JPS61209421A - Optical modulator for which superlattice layer is used - Google Patents

Optical modulator for which superlattice layer is used

Info

Publication number
JPS61209421A
JPS61209421A JP5005585A JP5005585A JPS61209421A JP S61209421 A JPS61209421 A JP S61209421A JP 5005585 A JP5005585 A JP 5005585A JP 5005585 A JP5005585 A JP 5005585A JP S61209421 A JPS61209421 A JP S61209421A
Authority
JP
Japan
Prior art keywords
layer
superlattice layer
layers
superlattice
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5005585A
Other languages
Japanese (ja)
Other versions
JPH0756551B2 (en
Inventor
Hiroyuki Sakaki
裕之 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP60050055A priority Critical patent/JPH0756551B2/en
Publication of JPS61209421A publication Critical patent/JPS61209421A/en
Publication of JPH0756551B2 publication Critical patent/JPH0756551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To make the efficient change of refractive indices possible by the lower driving voltage by adopting layer structure in which superlattice layers are used and impressing the voltage to the superlattice layers. CONSTITUTION:This optical modulator is constituted by laminating repeatedly the 1st layers 1-1, 1-n and the 2nd layers 2-1, 1-n having the different refractive indices and using the superlattice layers consisting of extra-thin films (a), (b) consisting of different compsns. for the 2nd layers 2-1, 1-n. The repetitive period T thereof is made half the wavelength and the refractive indices are changed by applying the electric field to the superlattice layers. Light reflects at the boundary faces of the respective layers having the different refractive indices when the light is made incident through an upper transparent electrode 3 on the optical modulator of such multi-layered film type. The reflected light is intensified in the phase under certain condition and is weakened in the phase under the other condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超格子層に電圧(電界)を加えることによっ
て光の屈折率を変え光を変調する超格子層を用いた光変
調器に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical modulator using a superlattice layer that modulates light by changing the refractive index of light by applying a voltage (electric field) to the superlattice layer. It is something.

〔従来の技術〕[Conventional technology]

近年、光通信、光計測、光情報などの所謂オプトロニク
ス技術の開発が盛んに行われ、様々な分野でその実用化
が期待されている。
In recent years, so-called optronics technology, such as optical communication, optical measurement, and optical information, has been actively developed, and its practical application is expected in various fields.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光の応用技術は多くの可能性を秘めているが、エレクト
ロニクスの分野に比べ、まだ課題が多くこれからの研究
成果に負うところが大きい。
Optical applied technology has many possibilities, but compared to the field of electronics, there are still many issues to be solved, and much remains to be achieved in future research.

本発明は、電圧により効率よく屈折率を変化させ光を変
調できる超格子層を用いた光変調器を提供することを目
的とするものである。
An object of the present invention is to provide an optical modulator using a superlattice layer that can efficiently change the refractive index and modulate light using a voltage.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の超格子層を用いた光変調器は、組成
の異なる極薄膜を積層化した超格子層を用いた光変調器
であって、該超格子層及び該超格子層と屈折率の異なる
層を波長の2分の1の繰り返し周期で多数積層し、或い
は、屈折率の異なる2つの層を波長の2分の1の繰り返
し周期で多数積層し、且つ該多数積層した中間部分に第
3の層を介在させるとともに、上記2つの層及び第3の
層のうち少なくとも1つの層を超格子層とし、該超格子
層に電界を加えて屈折率を変え、これにより反射率を変
えることを特徴とするものである。
For this purpose, an optical modulator using a superlattice layer according to the present invention is an optical modulator using a superlattice layer in which ultrathin films having different compositions are laminated, and the superlattice layer and the superlattice layer have a different refractive index. A large number of layers with different refractive indexes are stacked at a repeating period of 1/2 of the wavelength, or a large number of layers with different refractive indexes are stacked at a repeating period of 1/2 of the wavelength, and the middle part of the large number of layers is stacked with a repeating period of 1/2 of the wavelength. A third layer is interposed, at least one of the two layers and the third layer is a superlattice layer, and an electric field is applied to the superlattice layer to change the refractive index, thereby changing the reflectance. It is characterized by this.

