JPS61210405A - Pressurized fluid feeding device - Google Patents

Pressurized fluid feeding device

Info

Publication number
JPS61210405A
JPS61210405A JP5027085A JP5027085A JPS61210405A JP S61210405 A JPS61210405 A JP S61210405A JP 5027085 A JP5027085 A JP 5027085A JP 5027085 A JP5027085 A JP 5027085A JP S61210405 A JPS61210405 A JP S61210405A
Authority
JP
Japan
Prior art keywords
air
flow rate
flow
main
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5027085A
Other languages
Japanese (ja)
Inventor
Mitsugi Ikeda
貢 池田
Takeo Nakamura
中村 建男
Yoshiyuki Tamura
嘉之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5027085A priority Critical patent/JPS61210405A/en
Publication of JPS61210405A publication Critical patent/JPS61210405A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To supply and send the pressurized fluid of two systems with use of devices as one set by branching to a main supplying sending system, provid ing a sub-supplying sending system, controlling an inlet vane of a main com pressing machine in accordance with the flow detecting value, and making constant the fluid flow of a main supplying sending system. CONSTITUTION:A main supplying sending system 1 provides a sub-supplying sending system 9 at the discharge side of an air turbo compressing machine 3 thereof, from which air is supplied as a branch to a power air system. Between a branching part 10 of the system 9 and the inlet side of a booster 11, a flow detecting means 17 to detect the flow of the system and obtain the flow change of the system 9 based upon the change of the necessary flow of the power air system is provided. The means 17 converts and outputs the flow change detected at an orifice 18 to an electric signal S7. The signal S7 is a flow correcting signal from a power air system side, in which the necessary flow is suitably changed, for the air separating device side where the securing of the constant flow is required, the signal is taken into consideration as a preceding element, an inlet vane 4 of a compressor 3 is controlled in accordance with the detected value, thereby the flow of the system 1 is constantly secured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は圧力流体給送装置に係り、特に単一の圧縮機を
ベースとして2系統の異なる流m1圧力の給送系へ圧力
流体を給送するに際して、一方の給送系の圧力流体に変
動を与えないで、他方の給送系に別途圧縮機を備えて異
なる圧力、流量、で圧力流体を給送させることができる
圧力流体給送装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a pressure fluid feeding device, and in particular, to a pressure fluid feeding device for feeding pressure fluid to two feeding systems with different flow m1 pressures based on a single compressor. Pressure fluid feeding allows pressure fluid to be fed at different pressures and flow rates by equipping the other feeding system with a separate compressor without causing fluctuations in the pressure fluid in one feeding system. Regarding equipment.

[従来の技術] 圧縮空気等の圧力流体を給送する装置は、必要な流量、
必要な圧力に対応させて個々に設備されることが一般的
である。
[Prior Art] A device for supplying pressure fluid such as compressed air has a required flow rate,
Generally, they are installed individually depending on the required pressure.

例えば、第2図に示すような大量の空気を消費する製鉄
所設備等にあっては圧縮空気の用途が2通りあり、製鉄
のために空気弁11i装置側へ圧縮空気を給送するため
の第1の給送系aと、詰機器を運転するための動力空気
系に接続される第2の給送系すとが各別独立に設備され
、各給送系a、bには夫々見合った容量の空気ターボ圧
縮111c、dが設けられている。これは第1の給送系
aが製鉄のために極めて高い精度で一定の圧縮空気流量
の確保を要求されるのに対し、他方箱2の給送系すは諸
a器の運転のために第1の給送系aよりも高い圧力を必
要とされることに対応させたものである。
For example, in steelworks equipment that consumes a large amount of air as shown in Figure 2, compressed air can be used in two ways. A first feeding system a and a second feeding system connected to the power air system for operating the packing equipment are installed separately, and each feeding system a and b has a corresponding one. An air turbo compressor 111c, d with a capacity of This is because the first feeding system a is required to ensure a constant flow rate of compressed air with extremely high precision for steel manufacturing, whereas the feeding system in box 2 is required to operate the various machines a. This corresponds to the fact that a higher pressure than that of the first feeding system a is required.

