JPS61210864A - Linear dc motor - Google Patents

Linear dc motor

Info

Publication number
JPS61210864A
JPS61210864A JP24873484A JP24873484A JPS61210864A JP S61210864 A JPS61210864 A JP S61210864A JP 24873484 A JP24873484 A JP 24873484A JP 24873484 A JP24873484 A JP 24873484A JP S61210864 A JPS61210864 A JP S61210864A
Authority
JP
Japan
Prior art keywords
armature coil
thrust
conductor
armature
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24873484A
Other languages
Japanese (ja)
Inventor
Osami Miyao
宮尾 修美
Manabu Shiraki
学 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24873484A priority Critical patent/JPS61210864A/en
Publication of JPS61210864A publication Critical patent/JPS61210864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables

Abstract

PURPOSE:To increase thrust and improve efficiency, by winding up the specified inserting grooves of a long-plate-formed core with a plurality of cables turn- toroidally. CONSTITUTION:The magnetic poles with N, S arranged alternately with the width T are provided for field magnets 5. A core 8 is provided with a plurality of grooves 7 for inserting armature coils vertical to the running direction of the field magnets, on the upper and lower surfaces, at intervals of T/2 or approx. T/2. Also on the upper and lower surfaces of the core 8, shallow grooves 9 in quantity n (n is a positive integer of 1 or more.) are formed with the width T/2 at equal intervals. The grooves 7 of the core 8 are wound up turn-toroidally with a plurality of conductors, and the first conductor sections 11a contributing to thrust are formed, and the terminal for the winding end of the first conductor section 11a is conducted to the position of the groove 7 separated by the magnetic pole width T of the field magnets 5 in the running direction, and one armature coil is formed by winding up the groove 7 position toroidally with the second conductor section 11b contributing to thrust in the direction opposite to the first conductor section 11a.

Description

【発明の詳細な説明】 (本発明の産業上の利用分野〕 本発明はリニア直流モータに関する。[Detailed description of the invention] (Industrial application field of the present invention) The present invention relates to linear DC motors.

(従来技術とその問題点〕 従来、可動マグネットWすニア直流モータのステータ電
機子1としては、第1図に示すものがある。このステー
タ電機子1は、磁性体板からなる積層板によって形成し
た長板状のコア2に形成した電機子コイル挿入溝6に第
2図で示すように導線全多数ターン枠状に巻回形成した
電機子コイル4群を第1図に示すように重畳して配設す
ることで形成している。該ステータ電機子1に第3図に
示すようにT幅のN、Sの磁極を交互に有する界磁マグ
ネット5を相対向させ、該界磁マグネット5を走行子と
している。尚、上記m6は、コア2の界磁マグネット5
(走行子)の走行方向と略垂直に多数形成されている。
(Prior art and its problems) Conventionally, the stator armature 1 of a movable magnet W linear DC motor is shown in Fig. 1.This stator armature 1 is formed of a laminated plate made of magnetic plates. As shown in FIG. 2, four groups of armature coils each formed by winding a large number of conductive wires in the shape of a turn frame are superimposed on each other as shown in FIG. As shown in FIG. The above m6 is the field magnet 5 of the core 2.
A large number of them are formed substantially perpendicular to the running direction of the running element.

上記溝3は約T/2幅に形成されている。すなわち、上
記電機子コイル4の一方の有効(発生推力に寄与する)
導体部4aと接続される他方の有効導体部4b(上記第
一と の導体部4&と第二の導体部4bとす、所謂−個の電機
子コイル4が形成されるものと定義する。
The groove 3 is formed to have a width of approximately T/2. In other words, one of the armature coils 4 is effective (contributes to the generated thrust)
The other effective conductor part 4b connected to the conductor part 4a (the first conductor part 4 & and the second conductor part 4b are defined as so-called - armature coils 4 are formed.

このことは、同様な条件にある第一及び第二の導体部4
a、4b?も含めて良いとする概念である。ンは、m・
2@T/2(−mT)(mは1以上の奇数ン又はほぼm
・2・T/2(−mT)倍の開角幅はど離れた上記溝6
に巻装されている。ここで、再度第2図を参照して、走
行子(界磁マグネット5)の磁極境界線と平行な導体部
4a、4bは推力に寄与する導体部で、導体部4c、’
4dは推力に寄与しない導体部でおる。かかる電機子コ
イル4は、枠状に巻回形成されているため、推力に寄与
する導体部4aと4bとの開角幅が野磁マグネット5の
磁極幅の奇数倍に巻回形成され友ものとなっている。い
ま、この実施例では、電機子コイル4は、界磁マグネッ
ト5の磁極幅と略等しい開角幅のものを用いている。
This means that the first and second conductor parts 4 under similar conditions
a, 4b? This is a concept that allows for the inclusion of N is m・
2@T/2(-mT) (m is an odd number greater than or equal to 1 or approximately m
・2・T/2(-mT) times the opening angle width is the groove 6 above.
is wrapped in. Here, referring again to FIG. 2, the conductor parts 4a and 4b parallel to the magnetic pole boundary line of the running element (field magnet 5) are conductor parts that contribute to thrust, and the conductor parts 4c,'
4d is a conductor portion that does not contribute to thrust. Since the armature coil 4 is wound into a frame shape, the opening angle width of the conductor parts 4a and 4b that contributes to thrust is an odd number multiple of the magnetic pole width of the field magnet 5. It becomes. In this embodiment, the armature coil 4 has an opening angle width approximately equal to the magnetic pole width of the field magnet 5.

上記第2図に示す電機子コイル4は、推力に寄与しない
導体部4c、actが当該電機子コイル4の多くを占め
ているので非常に高価なものとなる。
The armature coil 4 shown in FIG. 2 is very expensive because most of the armature coil 4 is comprised of conductor portions 4c and act that do not contribute to thrust.