その他、該超格子層を光導波路とし、該超格子層に電界
を加えて屈折率を変え、これにより光導波路内の光の反
射率及び伝播経路を変えることを特徴とするものである
Another feature is that the superlattice layer is used as an optical waveguide, and an electric field is applied to the superlattice layer to change the refractive index, thereby changing the reflectance and propagation path of light within the optical waveguide.

〔作用〕[Effect]

本発明の超格子層を用いた光変調器では、超格子層の屈
折率が、印加される電圧によって効率よ(変化する。こ
の屈折率の変化の度合は、超格子の厚さと印加される電
圧の大きさとに依存し、これらの値が大きくなればその
増大の程度に対応して屈折率も変化し、この変化に伴っ
て反射率や光の伝播経路も変化する。また、波長の2分
の1の繰り返し周期で多数積層した中間部分に第3の層
を介在させると、この第3の層の影響により反射率の高
い波長と低い波長とが比較的短い周期で繰り返し出現す
る。従って、小さい電圧の変化でこのピークをシフトす
ることができる。さらに、超格子層を光導波路として用
いた場合、屈折率の変化は光導波路中の光の反射率及び
伝播経路の変化として検出される。
In the optical modulator using the superlattice layer of the present invention, the refractive index of the superlattice layer changes efficiently depending on the applied voltage.The degree of change in the refractive index depends on the thickness of the superlattice and the applied voltage. It depends on the magnitude of the voltage, and as these values increase, the refractive index will change corresponding to the degree of increase, and the reflectance and light propagation path will also change with this change. When a third layer is interposed in the middle part of a large number of laminated layers with a repetition period of 1/2, wavelengths with high reflectance and wavelengths with low reflectance repeatedly appear in a relatively short period due to the influence of this third layer. , this peak can be shifted with a small voltage change.Furthermore, when a superlattice layer is used as an optical waveguide, the change in refractive index is detected as a change in the reflectance and propagation path of light in the optical waveguide. .

〔実施例〕〔Example〕

以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る超格子層を用いた光変調器の1実
施例を示す図、第2図は多層膜光反射器の特性の例を示
す図、第3図は超格子層の屈折率の例を示す図、第4図
は超格子層を用いた光変調器の特性の例を示す図である
FIG. 1 is a diagram showing an example of an optical modulator using a superlattice layer according to the present invention, FIG. 2 is a diagram showing an example of the characteristics of a multilayer film optical reflector, and FIG. FIG. 4 is a diagram showing an example of the refractive index, and FIG. 4 is a diagram showing an example of the characteristics of an optical modulator using a superlattice layer.

光を効率的に制御するには、屈折率の変化を大きくする
とともに、この屈折率の変化を顕著に反射率の変化又は
伝播経路の変化に反晩させることが必要である。このよ
うな要件を備えた本発明に係る超格子層を用いた光変調
器の1実施例を示したのが第1図であり、1−1.1−
nは第1の層、2−1、’l−nは第2の層、3は上方
透明電極、4は下方電極を示す。なお、以下本発明にお
いて、超格子層とは、組成の異なる極薄膜を積層化した
ものであって、少なくとも一方の極薄膜が電子の波長と
同程度の膜厚を有するものをいう。
In order to efficiently control light, it is necessary to increase the change in refractive index and to significantly counteract this change in reflectance or propagation path. FIG. 1 shows an embodiment of an optical modulator using a superlattice layer according to the present invention that meets these requirements, and 1-1.1-
n represents the first layer, 2-1 and 'l-n represent the second layer, 3 represents the upper transparent electrode, and 4 represents the lower electrode. Hereinafter, in the present invention, a superlattice layer refers to a layer formed by laminating extremely thin films having different compositions, in which at least one of the extremely thin films has a thickness comparable to the wavelength of electrons.