[発明が解決しようとする問題点] ところで上述したように、被給送側の圧力流体の使用に
合せて圧力流体給送系を各別独立に設備した場合に、そ
れらが充分に稼動されず効率の良くない運転がなされて
いる場合がある。例えば、上述した製鉄所設備において
、鉄生産量を減少して空気分離装置1m1へ圧縮空気を
供給する第1の給送系aの空気ターボ圧縮111cを絞
った状態で運転する場合がある。
[Problems to be Solved by the Invention] As mentioned above, when pressure fluid supply systems are installed separately depending on the use of pressure fluid on the side to be supplied, it is possible that they are not operated sufficiently. In some cases, the vehicle is being operated inefficiently. For example, in the above-mentioned steelworks equipment, the iron production volume may be reduced and the air turbo compression 111c of the first feed system a that supplies compressed air to the air separation device 1m1 may be operated in a throttled state.

ここにこのような場合には、能力として余りある第1の
給送系aの空気ターボ圧縮11cから動力空気系へ圧縮
空気を給送させてこれを充分に稼動させると共に、第2
の給送系すの空気ターボ圧縮機dを除去して設備効率の
向上、並びに省エネルギ化、省人化を図ることが考えら
れる。また新規設備にあっても同様な構成を採用するこ
とにより同様な効果を得ることができる。
In such a case, compressed air is fed from the air turbo compressor 11c of the first feeding system a, which has excess capacity, to the power air system to fully operate it, and the second
It is conceivable to remove the air turbo compressor d from the feed system in order to improve equipment efficiency, save energy, and save manpower. Furthermore, similar effects can be obtained even in new equipment by adopting a similar configuration.

しかしながら第1の給送系aは一定流量の確保が賢求さ
れるのに対し、第2の給送系すでは高圧が要求されるの
に加えて諸機器の起動、停止により必要な圧縮空気流量
が変化するため、単に第1の給送系aに第2の給送系す
を並列に接続すると、第2の給送系すの流量変化が直接
第1の給送系aに影響して著しい変動を生じさせること
となり問題であった。
However, while the first feed system a requires a constant flow rate, the second feed system requires high pressure and the compressed air needed to start and stop various devices. Because the flow rate changes, if you simply connect the second feed system in parallel to the first feed system a, the change in flow rate in the second feed system will directly affect the first feed system a. This was a problem as it caused significant fluctuations.

即ち、一般に異なる流量、圧力の2系統の給送系に、単
一の圧縮機をベースとして圧力流体を給送する場合に、
一方の給送系の変動が他方の給送系に影響を与えないよ
うな設置#lI構成の案出が望まれていた。
In other words, when a single compressor is used to feed pressure fluid to two feeding systems with different flow rates and pressures,
It has been desired to devise an installation #lI configuration in which fluctuations in one feeding system do not affect the other feeding system.

[発明の目的] 本発明は上述したような問題点に鑑みて創案されたもの
であり、その目的は単一の圧縮機をペースとして2系統
の異なる流量、圧力の給送系へ圧力流体を給送するに際
して、一方の給送系の圧力流一体流量に変動を与えない
で、他方の給送系に別途圧縮機を備えて異なる圧力、流
量で圧力流体を給送さ−ぼることができる圧力流体給送
装置を提供するにある。
[Object of the Invention] The present invention was devised in view of the above-mentioned problems, and its purpose is to supply pressurized fluid to two systems with different flow rates and pressures using a single compressor. When feeding, it is possible to feed pressure fluid at different pressures and flow rates by installing a separate compressor in the other feeding system without changing the overall flow rate of pressure fluid in one feeding system. A pressurized fluid delivery device is provided.

[発明のl[要] 本発明は、主圧縮機を備えた主給送系に、これより分岐
させて副給送系を設け、副給送系に給送される圧力流体
を副圧縮機で昇圧させると共に、副圧縮機と分岐部との
間に1itJ給送系の流量変化を検出するための流量検
出手段を設け、この流量検出手段の検出値に応じて吸入
ベーン制御手段により主圧縮機の吸入ベーンを制御し、
主給送系の圧力流体流量を一定化させるようにしたもの
である。
[Summary of the Invention] The present invention provides a main feeding system equipped with a main compressor with a sub-feeding system branched from this, and the pressurized fluid fed to the sub-feeding system is transferred to the sub-compressor. At the same time, a flow rate detection means is provided between the auxiliary compressor and the branch part to detect a change in the flow rate of the 1itJ feeding system, and the main compression is increased by the suction vane control means according to the detected value of the flow rate detection means. Controls the machine's suction vanes,
The pressure fluid flow rate of the main feeding system is made constant.