すなわち、電機子コイル4の価格は、これを形成する導
線の重量に直接影響を受けるため、できれば推力に寄与
しない導体部4c、4dがほとんどなくなることは望ま
しい。ま几滑らかな推力リップルを有し、大きな推力を
有する高効率のリニア直流モータを得るためには、第1
図に示すように電機子コイル4群を位相をずらせて重畳
配設することが望まし込。しかし、このようにすると、
無駄な導体部4as4dが更に増加し、非常に高価なリ
ニア直流モータになる欠点を有する。また、かかる構成
によるとステータ電機子1の片面にしか界磁マグネット
5を配設できないので大きな推力を得ることができない
That is, since the price of the armature coil 4 is directly affected by the weight of the conducting wire forming it, it is desirable that the conductor parts 4c and 4d, which do not contribute to thrust, be almost eliminated if possible. In order to obtain a highly efficient linear DC motor with smooth thrust ripple and large thrust, the first step is to
As shown in the figure, it is desirable to arrange the four groups of armature coils in an overlapping manner with a phase shift. However, if you do it like this,
This has the drawback that the unnecessary conductor portions 4as4d further increase, resulting in a very expensive linear DC motor. Furthermore, with such a configuration, the field magnet 5 can only be disposed on one side of the stator armature 1, making it impossible to obtain a large thrust.

(本発明の目的) 本発明は、上記事情に鑑みてなされたもので、ある種の
形、式においては電機子コイル群を第1図に示すように
重畳型配置しても重畳しないように配設でき、量産に適
するようにすると共に、上記形式や電機子コイルが重な
らない形式では、推力に寄与しない導体部をほとんどな
くすことができ安価に量産できるようにし、滑らかな推
力リップルを有し、且つ大きな推力を有する高効率のリ
ニア直流モータを得ることt目的としてなされtもので
ある。
(Objective of the present invention) The present invention has been made in view of the above circumstances, and in some types and types, it is possible to prevent the armature coils from overlapping even if they are arranged in a superimposed manner as shown in Fig. 1. In addition to making it suitable for mass production, the above type and the type in which the armature coils do not overlap can almost eliminate conductor parts that do not contribute to thrust, making it possible to mass produce at low cost, and having a smooth thrust ripple. , and to obtain a highly efficient linear DC motor having a large thrust.

(本発明の実施例) 以下、本発明の実施例を第4図以下を参照しつつ説明す
る。
(Embodiments of the present invention) Hereinafter, embodiments of the present invention will be described with reference to FIG. 4 and subsequent figures.

(第一実施例) ここでは、第1図の場合と同様に可動マグネット型リニ
ア直流モータ6について説明する。
(First Embodiment) Here, the movable magnet type linear DC motor 6 will be described in the same way as in the case of FIG. 1.

コア8は、走行子(後記する界磁マグネット5−1.5
−2)の走行方向と垂直な電機子コイル挿入溝7’t−
T/2又は約T/2間隔で上下両面に多数有する磁性体
からなる長板状のものに形成してなる(第4図及び第5
図参照)。またコア8の上下両面には等間隔にn(nは
1以上の正の繋数)個の浅溝9がT/2n幅で形成され
て、コア8の上下両面には、それぞれn個の浅溝9とT
 / 2 n幅のm(=n+1)個の凸部10とが又互
に形成されている。Itココアと8間の電機子コイル挿
入溝7の開角幅はT/2nに形成されている。第6図に
示すように、このコア8の溝7に導If!A全多数ター
ントロイダル状に巻回して推力に寄与する第一の導体部
11 at影形成、該第一の導体部11aの巻き終わり
端子12を界磁マグネット5−1.5−2の磁極幅Tだ
け走行方向に離れた溝7位置に導き、その溝7位置で上
記第一の導体部11aと反対方向に推力に寄与する第二
の導体部11 be)ロイダル状に巻回することで1個
の電機子コイル11を形成している。このようにして形
成した電機子コイル11群をコア8に互いに位置的に重
ならないように等間隔に装備させることでステータ電機
子16fj!:形成している。いま第4図においては3
個の電機子コイル11−1.・・・。
The core 8 has a running element (a field magnet 5-1.5 to be described later).
-2) Armature coil insertion groove 7't- perpendicular to the running direction
It is formed into a long plate shape made of a large number of magnetic materials on both upper and lower surfaces at intervals of T/2 or approximately T/2 (Figs. 4 and 5).
(see figure). In addition, n (n is a positive number of connections of 1 or more) shallow grooves 9 with a width of T/2n are formed at equal intervals on both the upper and lower surfaces of the core 8. Shallow groove 9 and T
m (=n+1) protrusions 10 having a width of /2n are also formed mutually. The opening angle width of the armature coil insertion groove 7 between It cocoa and 8 is set to T/2n. As shown in FIG. 6, if! The first conductor part 11 which is wound in a toroidal shape and contributes to the thrust is formed by forming a shadow, and the winding end terminal 12 of the first conductor part 11a is connected to the magnetic pole width of the field magnet 5-1.5-2. A second conductor part 11 is guided to a groove 7 position separated by T in the running direction, and contributes to thrust in the opposite direction to the first conductor part 11a at that groove 7 position. armature coils 11 are formed. By equipping the core 8 with the 11 groups of armature coils formed in this way at regular intervals so as not to overlap each other, the stator armature 16fj! : Forming. Now in Figure 4, 3
armature coils 11-1. ....

11−6のみを描いている。該ステータ電機子13の上
下両面それぞれには、第3図に示した工うな界磁マグネ
ット5−1.5−2がステータ電機子13に相対向配設
され、該ステータ電機子16に相対的に移動する走行子
となっている。界磁マグネツ)5−1.5−2の背面に
は、磁路全閉じるための磁性体ヨーク14−1 、14
−2が固設されている。尚、界磁マグネット5−1と5
−2とは、同極同士が対向している。
Only 11-6 is depicted. On each of the upper and lower surfaces of the stator armature 13, field magnets 5-1, 5-2 shown in FIG. It is a running child that moves. On the back of the field magnets) 5-1 and 5-2, there are magnetic yokes 14-1 and 14 for completely closing the magnetic path.
-2 is fixedly installed. In addition, field magnets 5-1 and 5
-2 means that the same poles are facing each other.