第1図に示す超格子層を用いた光変調器は、屈折率が異
なる第1の層1−1、l−nと第2の層2−1.2−n
とを繰り返し積層化したものであって、その一方の第2
の層2−1.2−nに組成の異なる極薄膜a、bよりな
る超格子層を用いたものである。そして、その繰り返し
周期Tを波長の2分の1とし、超格子層に電界を加えて
屈折率光変調器では、上方透明電極3を通して外から光
が入射するとその光は屈折率の異なる各層の界面(第1
の層1−1.1−nと第2の層2−1.2−nとの界面
)で反射する。その反射光はある条件では位相が強めら
れ、他d条件では位相が弱められることになる。
The optical modulator using the superlattice layer shown in FIG. 1 consists of a first layer 1-1, l-n and a second layer 2-1.
are repeatedly laminated, one of which is the second one.
A superlattice layer consisting of ultrathin films a and b having different compositions is used as the layer 2-1.2-n. The repetition period T is set to 1/2 of the wavelength, and an electric field is applied to the superlattice layer. In the refractive index optical modulator, when light enters from the outside through the upper transparent electrode 3, the light is transmitted through each layer with a different refractive index. Interface (first
(the interface between the layer 1-1.1-n and the second layer 2-1.2-n). The phase of the reflected light will be strengthened under certain conditions, and the phase will be weakened under other conditions.

そこで、第1図に示す多層膜型の光変調器において、第
1の層1−1と第2の層2−1との繰り返し周期が波長
8500人の2分の1 (第1の層1−1、第2の層2
−1のそれぞれは4分の1)になるようにし、反射スペ
クトルを調べると第2図のようになる。この第2図から
明らかなように第1の層と第2の層からなる繰り返しの
数nを20程度とすると、1周期が2分の1の波長にな
るところ、すなわち波長が8500人付近で反射率も急
峻に高くなる。従って、第2図に示す特性の多層膜型の
反射器では、8200人或いは8800人付近で屈折率
を変化させれば、反射率を大きく変化させることができ
ることになる。
Therefore, in the multilayer optical modulator shown in FIG. -1, second layer 2
-1 is 1/4), and the reflection spectrum is examined as shown in Figure 2. As is clear from Fig. 2, if the number n of repetitions consisting of the first layer and the second layer is about 20, then one cycle is half the wavelength, that is, the wavelength is around 8,500 people. The reflectance also increases sharply. Therefore, in a multilayer reflector having the characteristics shown in FIG. 2, if the refractive index is changed around 8200 or 8800 people, the reflectance can be greatly changed.

ところで、GaAs/^IAsやGaAs/^lGaA
sなどからなる超格子層の屈折率は、光子エネルギーと
共に増大する第3図に示すような特性をもっており、基
礎吸収端で突起を示す。この屈折率のスロープは、電界
を印加すると図示矢印の方向にシフトする。このシフト
量は、種々の条件により若干具なるが、超格子層に印加
する電界強度をE、超格子の膜厚をdとすると、EXd
O値にほぼ対応する。
By the way, GaAs/^IAs and GaAs/^lGaA
The refractive index of a superlattice layer made of s or the like has the characteristic of increasing with photon energy as shown in FIG. 3, and exhibits a protrusion at the fundamental absorption edge. The slope of this refractive index shifts in the direction of the illustrated arrow when an electric field is applied. The amount of this shift varies slightly depending on various conditions, but if the electric field strength applied to the superlattice layer is E and the film thickness of the superlattice is d, then EXd
Approximately corresponds to the O value.

そこで、電界強度Eを104〜10’V/cm、膜厚d
を10−’cm (100人)にすると、第3図に示す
屈折率のスロープは約10−”V〜lO−’V (10
meV 〜100meV)分シフトすることになる。こ
れにより、第3図における1、3 eVNl、4 eV
の範囲の100meVで、約0.05程度の屈折率の変
化が得られるので、屈折率にして1%以上の変化が生じ
、反射率が最大となる8500人の波長では85Å以上
の変化が得られることなる。
Therefore, we set the electric field strength E to 104 to 10'V/cm and the film thickness d.
is 10-'cm (100 people), the slope of the refractive index shown in Figure 3 is approximately 10-'V to lO-'V (10
100 meV). As a result, 1, 3 eVNl, 4 eV in Figure 3
A change in refractive index of about 0.05 can be obtained at 100 meV in the range of It will happen.