[実施例] 以下に本発明の好適一実施例を添付図面に従って詳述す
る。
[Example] A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図には本発明に係る圧力流体給送装置の設備例とて
、製鉄所等の空気圧送設備が示されている。本設備にあ
っては、空気を空気分離装置と動力空気系との2つの系
統に給送する必要があり主給送系と副給送系とが設けら
れるが、空気分離装置へは一定流量の確保が要求される
のに対し、動力空気系は主給送系と異なる高い圧力が必
要とされ、また機器の起動、停止等により必要流量が変
動する。
FIG. 1 shows pneumatic feeding equipment in a steel mill or the like as an example of equipment for a pressurized fluid feeding device according to the present invention. In this equipment, it is necessary to feed air to two systems: the air separation device and the power air system, and a main feeding system and a sub-feeding system are provided. On the other hand, the power air system requires a higher pressure than the main feed system, and the required flow rate fluctuates due to equipment startup and shutdown, etc.

図示するように圧力流体としての空気を給送する主給送
系1は、空気分離装置に接続される。またこの主給送系
1は、大気を収集する吸収塔2がら空気を吸入し吐出す
る主圧縮機たる空気ターボ圧縮tg13に接続される。
As shown, a main feed system 1 for feeding air as pressure fluid is connected to an air separation device. The main feed system 1 is also connected to an air turbo compressor tg13 that is a main compressor that takes in air from an absorption tower 2 that collects atmospheric air and discharges it.

この空気ターボ圧縮機3は、これに備えられた吸入ベー
ン4によって流量制御がなされる。吸入ベーン4は吸入
ベーン制御手段たる空気流量調節計5から出力される制
御信@S1によって作動制御されるようになっている。
The flow rate of this air turbo compressor 3 is controlled by suction vanes 4 provided therein. The operation of the suction vane 4 is controlled by a control signal @S1 output from an air flow controller 5 serving as suction vane control means.

ここに空気分離装置側では一日に数回稈r5f、機器の
切換(リペックス切換)が行なわれ、この切換時に一定
に確保されるべき必要流量が変動する。
Here, on the air separation equipment side, switching of the culm r5f and equipment (lipex switching) is performed several times a day, and the required flow rate that should be kept constant changes during this switching.

また主給送系1では常に僅かながら流量が変動している
。空気流量調節計5は、主としてリペックス切換に関わ
る大きな流量変更に対して吸入ベーン4の開度を制御し
、変更後、流量を一定に保持する。更に空気流量FJJ
節計5は、主給送系1に介蹟したオリフィス6により検
出され流量発信器7から出力される流量変動信@S2を
受け、所定の必要流量信号S をベースに、これに加え
るべき要素として流量変化信号S2処理し、僅かな変動
をも除去すべく吸入ベーン4を制御する。尚、空気流量
調節計5から出力される電気信号8里は電油操作器8に
より油圧力に変換され、吸入ベーン4はこの油圧力で駆
動されるようになっている。
Further, in the main feeding system 1, the flow rate always fluctuates slightly. The air flow rate controller 5 controls the opening degree of the suction vane 4 in response to large flow rate changes mainly related to lipex switching, and maintains the flow rate constant after the change. Furthermore, air flow rate FJJ
The meter 5 receives the flow rate fluctuation signal @S2 detected by the orifice 6 interposed in the main feed system 1 and output from the flow rate transmitter 7, and calculates the elements to be added to it based on a predetermined required flow rate signal S. The flow rate change signal S2 is processed as follows, and the suction vane 4 is controlled to eliminate even the slightest fluctuation. The electric signal 8 output from the air flow rate controller 5 is converted into hydraulic pressure by the electro-hydraulic operating device 8, and the suction vane 4 is driven by this hydraulic pressure.

他方、主給送系1には、空気ターボ圧縮機3の吐出側に
これより分岐させて動力空気系へ空気を給送するための
DI給送系9が設けられる。この謂給送系9には、主給
送系1から分岐部10を介して給送されてくる空気を昇
圧させるための副圧縮機としての往復動式昇圧1111
が設けられ、この昇圧機11により主給送系1と異なる
高い圧力の空気を生成して動力空気系へ供給するように
なっている。ところで動力空気系では比較的頻繁に機器
の起動、停止が行なわれ必要流量が変動する。
On the other hand, the main feed system 1 is provided with a DI feed system 9 that branches off from the discharge side of the air turbo compressor 3 and feeds air to the power air system. This so-called feeding system 9 includes a reciprocating pressure booster 1111 as a sub compressor for boosting the pressure of the air fed from the main feeding system 1 via the branch section 10.
The booster 11 generates air at a higher pressure than that of the main feed system 1 and supplies it to the power air system. By the way, in a power pneumatic system, equipment is started and stopped relatively frequently, and the required flow rate fluctuates.