装備することで、推力IJlプル9滑らかで、180度
通電において最も大きな推力の得られる有鉄芯型のリニ
ア直流モータが得られる。
By equipping it, you can obtain a linear DC motor with a iron core that has a smooth thrust IJl pull 9 and can obtain the largest thrust when energized at 180 degrees.

尚、電機子コイル11には、界磁マグネット5−1.5
−2との相対位置によって、通電方向を切り換える必要
がある。
In addition, the armature coil 11 includes a field magnet 5-1.5.
It is necessary to switch the current direction depending on the relative position with -2.

この場合の電機子コイル11群への通電方向の切り換え
に当っては、電機子コイル11−個はつき一個の位置検
知素子、例えば、ホール素子、ホールIC,磁気抵抗素
子等の磁気センサを設けるのが簡易である。
In this case, when switching the current direction to the armature coils 11 groups, one position detection element is provided for every 11 armature coils, for example, a magnetic sensor such as a Hall element, a Hall IC, or a magnetoresistive element. is simple.

しかし、このように磁気センサを複数設けるのは、高価
になるので、エンコーダを用いて、位置の検出、速度検
出、移動位置の検出を行なうようにしてもよい。
However, since providing a plurality of magnetic sensors like this is expensive, an encoder may be used to detect the position, speed, and movement position.

第7図は電機子コイル11=1.・・・、11−3群か
らなる電機子13と界磁マグネット5−1゜5−2との
展開図を示す。電機子コイル11−1゜・・・、11−
3の第一及び第二の推力に寄与する導体部11a、1f
bはそれぞれ半導体整流装置15に接続されている。位
置検知素子として用い几磁電変換素子16−1.16−
2.16−6はそれぞれ電機子コイル11−1.・・・
、11−1の友めの位置検知素子で、それぞれのその出
力端子が半導体整流装置15に接続されている。磁電変
換素子16−1 、・・−,16−3は界磁マグネット
5−1又は5−2のN極又はS極を検出する?で、電機
子コイル11’−1,・・・、11−5の通電方向を切
シ換えて所定方向の推力上寿ている。17−1 、17
−2は、それぞれ正側電源端子、負側電源端子である。
FIG. 7 shows armature coil 11=1. . . , a developed view of the armature 13 and the field magnets 5-1 and 5-2, which are comprised of the 11-3 group. Armature coil 11-1°..., 11-
Conductor portions 11a and 1f that contribute to the first and second thrust of No. 3
b are connected to the semiconductor rectifier 15, respectively. Magnetoelectric conversion element 16-1.16- used as a position detection element
2.16-6 are armature coils 11-1. ...
, 11-1, each of which has its output terminal connected to the semiconductor rectifier 15. Do the magnetoelectric conversion elements 16-1, . . . , 16-3 detect the N pole or S pole of the field magnet 5-1 or 5-2? Then, the current direction of the armature coils 11'-1, . . . , 11-5 is switched to maintain maximum thrust in a predetermined direction. 17-1, 17
-2 are a positive power supply terminal and a negative power supply terminal, respectively.

(第二実施例) 上記第一の推力に寄与する導体部11aと第二が、第8
図に示すように、電機子コイル11の上記導体部11a
、11bが必ずしも等間隔に配設しなくてもよい。
(Second embodiment) The conductor portion 11a contributing to the first thrust and the second
As shown in the figure, the conductor portion 11a of the armature coil 11
, 11b do not necessarily have to be arranged at equal intervals.

第9図は第8図の場合における電機子コイル11群から
なる電機子16と界磁マグネット5−1.5−2との展
開図を示す。
FIG. 9 shows a developed view of the armature 16 consisting of the armature coil 11 group and the field magnet 5-1, 5-2 in the case of FIG. 8.

(第三実施例) 上記実施例における電機子コイル11においては、推力
に寄与する第一の導体部11aと推力に寄与する第二の
導体部11bとは、界磁マグネツ)5−1.5−2の磁
極幅T又はほぼ磁極幅Tだけ離れた電機子コイル挿入溝
7に巻装したが、第10図に示すようにコア8の電機子
コイル挿入溝7に導線をトロイダル状に多数ターン巻回
して推力に寄与する第一の導体部11 at影形成、該
第一の導体部11aの巻き終り端子12を界磁マグネッ
ト5−1.5−2の磁極幅t−Tとするとき、2T倍だ
け走行方向に離れ友電様子コイル挿入溝7位置に導き、
その挿入溝7位置で上記第一の導体部11aと同方向に
導線をトロイダル状に多数ターン巻回して推力に寄与す
る第二の導体部11b’)形成することで、1個の電機
子コイル11t−形成してもよい。いま第10図におい
ては2個の電機子コイル11−1.11−2のみを描い
ておシ、この場合の展開図は第11図に示す通りである
(Third Example) In the armature coil 11 in the above example, the first conductor portion 11a that contributes to thrust and the second conductor portion 11b that contributes to thrust are field magnets) 5-1.5 -2 magnetic pole width T or approximately the magnetic pole width T, but as shown in FIG. When the first conductor part 11 that is wound and contributes to the thrust forms a shadow, and the winding end terminal 12 of the first conductor part 11a is set to the magnetic pole width t-T of the field magnet 5-1.5-2, Move away in the running direction by 2T times and guide it to the 7th position of the Yuden coil insertion groove.
By winding a conductive wire in a toroidal shape with many turns in the same direction as the first conductor part 11a at the insertion groove 7 position to form a second conductor part 11b') that contributes to thrust, one armature coil is formed. 11t- may be formed. Now, in FIG. 10, only two armature coils 11-1 and 11-2 are depicted, and the developed view in this case is as shown in FIG. 11.

