JPS6121080B2 - - Google Patents

Info

Publication number
JPS6121080B2
JPS6121080B2 JP4237983A JP4237983A JPS6121080B2 JP S6121080 B2 JPS6121080 B2 JP S6121080B2 JP 4237983 A JP4237983 A JP 4237983A JP 4237983 A JP4237983 A JP 4237983A JP S6121080 B2 JPS6121080 B2 JP S6121080B2
Authority
JP
Japan
Prior art keywords
sugar
dextran
juice
dextranase
carbonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4237983A
Other languages
Japanese (ja)
Other versions
JPS59169500A (en
Inventor
Yoshihiro Senba
Takayuki Muratsubaki
Koji Sayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP4237983A priority Critical patent/JPS59169500A/en
Publication of JPS59169500A publication Critical patent/JPS59169500A/en
Publication of JPS6121080B2 publication Critical patent/JPS6121080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Jellies, Jams, And Syrups (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、甜菜糖汁の処理に関するもので、
特に微生物汚染を受けた甜菜から浸出によつて製
造した劣化粗糖汁を炭酸法により清浄するに当り
糖汁の過性を改善する甜菜糖汁の処理方法を提
供する。甜菜糖は甜菜を截断浸出して粗糖汁を
得、これを清浄・濃縮・結晶させて分蜜し製造す
るものであるが、これに使用する原料甜菜は通常
10月中旬から11月末にかけて収穫し、一部は製糖
工場に直接搬入して処理するが大部分は農場等に
一時貯蔵し、約5ケ月にわたる製糖期間中に毎日
の処理量に見合う量を工場に搬入して製糖を行う
ものである。従つて製糖期後半に搬入される甜菜
は、長期間貯蔵されているので品質が劣化し、特
に貯蔵期間に微生物の汚染を受けると劣化が甚だ
しくなる。このような甜菜から浸出した粗糖汁を
多段の炭酸清浄法で処理すると第2炭酸飽充汁の
過性が悪化し、製糖工場の能力を低下させる等
種々の弊害を生ずるものである。従来、かかる
過性の悪化に対処する方法としては、炭酸法の一
部変更、或は石灰の添加手段の変更等を講じてい
るが、顕著な改善効果を奏する方法は発見されて
おらず、専ら過器の洗浄回数の増加により作業
能力を維持せんとする消極的方法が講ぜられてい
るに過ぎず、能率的な方法の出現が強く期待され
ていた。 前記貯蔵中の劣化による甜菜を処理した場合、
如何なる理由で、第2炭酸飽充汁の過性が悪化
するかについて従来立入つた研究は行なわれてい
ないが、本発明者らの研究によると、貯蔵中に原
料甜菜が微生物の汚染を受け微生物の生産物の一
つであるデキストランが過性を悪化しているこ
とを発見し本発明に到達したもので、本発明は品
質の劣化した甜菜から浸出した粗糖汁を炭酸法に
より清浄する処理方法において粗糖汁にデキスト
ラナーゼを添加してデキスラリンを分解し、炭酸
法により清浄化することにより解決したものであ
る。 本発明の方法で使用する糖汁は特に長期貯蔵
し、微生物の汚染を受けた甜菜から浸出した粗糖
汁である。甜菜は健全な場合でも微量のデキスト
ランを含んでいる場合があるが、低分子のものが
多くその量も少いので過に影響を与える程でも
ない。しかし、微生物の汚染を受けると事情は異
り、例えばロイコノストツクメセンテロイドでは
多量のデキストランを生成し、その分子量は110
百万にも達することが知られている。本発明者ら
の研究によると生成したデキストランの分子量が
多くなればなる程過性を悪化さすもので、今こ
れを粗糖汁を使つたモデル実験により説明する。 実験は健全で第2炭酸飽充汁の過も正常な甜
菜から浸出調製したBx14.7,PH6.2デキストラン
20ppmの粗糖汁を原液とし、この粗糖汁に分子
量の異なる市販のデキストランT―2000(商品
名;分子量200万),デキストランC(商品名:分
子量6〜9万)を夫々100,200,300,400及び
500ppm添加し、これを85℃に保持してCaO濃度
が2%(W/V)となるように石灰乳を加え20分
間緩く攬拌した後、アルカリ度が80mgCaO/100
mlとなるまで炭酸ガスを吹き込んで第1炭酸飽充
を行ないデカンテイシヨン法で上澄液を採取し、
再びこれを80℃に保持してアルカリ度が10mg
CaO/100mlとなるまで炭酸ガスを吹込んで第2
炭酸飽充を行ない、これを過面積が約0.4cm2
過器にトーヨーNo.2(商品名)紙を用い真空
度600mgHgで吸引過し、液容量が200mlにな
るに要した時間を測定した。その結果を第1表に
示す。
This invention relates to the treatment of sugar beet juice.
To provide a method for treating sugar beet sugar juice, which improves the hypersensitivity of sugar juice when cleaning degraded raw sugar juice produced by leaching from sugar beet contaminated with microorganisms by a carbonation method. Beet sugar is produced by cutting and infusing sugar beets to obtain raw sugar juice, which is then purified, concentrated, crystallized, and separated into honey.The raw material used for this is usually sugar beet.