この必要流量の変動にに対する!1lffは昇圧機11
の容量調整手段16(例えば吸入弁アンローダ)により
行なわれるが、この容量調整は空気圧力調節計12から
出力されるR圧機容量:JJ整用信号S4によって制御
される。詳しくは、動力空気系の必要流量の変動は、D
I給送系9の昇圧機11の吐出側圧力の変動として圧力
発信器13により検出され、その検出信@S5 は空気
圧力調節計12に入力される。空気圧力alli1節計
12は検出信号S5 に公知の処理を施して電気的信号
として芦圧機容層調整用信号s4として出力し、その後
この信号S4はシーケンス14を介しτ昇圧機11の公
知′の容量調整手段16に入力され、昇圧機11は必要
流量に見合った容量で運転されるように構成される。
Against this fluctuation in required flow rate! 1lff is booster 11
This capacity adjustment is controlled by the R pressure machine capacity: JJ adjustment signal S4 output from the air pressure regulator 12. In detail, the variation in the required flow rate of the power air system is D
It is detected by the pressure transmitter 13 as a fluctuation in the discharge side pressure of the booster 11 of the I feed system 9, and the detection signal @S5 is input to the air pressure regulator 12. The air pressure alli1 meter 12 performs known processing on the detection signal S5 and outputs it as an electrical signal as the air pressure capacity adjustment signal s4, and then this signal S4 is passed through the sequence 14 to the known '' of the τ booster 11. This is input to the capacity adjustment means 16, and the booster 11 is configured to operate at a capacity commensurate with the required flow rate.

ところでこのように構成された副給送系9の分岐部10
と昇圧機11の吸入側との間には、副給送系9の流量を
検出し動力空気系の必要流量の変動に基づく副給送系9
の流」変化を得るだめの流量検出手段17が設けられる
。本実施例では流量検出手段17は、オリフィス18に
より検出された流量変化を電気的fi号87  に変換
して出力するようになっている。この流居変化信@s7
は、一定流量の確保が要請される空気分離装置側に対し
、適宜必要流量が変動する動力空気系側からの流量修正
信号であり、この信号を先行要素として参酌し検出値に
応じて空気ターボ圧縮1II3の吸入ベーン4を制御す
ることにより主給送系1の流量を一定に確保するもので
ある。詳しくは、流量変化信号S7 は主給送系1の空
気流ffi調面計5に入力される。空気流ff1W第計
5では、空気分離装置磨の所定の必要流量信号S8 が
制御ベースとなっており、流量変化信号S7 は動力空
気側の必要流量に加えられるべき修正のための先行要素
として処理される。処理された侵の信号S1は、重油操
作器8を介して吸入ベーン4に供給される。
By the way, the branch part 10 of the sub-feeding system 9 configured in this way
and the suction side of the booster 11, there is a sub-feed system 9 which detects the flow rate of the sub-feed system 9 and based on fluctuations in the required flow rate of the power air system.
A flow rate detection means 17 is provided to detect a change in the flow rate. In this embodiment, the flow rate detection means 17 converts the change in flow rate detected by the orifice 18 into an electrical fi number 87 and outputs it. This drifting change faith @s7
is a flow rate correction signal from the power air system side, where the required flow rate fluctuates as appropriate, to the air separation equipment side, which is required to secure a constant flow rate.This signal is taken into account as a preceding element, and the air turbo is adjusted according to the detected value. By controlling the suction vane 4 of the compression 1II3, a constant flow rate of the main feed system 1 is ensured. Specifically, the flow rate change signal S7 is input to the air flow ffi surface meter 5 of the main feed system 1. In the air flow ff1W total 5, the predetermined required flow rate signal S8 of the air separation device polishing is the control base, and the flow rate change signal S7 is treated as a preceding element for the correction to be added to the required flow rate of the power air side. be done. The processed invasion signal S1 is supplied to the suction vane 4 via the heavy oil operating device 8.