(第四実施例) 次に電機子コイル11群が第1図に示すように重畳配置
する場合について、第12図乃至第14図を参照して説
明する。尚、本発明のリニア直流モータ6は電機子コイ
ル11群を重畳型配置しても、電機子コイル11群は重
畳しないものとなっている。従って、第1図のものに比
較してコア8に電機子コイル11群を容易に装備でき、
安価に量産できるものとなる。電機子コイル11−1は
コア8の電機子コイル挿入溝7に導線をトロイダル状に
多数ターン巻回して推力に寄与する第一の導体部11a
−1(第12図乃至第14図参照)を形成し、該第一の
導体部11a−1の巻き終わ多端子18を界磁マグネッ
ト5−1.5−2の磁極幅Tだけ走行方向に離れ九挿入
溝7位置に導き、その溝7位置で上記第一の導体部11
 a−1と反対方向に推力に寄与する第二の導体部11
b−1をトロイダル状に巻回形成することで電機子コイ
ル1l−1t=形成している。上記第一の導体部11a
−1の巻き始め端子19は半導体整流装置(駆動回路)
15のトランジスタQ、とQ、のコレクタ同士の接続端
子20に接続されている。
(Fourth Embodiment) Next, a case where the armature coils 11 are arranged in an overlapping manner as shown in FIG. 1 will be described with reference to FIGS. 12 to 14. Incidentally, in the linear DC motor 6 of the present invention, even if the armature coils 11 groups are arranged in an overlapping manner, the armature coils 11 groups do not overlap. Therefore, compared to the one in FIG. 1, the core 8 can be equipped with 11 groups of armature coils more easily.
It can be mass-produced at low cost. The armature coil 11-1 is a first conductor portion 11a that contributes to thrust force by winding a conductive wire in a toroidal shape with many turns in the armature coil insertion groove 7 of the core 8.
-1 (see FIGS. 12 to 14), and extend the winding end multi-terminal 18 of the first conductor portion 11a-1 in the running direction by the magnetic pole width T of the field magnet 5-1.5-2. The first conductor portion 11 is inserted into the insertion groove 7 at a distance from the insertion groove 7.
A second conductor portion 11 contributing to thrust in the opposite direction to a-1
By winding b-1 into a toroidal shape, an armature coil 1l-1t is formed. The first conductor portion 11a
-1 winding start terminal 19 is a semiconductor rectifier (drive circuit)
It is connected to a connection terminal 20 between the collectors of transistors Q and Q of 15.

21は電機子コイル11−1の位置検知素子(例えば、
ホール素子、ホールIC等の磁電変換素子)で、推力に
寄与する第二の導体部11b−1上若しくはその延長位
置で界磁マグネット5−1若しくは5−2の側面対向部
位置又は当該位置と均等位置に配置されている。端子2
2.23は位置検知素子21の出力を入力する入力端子
で、位置検知素子21が界磁マグネット5−1又は5−
2ON極、S極を検出すると当該素子21.の出力に工
ってトランジスタQ、又はqが導通し、電機子コイル1
1−1に所定方向の電流上流し、所定方向の推力を得る
ものである。上記端子18は正側電源端子17−1に接
続されている。以下についても同様であるので、詳細な
説明は省略する。次に、界磁マグネット5−1.5−2
の磁極幅Tの中間位置、即ち、電機子コイル11−1の
第一の導体部11a−1と第二の導体部11b−1の部
分の−の開角だけ、上記第一の導体部11 a−1から
走行方向に離れ(ズレ)た溝7位置に導線を多数ターン
トロイダル状に巻回して推力に寄与する電機子コイル1
1−2の第一の導体部11 a −2を形成し、該第一
の推力に寄与する導体部11a−2の巻き終わり端子2
4を界磁マグネット5−1.5−2の磁極幅Tだけ走行
方向に離れた溝7位置に導き、この溝7位置で上記第一
の導体部11a−2と反対方向に推力に寄与する第二の
導体部1 l b−2t−巻回形成することで、電機子
コイル1l−2t−形成している。この電機子コイル1
1−1.11−2から明らかなように、電機子コイル1
1−1と11−2とは全く重畳していないか、あるいは
導線一本分のみ重畳しているにすぎない。また推力に寄
与しない導体部(第2図においては、導体部4d、4c
に該当する部分)が、はとんどないため、当該電機子コ
イル11t−安価に形成できる。尚、25.26.27
は、それぞれ電機子コイル11−2.11−3.11−
4のための位置検知素子で、上記電機子コイル11−1
で説明し九と同じような位置に配設されている。
21 is a position detection element of the armature coil 11-1 (for example,
Hall element, Hall IC, or other magnetoelectric transducer), on the second conductor portion 11b-1 that contributes to the thrust or at its extended position and at the side facing position of the field magnet 5-1 or 5-2 or at the corresponding position. are placed in equal positions. terminal 2
2.23 is an input terminal for inputting the output of the position detection element 21, and the position detection element 21 is connected to the field magnet 5-1 or 5-.
When the 2ON pole and S pole are detected, the corresponding element 21. Transistor Q or q becomes conductive at the output of armature coil 1.
1-1 in a predetermined direction to obtain thrust in a predetermined direction. The terminal 18 is connected to the positive power supply terminal 17-1. The same applies to the following, so detailed explanation will be omitted. Next, field magnet 5-1.5-2
The intermediate position of the magnetic pole width T, that is, the - opening angle between the first conductor part 11a-1 and the second conductor part 11b-1 of the armature coil 11-1, An armature coil 1 that contributes to thrust by winding a number of conductive wires in a toroidal shape in a groove 7 position separated (shifted) from a-1 in the running direction.
Winding end terminal 2 of the conductor portion 11a-2 forming the first conductor portion 11a-2 of 1-2 and contributing to the first thrust
4 to a groove 7 position separated in the running direction by the magnetic pole width T of the field magnet 5-1. The armature coil 1l-2t is formed by winding the second conductor portion 1lb-2t. This armature coil 1
As is clear from 1-1.11-2, armature coil 1
1-1 and 11-2 do not overlap at all, or only overlap by one conductor. Also, conductor parts that do not contribute to thrust (in Fig. 2, conductor parts 4d and 4c)
The armature coil 11t can be formed at a low cost since there are not many parts corresponding to the armature coil 11t. In addition, 25.26.27
are armature coils 11-2.11-3.11-, respectively.
4, the armature coil 11-1
It is located in the same position as 9 as explained in .