Harvested from mid-October to the end of November, some of it is transported directly to the sugar factory for processing, but the majority is temporarily stored at farms, etc., and the amount equivalent to the daily processing amount during the approximately 5-month sugar manufacturing period is delivered to the factory. It is transported to the factory for sugar production. Therefore, since sugar beets brought in in the latter half of the sugar manufacturing period are stored for a long period of time, their quality deteriorates, and especially if they are contaminated with microorganisms during the storage period, the deterioration becomes severe. If such raw sugar juice leached from sugar beet is treated with a multi-stage carbonation purification method, the hypersensitivity of the second carbonated juice will worsen, causing various problems such as lowering the capacity of the sugar factory. Conventionally, methods to deal with such hypersensitivity have included partially changing the carbonation process or changing the means of adding lime, but no method has been found that produces a significant improvement effect. Only a passive method has been taken to maintain working capacity by increasing the number of times the filter is cleaned, and there have been strong expectations for the emergence of an efficient method. When processing sugar beet due to deterioration during storage,
Although no in-depth research has been conducted to date as to why the hypersensitivity of the second carbonated juice worsens, according to the research of the present inventors, raw sugar beets are contaminated with microorganisms during storage and microorganisms develop. The present invention was developed after discovering that dextran, one of the products of sugar beet, deteriorates hypersensitivity. This problem was solved by adding dextranase to raw sugar juice to decompose dexralin, and then cleaning it using the carbonation method. The sugar juice used in the method of the invention is particularly a raw sugar juice leached from sugar beets that have been stored for a long time and have been contaminated with microorganisms. Even when sugar beet is healthy, it may contain trace amounts of dextran, but since most of them are low-molecular and the amount is small, it does not cause any undue influence. However, the situation is different when contaminated with microorganisms; for example, leuconostectomesenteroids produce large amounts of dextran, with a molecular weight of 110
It is known that it can reach up to a million. According to research conducted by the present inventors, the higher the molecular weight of the dextran produced, the worse the processability becomes. This will now be explained using a model experiment using raw sugar juice. The experiment was conducted using Bx14.7, PH6.2 dextran prepared by infusion from a healthy sugar beet with a normal second carbonation content.
Using 20 ppm raw sugar juice as a stock solution, commercially available dextran T-2000 (trade name; molecular weight: 2 million), dextran C (trade name: molecular weight: 60,000 to 90,000) with different molecular weights were added to this raw sugar juice at 100, 200, 300, respectively. 400 and
After adding 500ppm and keeping it at 85℃, adding milk of lime so that the CaO concentration was 2% (W/V) and stirring gently for 20 minutes, the alkalinity was 80mgCaO/100.
Perform the first carbonation by blowing carbon dioxide gas until the volume reaches ml, and collect the supernatant liquid using the decantation method.
This was again held at 80℃ and the alkalinity was 10mg.
Blow in carbon dioxide gas until CaO/100ml.
After filling with carbonic acid, use Toyo No. 2 (trade name) paper in a strainer with an excess area of about 0.4 cm 2 to suction it at a vacuum level of 600 mgHg, and measure the time required for the liquid volume to reach 200 ml. did. The results are shown in Table 1.

