するステアリン酸メチルの割合を
計算した。結果を表1に示す。
The ratio of methyl stearate to methyl oleate was calculated. The results are shown in Table 1.

表  1 実施例 2 実施例1と同様の方法で反応温度35℃にて酵素量0.
02’、9を添加して反応させた。結果を表2に示す。
Table 1 Example 2 Using the same method as in Example 1 at a reaction temperature of 35°C, the amount of enzyme was 0.
02' and 9 were added and reacted. The results are shown in Table 2.

表  2 実施例 3 実施例1と同様の方法で反応温度40℃にて酵素量00
1gまたは0.029を添加して反応させた。結果を表
3に示す。
Table 2 Example 3 Using the same method as in Example 1, the enzyme amount was 00 at a reaction temperature of 40°C.
1 g or 0.029 was added and reacted. The results are shown in Table 3.

手続補正歯(方式) 1.事件の表示 昭和59年特許願143138号 2、発明の名称 酵素反応物の製造方法 3、補正をする者 事件との関係  特許出願人 住 所  東京都中央区京橋−丁目5番8号(発送日 
  昭和59年10月30日)7、補正の内容 (1) 明細書第12頁表3の後に下記記載を挿入する
Procedural correction tooth (method) 1. Display of the case 1982 Patent Application No. 143138 2, Name of the invention Method for producing enzyme reaction product 3, Person making the amendment Relationship to the case Patent applicant Address 5-8 Kyobashi-chome, Chuo-ku, Tokyo (Date of dispatch)
(October 30, 1982) 7. Contents of the amendment (1) The following statement is inserted after Table 3 on page 12 of the specification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で用いた実験装置の概略図を表わす。 。 第2図は固定化酵素を用いた場合の実験装置の概略図を
表わす。 図中、1及び1′は反応容器、2及び2−はマグネチッ
クスターラー、3は二酸化炭素ボンベ、4は液クロポン
プ、5及び5′は二次圧力調節弁、6.6−16″及び
6−−′はストップ弁、7は微憬調節弁、8は安全弁、
9.9′、9″及び9−″は圧力計、10は固定化酵素
カラム、11はM質性入口、12は洗浄ライン、13及
び13−は三方弁、14はラインフィルター、15及び
15′は六方弁、16及び16−はクイックコネクター
、17及び17′は分離機、18は流量計を表わす。」
FIG. 1 shows a schematic diagram of the experimental apparatus used in Example 1. . FIG. 2 shows a schematic diagram of the experimental setup when using immobilized enzymes. In the figure, 1 and 1' are reaction vessels, 2 and 2- are magnetic stirrers, 3 is a carbon dioxide cylinder, 4 is a liquid chromatography pump, 5 and 5' are secondary pressure control valves, 6.6-16'' and 6. --' is a stop valve, 7 is a micro-temperature control valve, 8 is a safety valve,
9.9', 9'' and 9-'' are pressure gauges, 10 is an immobilized enzyme column, 11 is an M quality inlet, 12 is a washing line, 13 and 13- are three-way valves, 14 is a line filter, 15 and 15 ' is a six-way valve, 16 and 16- are quick connectors, 17 and 17' are separators, and 18 is a flow meter. ”

Claims (3)

【特許請求の範囲】[Claims] (1)酵素、酵素反応される物質、および超臨界状態に
おいて溶媒となりうる物質とを含有する混合物を、超臨
界状態にせしめ、酵素反応が進行する温度に保持するこ
とを特徴とする酵素反応物の製造方法。
(1) An enzyme reaction product characterized by bringing a mixture containing an enzyme, a substance subjected to the enzymatic reaction, and a substance that can serve as a solvent in a supercritical state to a supercritical state and maintaining it at a temperature at which the enzymatic reaction proceeds. manufacturing method.
(2)酵素がリパーゼであり、酵素反応される物質が油
脂または脂肪酸の一種または二種以上である特許請求の
範囲第(1)項記載の製造方法。
(2) The production method according to claim (1), wherein the enzyme is lipase, and the substance subjected to the enzymatic reaction is one or more types of fats and oils or fatty acids.
(3)酵素が固定化された酵素である特許請求の範囲第
(1)項記載の製造方法。
(3) The manufacturing method according to claim (1), wherein the enzyme is an immobilized enzyme.
JP59143138A 1984-07-10 1984-07-10 Preparation of enzymic reaction product Granted JPS6121098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143138A JPS6121098A (en) 1984-07-10 1984-07-10 Preparation of enzymic reaction product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143138A JPS6121098A (en) 1984-07-10 1984-07-10 Preparation of enzymic reaction product