上記電機子コイル11−1.11−2と同様に、電機子
コイル11−3.11−4等についても形成すれば電機
子コイル11群を重畳似配置しても電機子コイル11群
が従来のように重畳することがないのである。更に又、
電機子コイル11−1゜11−2の場合と同様に他の電
機子コイル全形成することで、電機子コイル11群を重
畳型配置しても実質的に電機子コイル11群を重畳配置
させないですむ。
If the armature coils 11-3, 11-4, etc. are formed in the same way as the armature coils 11-1, 11-2, even if the armature coils 11 groups are arranged in an overlapping manner, the armature coils 11 groups will be There is no overlap as in Furthermore,
By forming all the other armature coils in the same manner as in the case of armature coils 11-1 and 11-2, even if the armature coils 11 groups are arranged in an overlapping manner, the armature coils 11 groups will not be arranged in a superimposed manner. That's fine.

本発明の第四実施例は上記構成からなる九め、位置検知
素子21.25−27が界磁マグネット5−1又は5−
2のN又はSの磁極を検出すると、半導体整流装置15
のトランジスタQ、又ハQ。
In the fourth embodiment of the present invention, the ninth embodiment has the above-mentioned configuration.
When the N or S magnetic pole of 2 is detected, the semiconductor rectifier 15
The transistor Q, and the transistor Q.

が導通し、電機子コイル11には所定方向の電流が通電
され、所定方向の推力を得、走行子となる界磁マグネツ
)5−1.5−2t−所定方向に直線的走行させる。
conducts, a current in a predetermined direction is applied to the armature coil 11, a thrust in a predetermined direction is obtained, and the field magnet (5-1.5-2t) serving as a traveler is caused to run linearly in a predetermined direction.

この第四実施例におけるlj ニア直流モータ6は、電
機子コイル11が2分の1ピツチ、すなわちT/2又は
ほぼT/2だけずれて重畳型配置されているので、推力
リップルも1/2又はほぼl/2だけ滑らかになる友め
、移動子が滑らかに移動することになる。しかも、電機
子コイル11群を重畳型配置にしても、電機子コイル1
1群が2重の厚みになってエアギャップを増長すること
がないので大きな推力が得られる。
In the lj near DC motor 6 in this fourth embodiment, the armature coils 11 are arranged in a superimposed manner shifted by 1/2 pitch, that is, T/2 or approximately T/2, so the thrust ripple is also reduced by 1/2. Or, the moving element will move smoothly by approximately l/2. Moreover, even if the armature coil 11 groups are arranged in a superimposed manner, the armature coil 1
Since the first group does not have double thickness and increase the air gap, a large thrust can be obtained.

(第五実施例〕 上記第一、第二、第四実施例においては、電機子コイル
11は、推力に寄与する第一の導体部11aと推力に寄
与する第二の導体部11bとは、界磁マグネツ)5−1
.5−2の磁極幅T又はほぼTだけ離れ交電様子コイル
挿入溝7位置に互いに導線を反対方向に巻回形成したも
のとなっている。しかし、これに限らず、推力に寄与す
る第一の導体部11aから界磁マグネツ)5−1.5−
2の磁極幅工の奇数@(例えば、3倍、5倍、・・・)
はぼ奇数倍はど離れた他の電機子コイル挿入溝7に導線
?導いて上記第一の導体部11aと反対方向にトロイダ
ル状に巻回して推力に寄与する第二の導体部1 l b
k影形成ることで、1個分の電機子コイル11を形成し
てもよい。
(Fifth Embodiment) In the first, second, and fourth embodiments described above, the armature coil 11 has a first conductor portion 11a that contributes to thrust and a second conductor portion 11b that contributes to thrust. field magnet) 5-1
.. 5-2, conductive wires are wound in opposite directions in the coil insertion grooves 7 in the alternating current state, separated by the magnetic pole width T or approximately T. However, the present invention is not limited to this, and the field magnet is generated from the first conductor portion 11a that contributes to thrust.
Odd number of magnetic pole width of 2 @ (for example, 3 times, 5 times, etc.)
How many odd number times is the conductor wire in the other armature coil insertion groove 7? A second conductor portion 1 lb that leads and winds in a toroidal shape in the opposite direction to the first conductor portion 11a and contributes to thrust force.
By forming the k shadow, one armature coil 11 may be formed.

(第六実施例) 上記第二実施例においては、電機子コイル11群が重な
らないような配設構造としたが、第四実施例で示すよう
に、電機子コイル11が1/2ピツチずれるように重畳
型配設してもよい。
(Sixth Embodiment) In the second embodiment, the arrangement structure was such that the armature coils 11 groups do not overlap, but as shown in the fourth embodiment, the armature coils 11 are shifted by 1/2 pitch. They may be arranged in a superimposed manner.