超格子層に電界を印加することにより屈折率が変化して
小さくなると、その層の光路長も対応して減小する。こ
のことにより、共振条件が変化するので、ピークがずれ
ることになる。従って、これを第2図の8200人付近
でみると、大きな反射率の変化を得ることができる。な
お、光学媒体は、屈折率の分だけ短くなるので、屈折率
が3.5〜4.2分の1波長に相当する光学長が420
0人であるとすると、実際の膜厚は1200人〜105
0人になる。上記の考察に従って第1図に示す多層膜型
の光変調器の第2の層2−1.2−nにGaAs/^I
As超格子層を用いて構成した場合の反射スペクトル特
性の例を、実測値(実線)と計算値(点線)により示し
たのが第4図である。この場合、4分の1波長の光路長
に相当する層厚を600人にすると、第2の層2−1.
2−nは100人〜80人程度の極薄膜よりなるGaA
s/AlAs超格子層で構成される。第4図はこのよう
な超格子層を合わせた平均的な反射率を示している。
When the refractive index changes and decreases by applying an electric field to a superlattice layer, the optical path length of that layer also decreases correspondingly. This changes the resonance conditions, causing the peak to shift. Therefore, if we look at this in the vicinity of 8,200 people in Figure 2, we can see a large change in reflectance. In addition, since the optical medium is shortened by the refractive index, the optical length corresponding to 1/4 wavelength with a refractive index of 3.5 to 4.2 is 420 mm.
Assuming that there are 0 people, the actual film thickness is 1200 people to 105 people.
There will be 0 people. According to the above considerations, GaAs/^I is used in the second layer 2-1.2-n of the multilayer optical modulator shown in FIG.
FIG. 4 shows an example of reflection spectrum characteristics when constructed using an As superlattice layer, using actually measured values (solid line) and calculated values (dotted line). In this case, if the layer thickness corresponding to the optical path length of a quarter wavelength is 600, then the second layer 2-1.
2-n is GaA made of an extremely thin film of about 100 to 80 layers.
It is composed of an s/AlAs superlattice layer. FIG. 4 shows the average reflectance of such superlattice layers.

第5図は本発明に係る超格子層を用いた光変調器の他の
実施例を示す図、第6図は第5図に示す光変調器の反射
特性を示す図である。
FIG. 5 is a diagram showing another embodiment of the optical modulator using the superlattice layer according to the present invention, and FIG. 6 is a diagram showing the reflection characteristics of the optical modulator shown in FIG. 5.

第5図に示す多層膜光変調器は、5が電極、6と8が積
層部、7が第3の層、9が電極、10がA1GaAs層
を示し、超格子を用いた第1図に示す如き積層部6と8
との間にさらに超格子を用いた第3の層7を介在させた
ものである。このような構造にすることによって、透明
の電極5を通して外から入射した光は、積層部6の各層
の界面、積層部6と第3の層7との界面、第3の層7と
積層部8との界面、及び積層部8の各層の界面で反射す
ることになる。従って、これらの各界面からの反射光は
、成る波長では位相を強め合い、成る波長では位相を弱
め合うことになり、その結果、第6図に示すような反射
スペクトルの実測値(実線)と計算値(点vA)とが得
られる。この特性から明らかなようにその包路線は先に
第2図や第4図により説明した積層部6.8に依存する
特性を示すが、第3のJi7の影響により反射率の高い
波長と低い波長とが比較的短い周期で繰り返し出現し、
非常に急峻な反射率の変化が得られる。そのため、第5
図に示す構造では電極に加えた小さな電界の変化により
反射率を大きく変えることが可能となる。
In the multilayer optical modulator shown in FIG. 5, 5 is an electrode, 6 and 8 are laminated parts, 7 is a third layer, 9 is an electrode, and 10 is an A1GaAs layer. Laminated parts 6 and 8 as shown
A third layer 7 using a superlattice is further interposed between the two layers. With such a structure, light incident from the outside through the transparent electrode 5 is transmitted to the interface between each layer of the laminated portion 6, the interface between the laminated portion 6 and the third layer 7, and the interface between the third layer 7 and the laminated portion. 8 and at the interfaces of each layer of the laminated portion 8. Therefore, the reflected light from each of these interfaces will strengthen each other's phases at different wavelengths, and weaken each other's phases at different wavelengths, and as a result, the measured value of the reflection spectrum (solid line) as shown in Figure 6 and The calculated value (point vA) is obtained. As is clear from this characteristic, the envelope shows a characteristic that depends on the laminated portion 6.8 as explained earlier in FIGS. The wavelength appears repeatedly in a relatively short period,
A very steep change in reflectance can be obtained. Therefore, the fifth
In the structure shown in the figure, it is possible to greatly change the reflectance by a small change in the electric field applied to the electrode.