【表】 第1表の結果よりデキストランは何れも過を
阻害するが特に高分子のデキストランがより強く
過性を阻害する。 次にデキストランが第2炭酸飽充汁の過性を
如何なる理由で悪化させるかについて模擬糖液に
よる実験を行なつた。実験は第1炭酸飽汁過糖
汁の模擬糖液(100mlの組成:蔗糖14.0g,
HCl140mgasCaO,NaOH10mg,CaO80mg)に前記
デキストランT―2000(商品名),デキストラン
C(商品名)を夫々100,300及び500ppm添加
し、80℃に保持してアルカリ度が10mgCaO/100
mlとなるまで炭酸ガスを吹き込み(第2炭酸飽充
に相当する)、これを超音波で均一にし遠心分離
機で1000rpm,5分間遠心分離し、上澄液の3分
の2を採取してよく混合し、この遠心力では沈降
しない炭酸カルシウムを主体とする小粒子の量を
波長720mμで測定し−logT720O.D.として求め
た。−logT720O.Dは浮遊する粒子による混濁度合
を色に影響されにくい720mμの波長を計るもの
で、粒子量が多くなると透過が妨げられ、従つて
粒子量と吸光度は比例関係が得られる。又、これ
と平行して同様にアルカリ度が10mgCaO/100ml
となるまで炭酸ガスを吹込んだ(第2炭酸飽充に
相当する)炭酸飽充汁を前記要領で過し、これ
に要した時間を測定し、これを粒子の状態と関連
ずけて第2表に示し、小粒子量と過時間の関係
を第1図に示した。
[Table] From the results shown in Table 1, all dextrans inhibit hypersensitivity, but particularly high-molecular dextran inhibits hypersensitivity more strongly. Next, we conducted an experiment using a simulated sugar solution to determine why dextran worsens the hypersensitivity of the second carbonated juice. The experiment was conducted using a simulated sugar solution of the first carbonated super-sugar juice (composition of 100ml: 14.0g of sucrose,
100, 300, and 500 ppm of Dextran T-2000 (trade name) and Dextran C (trade name) were added to 140 mg of HCl (140 mg of NaOH, 80 mg of CaO, 10 mg of NaOH, 80 mg of CaO), and kept at 80°C until the alkalinity reached 10 mg CaO/100.
ml (corresponding to the second carbonation), homogenize this using ultrasonic waves, centrifuge at 1000 rpm for 5 minutes using a centrifuge, and collect two-thirds of the supernatant. The mixture was thoroughly mixed, and the amount of small particles mainly composed of calcium carbonate that did not settle under the centrifugal force was measured at a wavelength of 720 mμ and was determined as −logT 720 OD. -logT 720 OD measures the degree of turbidity caused by suspended particles at a wavelength of 720 mμ, which is not easily affected by color. As the amount of particles increases, transmission is obstructed, so a proportional relationship can be obtained between the amount of particles and absorbance. Also, in parallel with this, the alkalinity is 10mgCaO/100ml.
The carbonated liquid into which carbon dioxide gas has been blown (corresponding to the second carbonation) is passed in the same manner as described above, the time required for this is measured, and this is correlated with the state of the particles and calculated as follows. Table 2 shows the relationship between the amount of small particles and the elapsed time in FIG.