(第七実施例〉 上記第二、第六実施例では、1重機子コイル11は、推
力(4−寄与する第一の導体部11aと推力に寄与する
第二の導体部11bとは、界磁マグネッ)5−1.5−
2の磁極幅Tの2倍又はほぼ2倍、すなわち2Tだけ離
れた電機子コイル挿入溝7伎置に互いに導線を同方向に
巻回形成し之ものとなっている。しかし、この実施例に
限らず、推力に寄与する第一の導体部11aから界磁マ
グネット5−1.5−2の磁極幅Tの偶数倍(例えば、
4倍=4T、6倍−6T、・・・)又はほぼ偶数倍はど
離れた他の電機子コイル挿入溝7に導線を導いて上記第
一の導体部11aと同方向にトロイダル状に巻回して推
力に寄与する第二の導体部11bt−形成することで、
1個分の電機子コイル11を形成してもよい。
(Seventh Embodiment) In the second and sixth embodiments described above, the single mechatronic coil 11 has a thrust force (4-). Magnet) 5-1.5-
The conductive wires are wound in the same direction in the armature coil insertion grooves 7 which are spaced apart by 2T, which is twice or almost twice the width T of the two magnetic poles. However, the present invention is not limited to this embodiment, and the field magnet 5-1.
4 times = 4T, 6 times - 6T, ...) or approximately an even number times away from another armature coil insertion groove 7, and wind it in a toroidal shape in the same direction as the first conductor portion 11a. By turning and forming the second conductor portion 11bt which contributes to the thrust,
One armature coil 11 may be formed.

(第八実施例) 上記実施例においては、電機子コイル11を重畳型配置
しても良いことを示したが、これらは電機子コイル11
を2分の1ピツチ位相をずらせたものである。ここにお
いて更に滑らかな推力リップルが得られ、高効率のIJ
 ニア直流モータ6を得る場合を説明すると、コア8に
電機子コイル挿入溝7が、界磁マグネツ)5−1.5−
2の一磁極幅T当9においてn(nは1以上の正の整数
)個だけ形成されている場合において、n個の電機子コ
イル11が上記磁極幅Tのm(mは1以上の正の整数)
分の1ピツチすなわちT / mピッチ又はほぼT /
 mだけずれて、上記コア8の電機子コイル挿入溝7に
巻装するとよい。
(Eighth Example) In the above example, it has been shown that the armature coil 11 may be arranged in a superimposed manner.
, with the phase shifted by 1/2 pitch. Here, a smoother thrust ripple can be obtained and a highly efficient IJ
To explain the case of obtaining the near DC motor 6, the armature coil insertion groove 7 is formed in the core 8, and the field magnet) 5-1.5-
In the case where only n (n is a positive integer of 1 or more) are formed in one magnetic pole width T of 2, n armature coils 11 are formed with m of the magnetic pole width T (m is a positive integer of 1 or more). integer)
1/1 pitch or T/m pitch or approximately T/m pitch
It is preferable to wind the armature coil insertion groove 7 of the core 8 with an offset of m.

(第九実施例) ま几、上記場合において、ステータ電機子13の上下両
面に界磁マグネツ)5−1 、5−2t一対向配設した
両面配置形の場合全説明しているが、界磁マグネット5
−1又は5−2のいずれか一方のみを設けてもよい。し
かし、この場合、効率が劣下する。更にまた、均−磁束
形として、よシ効率よくする几めに、円筒形状としても
よい。
(Ninth Embodiment) In the above case, in the case of a double-sided arrangement type in which the field magnets 5-1 and 5-2t are disposed opposite to each other on both the upper and lower surfaces of the stator armature 13, the field is fully explained. magnetic magnet 5
Only either one of -1 or 5-2 may be provided. However, in this case, efficiency is degraded. Furthermore, it may be of a cylindrical shape to improve the efficiency of the uniform magnetic flux type.

(弟子実施例〉 尚、上記実施例においては、可動マグネット!リニア直
流モータ6について説明したが、可動コ 4゜イルをリ
ニア直流モータに形成してもよい。この可動コイル型リ
ニア直流モータとするには、界磁マグネット5−1.5
−2?長く形成して固定子とし、電機子コイル11群金
有するコア8を短かく形成し、このコア8を走行子とす
れば都合がよい。
(Apprentice Embodiment) In the above embodiment, the movable magnet!linear DC motor 6 was explained, but the movable coil 4° coil may be formed into a linear DC motor.This moving coil type linear DC motor The field magnet 5-1.5
-2? It is convenient to form a long core 8 to serve as a stator, to form a short core 8 having armature coils 11, and to use this core 8 as a running element.