尚、20は空気ターボ圧縮機3の低流量ルリ罪のための
放風弁であり、また1つは流量計である。
In addition, 20 is a blow-off valve for low flow control of the air turbo compressor 3, and 1 is a flow meter.

次に作用について述べる。Next, we will discuss the effect.

空気ターボ圧縮機3を起動すると、圧力流体たる空気は
主給送系1を介して空気分離装置へ圧送されると共に、
分岐部10から副給送系9へ圧送され、副給送系9へ圧
送された空気は昇圧機11で更に昇圧されて動力空気系
へ供給される。これに際し、空気流量調節計5には、制
御のベースとなる空気分離装置側への所定の必要流量の
信号S8、副給送系9の流出検出手段17がら出力され
る先行要素としての流量変化信@s7、並びに流量発信
器7からの流量修正信号S2が入力され、これらに基づ
き吸入ベーン4が制關されて主給送系1の一定流量が保
持されつつ空気分子II装置及び動力空気系に必要流量
が供給されるようになっている。
When the air turbo compressor 3 is started, air as a pressurized fluid is sent under pressure to the air separation device via the main feed system 1, and
The air is pressure-fed from the branch part 10 to the sub-feeding system 9, and the air pressure-fed to the sub-feeding system 9 is further boosted in pressure by the booster 11 and then supplied to the power air system. At this time, the air flow rate controller 5 receives a signal S8 of a predetermined required flow rate to the air separation device side, which is the basis of control, and a flow rate change as a preceding element outputted from the outflow detection means 17 of the sub-feeding system 9. The signal @s7 and the flow rate correction signal S2 from the flow rate transmitter 7 are input, and based on these, the suction vane 4 is controlled to maintain a constant flow rate in the main feed system 1 while controlling the air molecule II device and the power air system. The required flow rate is supplied to the

ここに動力空気系にJ3いて諸礪器の起動、停止等によ
り必要流量が変更されると、その変更は空気圧力調節計
12を介して昇圧機11の容量調整手段16に入力され
、昇圧機11の容量調整が行なわれる。この容量調整に
より分岐部1oと昇圧機11との間には流出変化が生ず
ることとなり、この変化は流量検出手段17によって検
出されてその検出信号S7  は空気流量調節計5に先
行要素として入力される。空気流量調節計5は、ベース
となる必要流量信号S8  に対して流量変化信号S7
  を修正要素として算入し、吸入ベーン4を作動制御
して流量を変更させる。その結果副給送系9に必要流量
の変動が生じてもこの変動を空気ターボ圧縮13に吸収
させてての影響が主給送系1に及ぶのを抑制でき、略一
定流固での空気圧送状態を維持できる。
Here, when the required flow rate is changed by starting or stopping various types of air conditioners in the power air system, the change is input to the capacity adjustment means 16 of the booster 11 via the air pressure regulator 12, and the change is input to the capacity adjustment means 16 of the booster 11, 11 capacity adjustments are made. This capacity adjustment causes an outflow change between the branch 1o and the booster 11, and this change is detected by the flow rate detection means 17, and the detection signal S7 is inputted to the air flow rate controller 5 as a preceding element. Ru. The air flow rate controller 5 generates a flow rate change signal S7 with respect to a base required flow rate signal S8.
is included as a correction factor, and the suction vane 4 is operated and controlled to change the flow rate. As a result, even if the required flow rate fluctuates in the sub-feeding system 9, this fluctuation can be absorbed by the air turbo compressor 13 and its influence on the main feeding system 1 can be suppressed, and the air pressure can be maintained at a substantially constant flow rate. transmission status can be maintained.

尚、空気分離装置側でのりペックス切換に対してはそれ
に基づく制御信号S3により空気流量調節計5が吸入ベ
ーン4をチリ罪する。ここにリペックス切換に際しては
、流量変化信号S7 や流量変動信号S2の空気流mg
1節計5への入力が吸入ベーン4の制御を不安定化させ
るおそれがあることから、切換前から一定時間各信号8
7 、S2はそのまま保持されるようになっている。
Incidentally, when the air separation device side switches the air pressure, the air flow rate controller 5 controls the suction vane 4 based on the control signal S3. When switching RIPEX, the airflow mg of the flow rate change signal S7 and the flow rate fluctuation signal S2
Since the input to the one-segment meter 5 may destabilize the control of the suction vane 4, each signal 8 is
7, S2 is kept as is.