【表】 第2表から判明するように、同一濃度のデキス
トランの添加ではより高分子量のデキストランが
存在することにより、炭酸飽充によつて生成する
炭酸カルシウムの粒子のうち同一遠心力によつて
沈降しない粒子の量が多くなることが判明し、こ
の事は、より高分子量のデキストランの存在が炭
酸カルシウム粒子をより小粒子化する作用を有す
ることを意味している。そして小粒子の量(−
logT720で表示)と過性の関係を第1図からみ
ると両者間には直線もしくはほゞ直線の関係が認
められ、生成炭酸カルシウム粒子の小粒化が過
性を悪化させることが判明するのである。 上記過性の悪化はデキストラナーゼを添加す
ることにより著るしく改良されるもので、今これ
を実験例により説明する。実験は第1表の実験で
使用した粗糖汁試料500mlに前記デキストランT
―2000(商品名)を5000ppm濃度に添加し、次
いで55℃でデキストラナーゼDL―2(商品名;
1g当り45万単位のデキストラナーゼを含有した
56%(W/W)グリセリン溶液)を添加デキスト
ランの1/10〜1/1500濃度に添加し、2.5分及び5
分間反応させて分解し、その後は第1表の実験要
領で第2炭酸飽充汁を過し、過時間を測定し
た。 尚、粗糖汁中のデキストランの定量は酵素処理
前後の透析残糖量の差から求める方法により、試
料25mlを酢酸バツフアー(PH5.1)で希釈して100
mlとし、これを55℃の恒温水槽中でデキストラナ
ーゼDL―2(商品名)を0.2ml加え攬拌し、45分
間反応させ、反応終了後に透析膜(ビスキング社
製型式36/32)に入れ水道水で流水中で72時間透
析し、次いでこれを取り出し250mlにメスアツプ
し、同時に酵素処理をしない試料についても同様
に処理し、両者の液中の糖含量をフエノール硫酸
法により求めその差をデキストラン濃度とした。
又、デキストラナーゼの力価の測定は2.5%デキ
ストラン溶液を2.0mlとり40℃の恒温水槽に約10
分間静置後これに検体(デキスラナーゼの適量を
リン酸塩バツフアーに溶解したもの)1.0mlを加
えて振盪し、恒温水槽に静置し、10分後2N―
H2SO40.5mlを加えて振盪し、約10分間静置後フ
エノールフタレンを指示薬として1N―NaOHで中
和し、水0.5mlを加えてソモジー法で還元糖を定
量し、酵素反応1分間当りブドウ糖1μmol相当
量の還元糖を遊離させるデキストラナーゼの活性
を115単位とした。 上記デキストラナーゼDL―2(商品名)濃度
と過時間(秒)の関係を第3表に示す。尚表中
デキストラナーゼDL―2濃度はデキストランT
―2000(商品名)500ppmに対する濃度である。
[Table] As shown in Table 2, when the same concentration of dextran is added, due to the presence of dextran with a higher molecular weight, less of the calcium carbonate particles produced by carbonation are produced by the same centrifugal force. It was found that the amount of non-sedimented particles increased, which means that the presence of higher molecular weight dextran has the effect of making the calcium carbonate particles smaller. and the amount of small particles (−
If we look at the relationship between (expressed as logT 720 ) and hyperactivity from Figure 1, we can see that there is a linear or almost linear relationship between the two, and it is clear that the miniaturization of the produced calcium carbonate particles worsens hyperactivity. be. The above-mentioned deterioration of hyperactivity can be significantly improved by adding dextranase, and this will now be explained using an experimental example. In the experiment, the above Dextran T was added to 500ml of the raw sugar juice sample used in the experiment shown in Table 1.
-2000 (trade name) to a concentration of 5000 ppm, and then dextranase DL-2 (trade name;
Contains 450,000 units of dextranase per gram
56% (W/W) glycerin solution) was added to a concentration of 1/10 to 1/1500 of the added dextran for 2.5 min and 5 min.
The mixture was allowed to react for a minute to decompose, and then the second carbonated juice was passed in accordance with the experimental procedure shown in Table 1, and the elapsed time was measured. The amount of dextran in the raw sugar juice is determined from the difference in the amount of residual sugar on dialysis before and after enzyme treatment, and 25 ml of the sample is diluted with acetic acid buffer (PH5.1).
ml, add 0.2 ml of Dextranase DL-2 (trade name) to this in a constant temperature water bath at 55℃, stir, react for 45 minutes, and after the reaction is completed, transfer to a dialysis membrane (Visking Model 36/32). Dialyzed in running tap water for 72 hours, then taken out and diluted to 250 ml. At the same time, the sample without enzyme treatment was treated in the same way. The sugar content in both solutions was determined by the phenol-sulfuric acid method and the difference was determined. The dextran concentration was taken as dextran concentration.
To measure the dextranase titer, take 2.0ml of 2.5% dextran solution and place it in a constant temperature water bath at 40°C for about 10 minutes.
After standing for a minute, 1.0ml of the sample (an appropriate amount of dexlanase dissolved in phosphate buffer) was added, shaken, and left standing in a thermostatic water bath, and after 10 minutes, 2N-
Add 0.5 ml of H 2 SO 4 and shake. After leaving to stand for about 10 minutes, neutralize with 1N-NaOH using phenolphthalene as an indicator. Add 0.5 ml of water and quantify the reducing sugar using the Somogyi method. Enzyme reaction 1 The activity of dextranase that releases reducing sugar equivalent to 1 μmol of glucose per minute was defined as 115 units. Table 3 shows the relationship between the above dextranase DL-2 (trade name) concentration and elapsed time (seconds). In addition, the dextranase DL-2 concentration in the table is dextran T.
-2000 (trade name) is the concentration relative to 500ppm.