(本発明の効果) 上記から明らかなように、本発明のリニア直流モータに
よれば、電機子コイルの開角幅を界磁マグネットの磁甑
幅の奇数倍や1昌数倍に巻回形成できる几め、設計仕様
に応じて種々のものが得られる。ま7jt磯子コイルは
推力に寄与しない導体部がほとんどないため、安価に形
成できる。更にまた、滑らかな推カリツブルを有し、且
つ大きな推力を有する高効率のリニア直流モータを得る
ために位相をずらせて電機子コイル群を重畳塁配置して
も、本発明のIJ ニア直流モータによれば実質的に電
機子コイル群は重畳しないので、量産に適するものとな
る効果を有する。
(Effects of the Present Invention) As is clear from the above, according to the linear DC motor of the present invention, the opening angle width of the armature coil is formed by winding to an odd number multiple or one centimeter times the field magnet width. Various products can be obtained depending on the method and design specifications. The 7jt Isogo coil has almost no conductor parts that do not contribute to thrust, so it can be formed at low cost. Furthermore, in order to obtain a highly efficient linear DC motor with a smooth thrust caliper and a large thrust, even if the armature coil groups are arranged in a superimposed manner with phase shifts, the IJ near DC motor of the present invention will not be affected. According to this method, since the armature coil groups do not substantially overlap, there is an effect that the armature coil group is suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のステータ電機子の斜視図、第2図は第1
図の電機子コイルの斜視図、第3図は界磁マグネットの
斜視図、第4図は本発明の第一実施例としてのステータ
電機子の斜視図、第5図は本発明の第一実施例としての
可動マグネット型リニア直流モータの主要部を表わす側
縦断面図、第6図は本発明の電機子コイルの一例として
の巻回形成方法の説明図、第7図は本発明第一実施例に
おける界磁マグネットと電機子コイル群からなる電機子
との展開図、第8図は本発明第二実施例におけるステー
タ電機子の斜視図、第9図は第8図における界磁マグネ
ットとステータ電機子との展開図、第10図は本発明第
三実施例におけるステータ電機子の斜視図、第11図は
第1O図における界磁マグネットとステータ電機子との
展開図、第12図は本発明第四実施例におけるステータ
電機子の斜視図、第13図は本発明第四実施例における
可動マグネット型リニア直流モータの主要部を表わす側
縦断面図、第14図は本発明第四実施例におけるステー
タ電機子と界磁マグネットとの展開図である。 1・・・ステータ電機子、  2・・・コア、  6・
・・電機子コイル挿入溝、 4・・・電機子コイル、4
a、4b”・推力に寄与する導体部、 4 c +4d
・・・推力に寄与しない導体部、  5−1.5−2・
・・界磁マグネット、  6・・・可動マグネット型リ
ニア直流モータ、 7・・・電機子コイル挿入溝、8・
・・コア、  9・・・浅溝、  10・・・凸部、 
 11・・・電機子コイル、  11a・・・推力に寄
与する第一の導体部、  11b・・・推力に寄与する
第二の導体部、12・・・巻き終わり端子、  16・
・・ステータ電機子、14−1 、14−2・・・磁性
体ヨーク、 15・・・半導体整流装置(駆動回路)、
16・・・位置検知素子、(磁電変換素子)、  17
−1・・・正側電源端子、17−2・・・負側電源端子
、  18・・・巻き終わり端子、 20・・・巻き始
め端子、 21・・・位置検知素子、 22.23.−
・端子、 24・・・巻き終わシ端子、25.26.2
7・・・位置検知素子。
Figure 1 is a perspective view of a conventional stator armature, and Figure 2 is a perspective view of a conventional stator armature.
3 is a perspective view of a field magnet, FIG. 4 is a perspective view of a stator armature as a first embodiment of the present invention, and FIG. 5 is a first embodiment of the present invention. FIG. 6 is an explanatory diagram of a winding forming method as an example of the armature coil of the present invention, and FIG. 7 is a first embodiment of the present invention. FIG. 8 is a perspective view of the stator armature in the second embodiment of the present invention, and FIG. 9 is a developed view of the field magnet and the armature consisting of the armature coil group in the example, and FIG. 9 is the field magnet and stator in FIG. 8. FIG. 10 is a perspective view of the stator armature in the third embodiment of the present invention, FIG. 11 is a development view of the field magnet and stator armature in FIG. A perspective view of a stator armature in a fourth embodiment of the invention, FIG. 13 is a side vertical sectional view showing the main parts of a movable magnet type linear DC motor in a fourth embodiment of the invention, and FIG. 14 is a fourth embodiment of the invention. FIG. 3 is a developed view of a stator armature and a field magnet in FIG. 1... Stator armature, 2... Core, 6...
... Armature coil insertion groove, 4 ... Armature coil, 4
a, 4b”・Conductor part contributing to thrust, 4 c +4d
...Conductor portion that does not contribute to thrust, 5-1.5-2.
...Field magnet, 6.Movable magnet type linear DC motor, 7.Armature coil insertion groove, 8.
... Core, 9 ... Shallow groove, 10 ... Convex part,
DESCRIPTION OF SYMBOLS 11... Armature coil, 11a... First conductor part which contributes to thrust, 11b... Second conductor part which contributes to thrust, 12... Winding end terminal, 16.
... Stator armature, 14-1, 14-2... Magnetic yoke, 15... Semiconductor rectifier (drive circuit),
16...Position detection element, (magnetoelectric conversion element), 17
-1... Positive side power supply terminal, 17-2... Negative side power supply terminal, 18... Winding end terminal, 20... Winding start terminal, 21... Position detection element, 22.23. −
・Terminal, 24... Winding end terminal, 25.26.2
7...Position detection element.

Claims (6)