以上説明した本発明にあっては、単一の圧縮機(空気タ
ーボ圧縮機3)をベースとして2系統(空気分離装置、
動力空気系)の異なる流量、圧力の給送系へ圧力流体を
給送するに際して、一方の系(副給送系9)の外乱を耕
除して他方の系(主給送系1)の流量を略一定に確保で
き、一方の系に別途圧縮m<昇圧111)を備えて圧力
流体を給送できる。即ち、互いの影響がないように従来
必要とされる流量、圧力に対応させて設備していた圧力
流体給送装置を1セツトとして、基本的には単一の圧縮
機で圧力流体を給送できるものである。
In the present invention explained above, two systems (air separation device,
When feeding pressure fluid to feeding systems with different flow rates and pressures (power pneumatic system), disturbances in one system (sub-feeding system 9) are removed to reduce the disturbance in the other system (main feeding system 1). A substantially constant flow rate can be ensured, and pressure fluid can be supplied by separately providing compression (m<pressure increase 111) in one system. In other words, pressure fluid is basically supplied by a single compressor, with the pressure fluid supply devices that were conventionally installed corresponding to the required flow rates and pressures so that there is no influence on each other. It is possible.

従って、設備の簡略化、省エネルギ化、省人化を達成す
ることができる。
Therefore, equipment simplification, energy savings, and labor savings can be achieved.

殊に本発明にあっては実施例のように、流量を連続的に
変化させ得る空気ターボ圧縮機3と、流山がステップ状
に切り換えられる往復動式昇圧機11との組み合せによ
り、動力空気系への空気流11節を幅広いものとするこ
とができる。即ち、例えば空気ターボ圧縮機3が70〜
100%で稼動され、また昇圧機11が0.25.50
.・・・100%で運転可能である場合に昇圧va11
を50%で使用するときターボ圧縮機3の70%から 
100%までの制御で所望の圧力流体供給を行なうこと
ができ、従って最も効率の良いポイントで運転を設定す
ることができる。
In particular, in the present invention, as in the embodiment, the power air system is 11 air flow sections can be widened. That is, for example, the air turbo compressor 3 is 70~
It is operated at 100%, and booster 11 is 0.25.50
.. ... Pressure increase va11 when operation is possible at 100%
from 70% of turbo compressor 3 when using at 50%
The desired pressure fluid supply can be achieved with up to 100% control and therefore the operation can be set at the most efficient point.

[発明の効果] 以上型するに本発明によれば、次のような優れた効果を
発揮する。
[Effects of the Invention] To summarize, according to the present invention, the following excellent effects are achieved.

(1)  主圧縮機を潅えて圧力流体を給送する主給送
系に対して別途異なる系へ異なる圧力、流量で圧力流体
を給送するための副圧縮機を備える副給送系を分岐接続
するに際して、副圧縮機と分岐部との間に副給送系の流
量変化を検出する流量検出手段を設け、この流量検出手
段の検出値に応じて吸入ベーンfI11wJ手段により
主圧縮機の吸入ベーンを制御するようにしたので、副袷
送系の外乱を排除して主給送系の一定流量を確保できる
(1) Separately from the main feeding system that supports the main compressor and feeds pressure fluid, a sub-feeding system is branched out, which is equipped with a sub-compressor that feeds pressurized fluid to different systems at different pressures and flow rates. When connecting, a flow rate detection means for detecting a change in the flow rate of the auxiliary feeding system is provided between the auxiliary compressor and the branch, and the main compressor suction is controlled by the suction vane fI11wJ means according to the detected value of the flow rate detection means. Since the vanes are controlled, disturbances in the side feed system can be eliminated and a constant flow rate in the main feed system can be ensured.

(2)  従って設備の簡略化、省エネルギ化、省人化
を達成することができる。
(2) Therefore, equipment simplification, energy savings, and labor savings can be achieved.