【表】 第3表より判明するように、デキストラナーゼ
の添加によりもたらされる過性の改善効果は顕
著で、反応時間2.5分とした場合1/150〜1/100の
濃度及び反応時間5分とした場合1/300〜1/150の
濃度で過は正常値に復することが知られる。更
に、劣化した甜菜よりの粗糖汁について行つた結
果も第3表に示すと同様な結果が得られ、通常劣
化粗糖汁中に存在するデキストラン500ppm以下
の量ではデキストラナーゼの測定方法によるとデ
キストラン3000〜4500単位のデキストラナーゼを
添加し2.5〜5分反応させることにより第2炭酸
飽充汁の過性を著るしく改善することができ
た。一般に酵素反応は、同一条件であれば酵素
量、反応温度及び反応時間に支配せられるが、甜
菜糖製造の条件よりすると、反応時間を長くする
ことは糖汁の滞留時間を長くすることを意味し、
装置を大きくするので上記2.5〜5分の間が望ま
しく酵素添加量もそれに応じた量とし粗糖汁中の
デキストラン量1gに対し3000〜4500単位添加す
るとよい。又デキストラナーゼの添加は浸出糖汁
の如何なる工程でも添加できるが好ましくは第2
炭酸飽充前2.5分〜5分の間で添加するとよい。 本発明に使用するデキストラナーゼは各種起源
のデキストラナーゼを使用することができ、例え
ばケトミウム属、ペニシリウム属、アスペルギル
ス属、スピカリア属、ラクトバチルス属、セルビ
ブリオ属等に属する微生物より選ばれた微生物を
培養し、これより採取したデキストラナーゼをあ
げることができる。又前記説明より判明する如く
高分子量のデキストリンを分解する力の強いもの
が好ましく、例えばケトミウム・グラシル
(Chaetomium gracile)菌の培養物から得たデキ
スラナーゼ(Hattori,A,et al:Agr.BiO.
Chem.452347&2409,(1981))でデキストラナー
ゼDL―2(商品名)として市販されている酵素
やペニシリウム・フニクロサム(Penicillium
funiculosum)菌の培養により得られたデキスト
ラナーゼ(Tsuchiy H.M.,et al:Tournal of
Bacteriology,64P.513〜519,(1952))のような
エンド型デキストラナーゼである。しかし、原料
甜菜の劣化度、製糖技術の差により粗糖汁のPH、
温度、濃度等には差があるので、前記起源のデキ
ストラナーゼよりそれに応じたものを選択使用す
れば良いこと勿論である。 上記添加したデキストラナーゼは前記炭酸法に
おける石灰添加、或いは炭酸飽充及びその後の工
程で完全に除去又は失活し、糖液の濃縮、煎糖に
は何ら支障のないものである。 本発明は上記したように貯蔵により劣化した甜
菜からの粗糖汁にデキストラナーゼを添加し、低
分子量の糖類となし、粗糖汁の過性を改善して
製糖を行うものであるから過器の管理が容易と
なる外度々の過器の洗滌により失なわれる糖分
ロスも減少し製品の歩留り及び品質の向上にもな
るものである。 以下実施例によつて説明する。 実施例 1 製糖開始初期の健全な甜菜を短冊状に截断し、
これを浸出装置で温盪浸出処理して得られた粗糖
汁の組成はBx14.1PH6.2デキストラント15ppmで
あり、これを前記した炭酸法にて清浄処理したと
き第2炭酸飽充汁を材として化繊布(商品名
パイレンP―20―1)を使用する圧器(フイル
タープレス、過面積58.06m2)で、過したと
ころ、圧器1台当り、1回の使用時間は24時間
以上と全く過性不良の現象を認めなかつた。 一方、製糖期の後半になつて堆積貯蔵から搬出
した原料甜菜を上記と同様に処理して得た粗糖汁
の組成はBx13.7PH6.0デキストラン180ppmとPHの
低下及びデキストランの増加を認めた。この糖糖
汁を前記と同様に炭酸法清浄したとき第2炭酸飽
充汁を上記と同じフイルタープレスで過したと
ころ1台当り、1回の使用時間が約12時間と上記
の半分に低下し、過性の不良を認めたので同粗
糖汁に約60℃でデキストラナーゼDL―2を粗糖
汁中のデキストラン濃度(180ppm)の1/150濃
度(酵素量1.2ppm、デキストラン1g当り3000
単位)添加し2.5分の反応時間を置いた後、上記
と同様に炭酸清浄を行つたところ第2炭酸飽充汁
の上記フイルタープレスによる1台当り1回の
過使用時間は、約21時間と著るしく改善された。
[Table] As shown in Table 3, the effect of improving hypersensitivity brought about by the addition of dextranase is remarkable, and when the reaction time is 2.5 minutes, the concentration is 1/150 to 1/100 and the reaction time is 5 minutes. It is known that the excess returns to normal values at a concentration of 1/300 to 1/150. Furthermore, similar results were obtained for raw sugar juice from degraded sugar beets as shown in Table 3, and when the amount of dextran normally present in degraded raw sugar juice is less than 500 ppm, dextran is detected by the dextranase measurement method. By adding 3,000 to 4,500 units of dextranase and reacting for 2.5 to 5 minutes, it was possible to significantly improve the hypersensitivity of the second carbonated juice. In general, enzymatic reactions are controlled by the amount of enzyme, reaction temperature, and reaction time under the same conditions, but based on the conditions of beet sugar production, increasing the reaction time means increasing the residence time of the sugar juice. death,
Since the size of the apparatus is increased, the above 2.5 to 5 minutes is preferable, and the amount of enzyme added should be adjusted accordingly, preferably 3000 to 4500 units per 1 g of dextran in the raw sugar juice. Dextranase can be added at any step of the leaching sugar juice, but is preferably added at the second step.