【特許請求の範囲】[Claims] (1)走行子の走行方向と垂直方向に形成された電機子
コイル挿入溝を上下両面に多数有する長板状の磁性体か
らなるコアの上記溝に導線を多数ターントロイダル状に
巻回して推力に寄与する第一の導体部を形成し、該第一
の導体部から界磁マグネットの磁極幅の整数倍又はほぼ
整数倍ほど離れた上記他の溝に導線を導いて導線を多数
ターントロイダル状に巻回して推力に寄与する第二の導
体部を形成することで一個の電機子コイルを形成し、該
電機子コイル群を上記コアに装備させ、N、Sの磁極を
交互に有するp(pは2以上の正の整数)極の界磁マグ
ネットを上記電機子コイル群を装備したコアに相対向さ
せ、上記界磁マグネット又は電機子コイル群を装備した
コアのいずれか一方を走行子とし、他方を固定子とした
リニア直流モータにおいて、上記電機子コイル挿入溝の
開口幅と略々等しいピッチの浅溝をコアの上下両面に上
記開口幅と同一又はほぼ等しいピッチで等間隔に連続し
て形成した、リニア直流モータ。
(1) Thrust is generated by winding a large number of conductive wires in a toroidal shape in the grooves of a core made of a long plate-shaped magnetic material, which has many armature coil insertion grooves on both upper and lower surfaces, which are formed perpendicularly to the running direction of the running element. forming a first conductor part that contributes to A single armature coil is formed by winding the conductor to form a second conductor that contributes to the thrust, and the armature coil group is installed on the core, and the p( p is a positive integer of 2 or more) A field magnet with a pole is placed opposite to the core equipped with the armature coil group, and either the field magnet or the core equipped with the armature coil group is used as a running element. , in a linear DC motor with the other as a stator, shallow grooves having a pitch approximately equal to the opening width of the armature coil insertion groove are continuously formed on both upper and lower surfaces of the core at equal intervals at a pitch equal to or approximately equal to the opening width. A linear DC motor made of
(2)上記電機子コイル群は第一及び第二の導体部が互
いに重畳しないように走行方向に位相をずらせて重畳型
配設してなる、特許請求の範囲第(1)項記載のリニア
直流モータ。
(2) The linear armature coil group according to claim 1, wherein the armature coil group is arranged in a superimposed manner with the first and second conductor portions shifted in phase in the running direction so as not to overlap with each other. DC motor.
(3)上記電機子コイルは、推力に寄与する第一の導体
部から界磁マグネットの磁極幅の奇数倍又はほぼ奇数倍
ほど離れた他の電機子コイル挿入溝に導線を導いて上記
第一の導体部と反対方向にトロイダル状に巻回して推力
に寄与する第二の導体部を形成した、特許請求の範囲第
(1)項又は第(2)項記載のリニア直流モータ。
(3) The armature coil is constructed by guiding the conductor wire from the first conductor portion that contributes to the thrust to another armature coil insertion groove that is spaced apart from the first conductor portion by an odd number times or approximately an odd number times the magnetic pole width of the field magnet. The linear DC motor according to claim 1 or 2, wherein the second conductor part is wound in a toroidal shape in a direction opposite to the conductor part to form a second conductor part that contributes to thrust.
(4)上記電機子コイルは、推力に寄与する第一の導体
部から界磁マグネットの磁極幅の偶数倍又はほぼ偶数倍
ほど離れた他の電機子コイル挿入溝に導線を導いて上記
第一の導体部と同方向にトロイダル状に巻回して推力に
寄与する第二の導体部を形成した、特許請求の範囲第(
1)項又は第(2)項記載のリニア直流モータ。
(4) The armature coil is constructed by guiding a conductive wire from the first conductor portion contributing to the thrust to another armature coil insertion groove spaced apart from the first conductor portion by an even number or approximately an even number of times the magnetic pole width of the field magnet. A second conductor part that contributes to thrust is formed by winding in a toroidal shape in the same direction as the conductor part of claim 1 (
The linear DC motor described in item 1) or item (2).
(5)上記界磁マグネットは、上記電機子コイル群を装
備したコアの上下両面に同極同士を対向配設してなるこ
とを特徴とする特許請求の範囲第(1)項乃至第(4)
項いずれかに記載のリニア直流モータ。
(5) The field magnet is characterized in that the same poles are arranged opposite to each other on the upper and lower surfaces of a core equipped with the armature coil group. )
The linear DC motor described in any of the paragraphs.
(6)上記電機子コイル挿入溝が界磁マグネットの一磁
極幅当りにおいてn(nは1以上の正の整数)個形成さ
れている場合において、n個の電機子コイルが上記一磁
極幅/m(mは1以上の正の整数)ピッチだけずれて上
記コアに巻装されている、特許請求の範囲第(1)項乃
至第(5)項いずれかに記載のリニア直流モータ。
(6) In the case where n armature coil insertion grooves are formed per one magnetic pole width of the field magnet (n is a positive integer of 1 or more), n armature coils are formed per one magnetic pole width of the field magnet. The linear DC motor according to any one of claims (1) to (5), wherein the linear DC motor is wound around the core with a pitch offset of m (m is a positive integer of 1 or more).
JP24873484A 1984-11-27 1984-11-27 Linear dc motor Pending JPS61210864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24873484A JPS61210864A (en) 1984-11-27 1984-11-27 Linear dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24873484A JPS61210864A (en) 1984-11-27 1984-11-27 Linear dc motor

Publications (1)

Publication Number Publication Date
JPS61210864A true JPS61210864A (en) 1986-09-19

Family

ID=17182561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24873484A Pending JPS61210864A (en) 1984-11-27 1984-11-27 Linear dc motor

Country Status (1)

Country Link
JP (1) JPS61210864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425783B2 (en) * 2003-09-08 2008-09-16 Rorze Corporation Linear motor
EP2819283A4 (en) * 2012-02-20 2016-04-13 Hitachi Ltd Linear motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425783B2 (en) * 2003-09-08 2008-09-16 Rorze Corporation Linear motor
EP2819283A4 (en) * 2012-02-20 2016-04-13 Hitachi Ltd Linear motor
US10128732B2 (en) 2012-02-20 2018-11-13 Hitachi, Ltd. Linear motor

Similar Documents

Publication Publication Date Title
US6849969B2 (en) Transverse flux linear motor with permanent magnet excitation
US4581553A (en) Brushless DC motor, especially linear motor, having an increased force-to-velocity ratio
US5087844A (en) Linear motor
JP2002209371A (en) Linear motor
JP3894297B2 (en) Linear actuator
JPS6030195B2 (en) straight electric machine
JPS61210864A (en) Linear dc motor
CN110572004B (en) Permanent magnet reluctance linear motor
JPH0416632Y2 (en)
JP3824060B2 (en) Linear motor
JPH10174420A (en) Smooth coil-winding type linear motor
JP2002101636A (en) Linear motor
JPS6111542B2 (en)
JPH07123345B2 (en) Movable magnet type linear DC motor
JPS596767A (en) Linear motor
JP2657191B2 (en) Linear DC motor
JPS611255A (en) Core type dc linear motor
JPH0423512B2 (en)
JPS61210867A (en) Linear dc motor
JP2808291B2 (en) Linear motor
JPS619161A (en) Coreless linear dc motor
JPH05111229A (en) Converter for electric energy and mechanical energy
JPH05276733A (en) Linear direct current motor
JP3528686B2 (en) Linear motor
US20030063687A1 (en) Linear motor