(3)  主圧縮機と副圧縮機の組み合せにより幅広い
運転制御を行なうことができ、運転効率を向−ヒさせる
ことができる。
(3) A wide range of operational control can be performed by combining the main compressor and the sub-compressor, and operational efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の好適一実施例を示す系統図、第2図は
従来例を示す系統図である。 図中、1は主給送系、3は主圧縮機として例示した空気
ターボ圧縮機、4は吸入ベーン、5は吸入ベーン111
111手段として例示した空気流量調節計、9は副給送
系、1oは分岐部、11は副圧縮機として例示した昇圧
機、17は流量検出手段である。
FIG. 1 is a system diagram showing a preferred embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. In the figure, 1 is the main feeding system, 3 is the air turbo compressor exemplified as the main compressor, 4 is the suction vane, and 5 is the suction vane 111.
111 is an air flow rate controller exemplified as means; 9 is a sub-feeding system; 1o is a branch section; 11 is a booster exemplified as a sub-compressor; and 17 is a flow rate detection means.

Claims (1)

【特許請求の範囲】[Claims] 圧力流体を吐出する主圧縮機と、該主圧縮機に接続され
吐出された圧力流体を給送するための主給送系と、該主
給送系から分岐させて設けられた副給送系と、該副給送
系に設けられ給送される圧力流体を昇圧させるための副
圧縮機と、該副圧縮機と上記分岐部との間に設けられ、
上記副給送系の流量変化を検出するための流量検出手段
と、上記主給送系の流量を一定とするために上記流量検
出手段の検出値に応じて上記主圧縮機の吸入ベーンを制
御するための吸入ベーン制御手段とを備えたことを特徴
とする圧力流体給送装置。
A main compressor that discharges pressure fluid, a main feed system that is connected to the main compressor and feeds the discharged pressure fluid, and a sub-feed system that is branched off from the main feed system. , a sub-compressor provided in the sub-feeding system for increasing the pressure of the pressure fluid to be fed, and a sub-compressor provided between the sub-compressor and the branch section,
A flow rate detection means for detecting a change in the flow rate of the auxiliary feeding system, and controlling a suction vane of the main compressor according to a detected value of the flow rate detection means to keep the flow rate of the main feeding system constant. 1. A pressure fluid feeding device comprising suction vane control means for controlling the suction vane.
JP5027085A 1985-03-15 1985-03-15 Pressurized fluid feeding device Pending JPS61210405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027085A JPS61210405A (en) 1985-03-15 1985-03-15 Pressurized fluid feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027085A JPS61210405A (en) 1985-03-15 1985-03-15 Pressurized fluid feeding device

Publications (1)

Publication Number Publication Date
JPS61210405A true JPS61210405A (en) 1986-09-18

Family

ID=12854259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027085A Pending JPS61210405A (en) 1985-03-15 1985-03-15 Pressurized fluid feeding device

Country Status (1)

Country Link
JP (1) JPS61210405A (en)

Similar Documents

Publication Publication Date Title
US6499504B2 (en) Control system for controlling multiple compressors
CN102713299B (en) There is pumping method and the equipment of low power consumption
US6257833B1 (en) Redundant, dedicated variable speed drive system
US6652240B2 (en) Method and control system for controlling multiple throttled inlet rotary screw compressors
US6360535B1 (en) System and method for recovering energy from an air compressor
CN101105175B (en) Compressed air manufacturing facility
US6273936B1 (en) Process and plant for producing a variable gas output
EP0605819A2 (en) Multistage membrane control system and process
US20060216159A1 (en) Multiple compressor control system
JPH09502546A (en) Compressed air control system
US20050053469A1 (en) Multiple-compressor system having base and trim compressors
US20030161731A1 (en) Process for controlling a plurality of turbo engines in parallel or tandem operation
JPS61210405A (en) Pressurized fluid feeding device
JPH0671865A (en) Plant for supplying pressurized gas to printing press system driven by pressure medium
US6155079A (en) Combined process and plant for producing compressed air and at least one air gas
WO1999054628A1 (en) Adapted surge limit in a centrifugal compressor
US3970413A (en) Fluid distribution apparatus and method
US5753081A (en) Apparatus and method for controlling a pressure of a fiber suspension in a headbox or associated fluid conduit
KR101864321B1 (en) Fluid compressor control system
JPH09138710A (en) Method and device for controlling pressure of fluid pressure transfer
US3120979A (en) Pneumatic materials conveying system
JP2000320467A (en) Air compressor
WO2024104608A1 (en) A multi-stage in-line compressor system with dry gas seals and method
WO2020084639A1 (en) System and method for generating compressed air and/or gas and/or vacuum
SU1067241A1 (en) Compressor plant