It is best to add between 2.5 and 5 minutes before carbonation. The dextranase used in the present invention can be of various origins, such as those selected from microorganisms belonging to the genus Chaetomium, Penicillium, Aspergillus, Spicaria, Lactobacillus, Servibrio, etc. Dextranase can be collected from microorganisms by culturing them. Also, as is clear from the above explanation, those having a strong ability to decompose high molecular weight dextrins are preferred, such as dexlanase obtained from a culture of Chaetomium gracile (Hattori, A, et al: Agr.BiO.
Chem. 452347 & 2409, (1981)) and the enzyme commercially available as Dextranase DL-2 (trade name) and Penicillium funiculosum.
Dextranase obtained by culturing the funiculosum funiculosum (Tsuchiy HM, et al: Tournal of
Bacteriology, 64P.513-519, (1952)). However, due to the degree of deterioration of raw sugar beet and differences in sugar manufacturing technology, the pH of raw sugar juice
Since there are differences in temperature, concentration, etc., it goes without saying that the dextranase of the above-mentioned origin may be selected and used accordingly. The added dextranase is completely removed or deactivated during the lime addition or carbonation filling and subsequent steps in the carbonation method, and does not cause any problem in concentrating the sugar solution or decoction. As described above, the present invention adds dextranase to the raw sugar juice from sugar beets that has deteriorated due to storage, converts it into low molecular weight sugars, improves the hypersensitivity of the raw sugar juice, and performs sugar production. In addition to easy management, sugar loss caused by frequent washing of the strainer is also reduced, which also improves product yield and quality. This will be explained below using examples. Example 1 A healthy sugar beet at the beginning of sugar production was cut into strips,
The composition of the raw sugar juice obtained by hot leaching with a leaching device is 15 ppm of Bx14.1PH6.2 dextrant, and when this is cleaned by the carbonation method described above, the second carbonated juice is A pressurizer (filter press, excess area 58.06 m 2 ) that uses synthetic fiber cloth (product name Pyren P-20-1) was used, and it was found that each pressurizer was used for more than 24 hours, which was completely overtime. No phenomenon of poor sex was observed. On the other hand, in the latter half of the sugar manufacturing period, the raw sugar beet was removed from the pile storage and processed in the same manner as above. The composition of the raw sugar juice was Bx13.7PH6.0 and 180ppm of dextran, which showed a decrease in pH and an increase in dextran. When this sugar juice was purified by the carbonation method in the same manner as above, and the second carbonated juice was passed through the same filter press as above, the usage time per machine was approximately 12 hours, which was half of the above. However, since hypersensitivity was observed, dextranase DL-2 was added to the same raw sugar juice at approximately 60°C at a concentration of 1/150 of the dextran concentration (180 ppm) in the raw sugar juice (enzyme amount 1.2 ppm, 3000 g/g of dextran).
unit) was added and after a reaction time of 2.5 minutes, carbonic acid cleaning was performed in the same manner as above. Significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はデキストラン濃度による小粒子量と
過時間との関係を説明する図面で、縦軸は過時
間(秒)を示し、横軸は−logT720O.D.を示す。 1……デキストランT―2000(商品名)、2…
…デキストランC(商品名)。
FIG. 1 is a diagram illustrating the relationship between the amount of small particles and the elapsed time depending on the dextran concentration, where the vertical axis shows the elapsed time (seconds) and the horizontal axis shows -logT 720 OD. 1...Dextran T-2000 (product name), 2...
...Dextran C (product name).