また、第5図に示す構造においては、上下の積層部(多
層反射膜)6.8は超格子層を用いない通常の多層膜と
し第3の層7のみを超格子構造として、積層部6.8の
上下(電極5.9間)又は第3の層7の上下(積層部6
.8との間、電極は図示省略)に電圧を印加する方式や
、上下の積層部6.8の一方又は双方に超格子層を用い
第3の層7は超格子層を用いない通常の多層膜として、
積層部6.8の上下(電極5.9)間、積層部6の上下
(電極5及び第3の層7との間に設けられる電極)間又
は積層部8の上下(第3の層7との間に設けられる電極
及び電極9)間に電圧を印加する方式を採用してもよい
。なお、上述の構造は透過光についても同様に応用でき
る。
In addition, in the structure shown in FIG. 5, the upper and lower laminated parts (multilayer reflective films) 6.8 are normal multilayer films that do not use a superlattice layer, and only the third layer 7 has a superlattice structure. .8 (between electrodes 5 and 9) or above and below the third layer 7 (laminated part 6)
.. 8, electrodes are not shown), or a method in which a superlattice layer is used in one or both of the upper and lower laminated parts 6.8, and the third layer 7 is a normal multilayer without using a superlattice layer. As a membrane,
Between the upper and lower parts of the laminated part 6.8 (electrodes 5.9), between the upper and lower parts of the laminated part 6 (the electrodes provided between the electrodes 5 and the third layer 7), or between the upper and lower parts of the laminated part 8 (the third layer 7) A method may be adopted in which a voltage is applied between the electrode provided between the electrode 9) and the electrode 9). Note that the above structure can be similarly applied to transmitted light.

以上説明したように本発明の超格子層を用いた光変調器
は、超格子層を用いた層構造を採用し、この超格子層に
電圧を印加するように構成することによって、低い駆動
電圧により屈折率を効率的に変え得るようにしたもので
ある。従って、第1図及び第5図に示すように4分の1
波長の光路長に相当する膜厚による層の繰り返し多数積
層構造を基本とし、屈折率を変えることにより反射率を
変える反射器としてだけでなく、光の反射率及び伝播経
路を変える光導波路としても応用することができる。以
下のその実施例を説明する。
As explained above, the optical modulator using a superlattice layer of the present invention employs a layer structure using a superlattice layer and is configured to apply a voltage to this superlattice layer, thereby achieving a low driving voltage. This makes it possible to efficiently change the refractive index. Therefore, as shown in Figures 1 and 5, one quarter
Based on a laminated structure with multiple repeating layers with a film thickness equivalent to the optical path length of the wavelength, it can be used not only as a reflector that changes the reflectance by changing the refractive index, but also as an optical waveguide that changes the reflectance and propagation path of light. It can be applied. An example thereof will be described below.

第7図及び第8図は光を層の界面に沿った方向から平行
に入射させる導波路に応用した本発明の他の実施例を示
す図である。図中、11.16.18と23は電極、1
2.15.19と22はAlGaAs層、13は分離層
、14と21は導波路、17と24はGaAs基板、2
0は凹凸部をそれぞれ示している。
FIGS. 7 and 8 are diagrams showing other embodiments of the present invention applied to a waveguide in which light is incident in parallel from a direction along the interface of layers. In the figure, 11, 16, 18 and 23 are electrodes, 1
2.15.19 and 22 are AlGaAs layers, 13 is a separation layer, 14 and 21 are waveguides, 17 and 24 are GaAs substrates, 2
0 indicates an uneven portion, respectively.