Publications (2)

Publication Number Publication Date
JPS6121098A true JPS6121098A (en) 1986-01-29
JPH0529434B2 JPH0529434B2 (en) 1993-04-30

Family

ID=15331810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143138A Granted JPS6121098A (en) 1984-07-10 1984-07-10 Preparation of enzymic reaction product

Country Status (1)

Country Link
JP (1) JPS6121098A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762385A (en) * 1993-08-27 1995-03-07 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Extracting method for fatty acid
JPH0767677A (en) * 1993-08-31 1995-03-14 Agency Of Ind Science & Technol Production of cyclic alkylidene glycerol acyl ester
JPH09283A (en) * 1992-09-11 1997-01-07 Agency Of Ind Science & Technol Enzymatic reaction in super-critical carbon dioxide atmosphere
WO2002034905A1 (en) * 2000-10-27 2002-05-02 Supercritical Co., Ltd. Method of gene amplification
WO2005026245A1 (en) * 2003-09-09 2005-03-24 Keio University Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization
JP2009225692A (en) * 2008-03-19 2009-10-08 Adeka Corp Method of ester-interchange reaction of oil and fat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686578U (en) * 1993-06-05 1994-12-20 株式会社田窪工業所 Auxiliary organizer on the organizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094090A (en) * 1983-10-28 1985-05-27 Hitachi Ltd Production of ethanol from biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094090A (en) * 1983-10-28 1985-05-27 Hitachi Ltd Production of ethanol from biomass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283A (en) * 1992-09-11 1997-01-07 Agency Of Ind Science & Technol Enzymatic reaction in super-critical carbon dioxide atmosphere
JPH0762385A (en) * 1993-08-27 1995-03-07 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Extracting method for fatty acid
JPH0767677A (en) * 1993-08-31 1995-03-14 Agency Of Ind Science & Technol Production of cyclic alkylidene glycerol acyl ester
WO2002034905A1 (en) * 2000-10-27 2002-05-02 Supercritical Co., Ltd. Method of gene amplification
WO2005026245A1 (en) * 2003-09-09 2005-03-24 Keio University Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization
JP2009225692A (en) * 2008-03-19 2009-10-08 Adeka Corp Method of ester-interchange reaction of oil and fat

Also Published As

Publication number Publication date
JPH0529434B2 (en) 1993-04-30

Similar Documents

Publication Publication Date Title
Goderis et al. Lipase‐catalyzed ester exchange reactions in organic media with controlled humidity
Sarno et al. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato
Dos Santos et al. Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide
Dumont et al. Enzymatic reaction kinetic: comparison in an organic solvent and in supercritical carbon dioxide
dos Santos et al. Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide
CN110331139B (en) Immobilization method of candida antarctica lipase B
Goldberg et al. The control of lipase‐catalysed transesterification and esterification reaction rates: Effects of substrate polarity, water activity and water molecules on enzyme activity
Patil et al. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions
US20180245111A1 (en) Method for Preparing Medium-Long-Chain Triglyceride Using Packed Bed Reactor
US5316927A (en) Production of monoglycerides by enzymatic transesterification
Blattner et al. Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide
Virto et al. Hydrolysis of animal fats by immobilized Candida rugosa lipase
Tsitsimpikou et al. Acylation of glucose catalysed by lipases in supercritical carbon dioxide
CN104673870B (en) The method that immobilization esterase E.coli BioH catalyze and synthesize Retinol Palmitate
JPS6121098A (en) Preparation of enzymic reaction product
Bistline et al. Lipase catalyzed formation of fatty amides
Bornscheuer et al. A comparison of different strategies for lipase-catalyzed synthesis of partial glycerides
Nyari et al. Activation of Candida antarctica lipase B in pressurized fluids for the synthesis of esters
Rucka et al. Ultrafiltration membranes as carriers for lipase immobilization
de Meneses et al. Enzymatic synthesis of benzyl benzoate using different acyl donors: Comparison of solvent-free reaction techniques
WO1990004033A1 (en) Production of monoglycerides by enzymatic transesterification
Bourg-Garros et al. Optimization of lipase-catalyzed synthesis of (z)-3-hexen-1-yl acetate by direct esterification in hexane and a solvent-free medium
Sowan et al. ZIF-8 as support for enhanced stability of immobilized lipase used with a thermoresponsive switchable solvent to simplify the microalgae-to-biodiesel process
CN106086094B (en) A method of the continuous propionic acid synthesized geraniol ester of enzymatic in organic phase
AU2019203362B2 (en) Monolithic cellulose acetate column, its enzyme reactor, preparation method and application