Claims (1)

【特許請求の範囲】 1 品質の劣化した甜菜から浸出した粗糖汁を炭
酸法により清浄する甜菜糖汁の処理方法において
前記粗糖汁にデキストナーゼを添加し、酵素によ
り分解後、炭酸法により清浄することを特徴とす
る甜菜糖汁の処理方法 2 粗糖汁中のデキストラン量1gに対し3000〜
4500単位のデキストナーゼを添加する特許請求の
範囲第1項記載の処理方法
[Scope of Claims] 1. A method for processing sugar beet juice in which raw sugar juice leached from sugar beet with deteriorated quality is purified by a carbonation method, in which dextonase is added to the raw sugar juice, decomposed by an enzyme, and then purified by a carbonation method. Processing method 2 for beet sugar juice characterized by
The treatment method according to claim 1, which comprises adding 4500 units of dextonase.
JP4237983A 1983-03-16 1983-03-16 Treatmnt of beet syrup Granted JPS59169500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4237983A JPS59169500A (en) 1983-03-16 1983-03-16 Treatmnt of beet syrup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4237983A JPS59169500A (en) 1983-03-16 1983-03-16 Treatmnt of beet syrup

Publications (2)

Publication Number Publication Date
JPS59169500A JPS59169500A (en) 1984-09-25
JPS6121080B2 true JPS6121080B2 (en) 1986-05-24

Family

ID=12634415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4237983A Granted JPS59169500A (en) 1983-03-16 1983-03-16 Treatmnt of beet syrup

Country Status (1)

Country Link
JP (1) JPS59169500A (en)

Also Published As

Publication number Publication date
JPS59169500A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
RU2039469C1 (en) Method for obtaining low-cholesterene egg yolk
US4478854A (en) Method of treating plant polysaccharides
JP4675139B2 (en) High purity xylooligosaccharide composition
Rout et al. Production of tannase under mSSF and its application in fruit juice debittering
Pasha et al. Applications of pectinases in industrial sector
DK148776B (en) PROCEDURE FOR PREPARING PALATINOS WITH USING IMMOBILIZED ALFA-Glycosyl TRANSFERASE
CN100503818C (en) Ultrafiltration cleaning of enzyme
ZA200603333B (en) Production of invert syrup from sugarcane juice using immobilized invertase
JP2016540768A (en) Methods for microbial control in processing sugar beet and other sugar-containing plant materials
US4882190A (en) Method of producing sulfite-free sugarbeet pulp
JPS6121080B2 (en)
US5833757A (en) Process for conversion of bananas to sugar syrup
EP0900838B1 (en) Citrus fruit vinegar and method for producing the same
FI125039B (en) Purification procedure and preparation process for cellobiose
JPS6255070A (en) Production of date vinegar
CN101558892A (en) Preparation method of sweet potato beverage
CN105400847B (en) A kind of high-ester pectin and preparation method thereof of high protein stability
US4465772A (en) Method for disinfecting and washing of immobilized lactase
JP5632114B2 (en) Powder containing nystose crystals
JP2000157175A (en) Fruit juice-containing tea beverage
JPH08503130A (en) Use of polyether ionophore antibiotics to control bacterial growth in sugar production.
JPH05253000A (en) Method for cleaning crude saccharide solution
Akelah et al. Polymers in food processing industries
CA1246476A (en) Process for the preparation of a germ-free solution of a lactose-splitting enzyme and its use
JP3644467B2 (en) Manufacturing method for purified persimmon