第7図に示す導波路の応用例は、導波路14に超格子層
を用い、この導波路14を分離層13の両側に近接して
配置し、光Bを界面に沿った方向から平行に入射させる
ものであり、この導波路14の上下に電極11.16を
設ける。このようにすると、光Bは所定の距離進む毎に
隣接する導波路間を移動する。その距離は、屈折率によ
って異なるので、電極11と16とを使って導波路の超
格子層に印加する電圧を制御することによって、光スィ
ッチとして光B、か光B2かのどちらかに出力を選択切
り換えて取り出すようにすることができる。なお、At
GaAs層12と15は、屈折率が低く光が入りに(い
層を形成し、光Bを外へ逃がさないように閉じ込めるた
めのものである。
In the application example of the waveguide shown in FIG. 7, a superlattice layer is used for the waveguide 14, and this waveguide 14 is placed close to both sides of the separation layer 13, and the light B is directed in parallel from the direction along the interface. Electrodes 11 and 16 are provided above and below this waveguide 14. In this way, the light B moves between adjacent waveguides every time it travels a predetermined distance. Since the distance differs depending on the refractive index, by controlling the voltage applied to the superlattice layer of the waveguide using electrodes 11 and 16, it is possible to output either light B or light B2 as an optical switch. It is possible to switch the selection and take it out. In addition, At
The GaAs layers 12 and 15 have a low refractive index and form layers that allow light to enter, and are used to confine light B so that it does not escape to the outside.

第8図に示す導波路の応用例は、導波路21に超格子層
を用い、この導波路21の表面に1周期が2分の1波長
になる間隔の凹凸部20を設けて、光Cを界面に沿った
方向から平行に入射させるものである。第8図中)は第
8図(alにおいてAlGaAs層19及び電極18を
取り除いた状態を示す。このような導波路21の表面に
1周期が2分の1波長になる間隔の凹凸部20を設けた
構造では、凹凸部20で光Cの反射が起こるが、凹凸部
20又はその中間における超格子部分に対して電極18
と23とを使って電圧を印加すると、屈折率が変化して
光路長が変化するため、凹凸部20における反射特性を
変化させることができる。なお、第8図において、凹凸
部20は、全面又は片側のみでもよく、凹凸部20が中
間領域■を挟んで領域■と■の両側にある場合には、こ
の中間領域■の長さは任意に選択してよい。また、電極
1日は、これらの全ての領域■、■、■に電圧を印加す
るように構成したり、領域■にのみ、領域■のみ、領域
■のみ、或いは領域■と■とに電圧を印加するように構
成してもよい。
In the example of application of the waveguide shown in FIG. 8, a superlattice layer is used for the waveguide 21, and uneven portions 20 are provided on the surface of the waveguide 21 at intervals where one period corresponds to 1/2 wavelength. are incident in parallel from the direction along the interface. Figure 8) shows the state in which the AlGaAs layer 19 and electrode 18 have been removed in Figure 8 (al).On the surface of such a waveguide 21, uneven portions 20 are formed at intervals where one period is 1/2 wavelength. In the structure provided, light C is reflected at the uneven portion 20, but the electrode 18 is not connected to the uneven portion 20 or the superlattice portion in between
When a voltage is applied using and 23, the refractive index changes and the optical path length changes, so the reflection characteristics at the uneven portion 20 can be changed. In FIG. 8, the uneven portion 20 may be formed on the entire surface or only on one side. If the uneven portion 20 is located on both sides of the regions ■ and ■ with the intermediate region ■ in between, the length of the intermediate region ■ may be arbitrary. You may choose to. In addition, the electrodes can be configured to apply voltage to all of these regions ■, ■, and ■, or to apply voltage only to area ■, only to area ■, only to area ■, or to areas ■ and ■. The configuration may be such that the voltage is applied.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、超格
子層を用いた層構造を採用し、この超格子層に電圧を印
加するように構成したので、低い駆動電圧により屈折率
を効率よく変えることができる。従って、4分の1波長
の光路長に相当する膜厚による層の繰り返し多数積層構
造として光を反射させる反射器において、超格子層の電
界を変化させ屈折率を変えることにより効率よく反射率
を変えることができ、また、光導波路として応用する場
合にも、超格子層の電界を変化させ屈折率を変えること
により効率よく導波路内の光の反射率及び伝播経路を変
えることができる。しかも、その駆動電圧は低くても、
効率よく屈折率を変化させることができる。そのため、
屈折率を変化させて光を制御、変調するデバイスに広く
応用することができる。
As is clear from the above description, according to the present invention, a layered structure using a superlattice layer is adopted and a voltage is applied to this superlattice layer, so that the refractive index can be efficiently controlled by a low driving voltage. Can be changed often. Therefore, in a reflector that reflects light with a multi-repetitive laminated structure of layers with a film thickness equivalent to the optical path length of a quarter wavelength, the reflectance can be efficiently adjusted by changing the electric field of the superlattice layer and changing the refractive index. Furthermore, when applied as an optical waveguide, the reflectance and propagation path of light within the waveguide can be efficiently changed by changing the electric field of the superlattice layer and changing the refractive index. Moreover, even if the driving voltage is low,
The refractive index can be changed efficiently. Therefore,
It can be widely applied to devices that control and modulate light by changing the refractive index.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超格子層を用いた光変調器の1実
施例を示す図、第2図は多層膜光反射器の特性の例を示
す図、第3図は超格子層の屈折率の例を示す図、第4図
は超格子層を用いた光変調器の特性の例を示す図、第5
図は本発明に係る超格子層を用いた光変調器の他の実施
例を示す図、第6図は第5図に示す光変調器の反射時゛
性を示す図、第7図及び第8図は光を層の界面に沿った
方向から平行に入射させる導波路に応用した本発明の他
の実施例を示す図である。 1−1、l−n・・・第1の層、2−1.2−n・・・
第2の層、3・・・上方透明電極、4・・・下方電極、
5.9.11.16.18と23・・・電極、6と8・
・・積層部、7・・・第3の層、10.12.15.1
9と22−AlGaAs層、13・・・分離層、14と
21・・・導波路、17と24・・・GaAs基板、2
0・・・凹凸部 特許出願人  新技術開発事業団 代理人弁理士 阿 部  龍 吉 第1図 第2図 第3図 光子工、ネ ルギー (eV〕 第4図 第6図 戒 祝 (A)
FIG. 1 is a diagram showing an example of an optical modulator using a superlattice layer according to the present invention, FIG. 2 is a diagram showing an example of the characteristics of a multilayer film optical reflector, and FIG. Figure 4 shows an example of the refractive index, Figure 4 shows an example of the characteristics of an optical modulator using a superlattice layer, and Figure 5 shows an example of the characteristics of an optical modulator using a superlattice layer.
6 is a diagram showing another embodiment of the optical modulator using the superlattice layer according to the present invention, FIG. 6 is a diagram showing the reflection time characteristics of the optical modulator shown in FIG. 5, and FIGS. FIG. 8 is a diagram showing another embodiment of the present invention applied to a waveguide in which light is incident in parallel from the direction along the interface of layers. 1-1, l-n...first layer, 2-1.2-n...
second layer, 3... upper transparent electrode, 4... lower electrode,
5.9.11.16.18 and 23...electrodes, 6 and 8.
...Lamination part, 7...Third layer, 10.12.15.1
9 and 22-AlGaAs layer, 13... Separation layer, 14 and 21... Waveguide, 17 and 24... GaAs substrate, 2
0...Concave and convex portion patent applicant Ryuukichi Abe Patent attorney representing New Technology Development Corporation Figure 1 Figure 2 Figure 3 Mitsuko, Energy (eV) Figure 4 Figure 6 Kaiho (A)

Claims (3)

【特許請求の範囲】[Claims] (1)組成の異なる極薄膜を積層化した超格子層を用い
た光変調器であって、該超格子層及び該超格子層と屈折
率の異なる層を波長の2分の1の繰り返し周期で多数積
層し、該超格子層に電界を加えて屈折率を変え、これに
より反射率を変えることを特徴とする超格子層を用いた
光変調器。
(1) An optical modulator using a superlattice layer formed by laminating ultrathin films with different compositions, in which the superlattice layer and a layer having a different refractive index from the superlattice layer are repeated at a repetition period of half the wavelength. An optical modulator using a superlattice layer, characterized in that a large number of superlattice layers are laminated, and an electric field is applied to the superlattice layer to change the refractive index, thereby changing the reflectance.
(2)組成の異なる極薄膜を積層化した超格子層を用い
た光変調器であって、屈折率の異なる2つの層を波長の
2分の1の繰り返し周期で多数積層し、且つ該多数積層
した中間部分に第3の層を介在させるとともに、上記2
つの層及び第3の層のうち少なくとも1つの層を超格子
層とし、該超格子層に電界を加えて屈折率を変え、これ
により反射率を変えることを特徴とする超格子層を用い
た光変調器。
(2) An optical modulator using a superlattice layer made by laminating ultrathin films with different compositions, in which a large number of two layers with different refractive indexes are laminated at a repeating period of half the wavelength, and A third layer is interposed in the laminated intermediate portion, and the above 2
The superlattice layer is characterized in that at least one of the two layers and the third layer is a superlattice layer, and an electric field is applied to the superlattice layer to change the refractive index, thereby changing the reflectance. light modulator.
(3)組成の異なる極薄膜を積層化した超格子層を用い
た光変調器であって、該超格子層を光導波路とし、該超
格子層に電界を加えて屈折率を変え、これにより光導波
路内の光の反射率及び伝播経路を変えることを特徴とす
る超格子層を用いた光変調器。
(3) An optical modulator using a superlattice layer made by laminating ultrathin films with different compositions, in which the superlattice layer is used as an optical waveguide, and an electric field is applied to the superlattice layer to change the refractive index. An optical modulator using a superlattice layer that changes the reflectance and propagation path of light within an optical waveguide.
JP60050055A 1985-03-13 1985-03-13 Optical modulator using superlattice layer Expired - Lifetime JPH0756551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050055A JPH0756551B2 (en) 1985-03-13 1985-03-13 Optical modulator using superlattice layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050055A JPH0756551B2 (en) 1985-03-13 1985-03-13 Optical modulator using superlattice layer

Publications (2)

Publication Number Publication Date
JPS61209421A true JPS61209421A (en) 1986-09-17
JPH0756551B2 JPH0756551B2 (en) 1995-06-14

Family

ID=12848309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050055A Expired - Lifetime JPH0756551B2 (en) 1985-03-13 1985-03-13 Optical modulator using superlattice layer

Country Status (1)

Country Link
JP (1) JPH0756551B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957850A (en) * 1972-09-30 1974-06-05
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957850A (en) * 1972-09-30 1974-06-05
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Also Published As

Publication number Publication date
JPH0756551B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US5345328A (en) Tandem resonator reflectance modulator
US6697542B2 (en) Integrated optical switches using nonlinear optical media
KR101706354B1 (en) High speed optical modulator and method of modulating light using the same
JPH08220496A (en) Semiconductor optical modulation element
CN116840971A (en) Nonlinear activator based on two-dimensional material and double-slit waveguide and application thereof
JPH01248142A (en) Optical switch
JP2006284791A (en) Multimode interference optical coupler
JP5367820B2 (en) Surface plasmon light modulator
JP2001215542A (en) Nonlinear optical device
EP0324434B1 (en) Method of activating a nonlinear optical element having electrodes on two side surfaces of nonlinear medium through insulating layers
JPS61209421A (en) Optical modulator for which superlattice layer is used
US5608566A (en) Multi-directional electro-optic switch
US6684003B2 (en) All optical switch for optical integrated circuits
JPH02187732A (en) Optical filter
JPH01178933A (en) Optical switch
JPS63223614A (en) Optical modulator
JP3844664B2 (en) Absorption semiconductor quantum well optical modulator
EP0361651B1 (en) Optical element and method of modulating light by using the same
JPH0380588A (en) Etalon of laser device
JP2940238B2 (en) Light switch
JPH045614A (en) Spatial light modulating element
Johnson Elastic rubber‐waveguide geodesic optical deflector
JPH07218880A (en) Optical semiconductor element and optical communication device
JPH02300716A (en) Optical waveguide type phase modulator
JPS60217346A (en) Optical switch of waveguide type

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term