JPS612086A - Posture determining system using star sensor - Google Patents

Posture determining system using star sensor

Info

Publication number
JPS612086A
JPS612086A JP12171784A JP12171784A JPS612086A JP S612086 A JPS612086 A JP S612086A JP 12171784 A JP12171784 A JP 12171784A JP 12171784 A JP12171784 A JP 12171784A JP S612086 A JPS612086 A JP S612086A
Authority
JP
Japan
Prior art keywords
sensor
star
solar
sensors
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12171784A
Other languages
Japanese (ja)
Inventor
Mitsutaka Kosaka
小坂 満隆
Shoji Miyamoto
宮本 捷二
Naoki Iwai
岩井 声興
Takashi Nakajima
俊 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12171784A priority Critical patent/JPS612086A/en
Publication of JPS612086A publication Critical patent/JPS612086A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7867Star trackers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To remove interference due to solar light effectively by fitting plural sensors to the roll and yaw surfaces of a satellite and selecting a star sensor to be arranged on the shadow of a solar panel. CONSTITUTION:One of four star sensors 3 forms the image of the North Pole on a picture sensor surface. At that time, a sensor prevented from the influence of interference light of the solar padle is selected. A schedular 4 controls a star sensor to be selected at an optional time. On the other hand, a stationary satellite turns about one revolution in a day. Thereby, the schedular 4 controls so as to select a corresponding sensor by dividing about one day into four parts and storing information related to the sensors to be selected in respecrive time sections. A processor 5 determines the position of the North Pole from the picture of the selected sensor. Consequently, the roll angle and the posture angle of the yaw angle can be detected without receiving solar interference light.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スターセンサを利用して、高精度に姿勢を決
定するシステムを対象とする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is directed to a system that uses a star sensor to determine posture with high precision.

〔発明の背景〕[Background of the invention]

通信衛星他、最近の衛星はミッションの高度化にともな
い、高精度で姿勢を検知し、制御する必要が生じてきた
。一方、通信衛星等の静止衛星では、第1図に示すごと
く、衛星Sの3軸r+VtPのうちピッチ軸pが常に北
を向いている。そこで、北極星Poを追尾することによ
り、予定した北極星Paのセンサ面上の位置と実際に観
測したセンサ面上の位置の差から、ヨー角方向とロール
角方向の姿勢を検知することが考えられている。
As the missions of recent satellites such as communication satellites have become more sophisticated, it has become necessary to detect and control their attitudes with high precision. On the other hand, in a geostationary satellite such as a communication satellite, as shown in FIG. 1, the pitch axis p of the three axes r+VtP of the satellite S always points north. Therefore, by tracking Polaris Po, it is possible to detect the attitude in the yaw angle direction and the roll angle direction from the difference between the planned position of Polaris Pa on the sensor surface and the actually observed position on the sensor surface. ing.

しかし、常に太陽光りをパドルで受けるには、ピッチ軸
面に太陽パドルを設置する必要がある。ところが第2図
のように、スターセンサ3が、1台だと太陽パドル2の
前面にスターセンサが位置する場合、太陽の妨害光りを
うけてしまうため、北極星が、スターセンサ3のイメー
ジセンサ(図示せず)で検出できないという問題があっ
た。
However, in order to always receive sunlight on the paddle, it is necessary to install the solar paddle on the pitch axis plane. However, as shown in Fig. 2, if there is only one star sensor 3, and the star sensor is located in front of the solar paddle 2, it will receive interference light from the sun, so the North Star will not be visible to the image sensor ( There was a problem in that it could not be detected due to

〔発明の目的〕[Purpose of the invention]

本発明は太陽光による妨害を効果的に回避しうる新規な
姿勢決定システムを提供することにある。
An object of the present invention is to provide a new attitude determination system that can effectively avoid interference caused by sunlight.

〔発明の概要〕[Summary of the invention]

そこで1本発明では、上述の問題を解決するために、複
数のセンサを、衛星のロール、ヨー面に取りつけ、太陽
パドルの影になるスターセンサを選択し、これに映る北
極星の像から、衛星の姿勢変動を検出することにより、
太陽妨害光をうけることなく、定常的に、ロール角、ヨ
ー常の姿勢角が検出できる。
Therefore, in the present invention, in order to solve the above-mentioned problem, a plurality of sensors are attached to the roll and yaw planes of the satellite, and a star sensor that is in the shadow of the solar paddle is selected, and from the image of the pole star reflected on this, the satellite By detecting posture changes,
Roll angle and yaw attitude angle can be constantly detected without being affected by solar interference light.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に従い、本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、衛星を真北から見た図である。ここでは、ロ
ール、ヨ一平面に、4つのスターセンサを設置した。す
なわち4つのスターセンサ3をそれぞれ90°間隔で設
置する。この場合、太陽光の当たらないスターセンサを
選択して姿勢決定を行なうことになる。第4図がスター
センサによる姿勢決定システムの構成図である。4つの
スターセンサでは、第5図に示すような画像センサ面に
、北極星Eの像を結ぶ。しかし、太陽パドルの影響で妨
害光があるから、妨害光の影響を受けないセンサを選択
しなくてはならない。スケジューラ4は、任意の時刻T
に対してどのスターセンサを選択するかを制御する。静
止衛星では、1日に約1回転する。そこで、スケジュー
ラ4では約1日を1/4等分して、どの時間にとのセン
サを選択するかの情報を記憶させ、該当のセンサを選択
するように制御する。処理装置5では、選択されたセン
サの画像から、北極星位置(x+y)を決定する。(x
、y)の位置を精密に決定するために、像の周辺3×3
画素のグレイスチールP(IIJ)をとりXy yとも
に、以下の様に像の重心として計算する。(X ljp
 ’j ij)は、P(i、j)に対応する画素位置を
表わす。
Figure 3 shows the satellite viewed from due north. Here, four star sensors were installed on the roll and yaw planes. That is, four star sensors 3 are installed at 90° intervals. In this case, a star sensor that is not exposed to sunlight is selected to determine the attitude. FIG. 4 is a configuration diagram of an attitude determination system using a star sensor. The four star sensors form an image of the North Star E on the image sensor surface as shown in FIG. However, since there is interference light due to the influence of the solar paddle, it is necessary to select a sensor that is not affected by interference light. The scheduler 4 selects an arbitrary time T.
Controls which star sensor is selected for. A geostationary satellite rotates about once a day. Therefore, the scheduler 4 divides approximately one day into 1/4 equal parts, stores information on which sensor is to be selected at which time, and controls the sensor to be selected. The processing device 5 determines the position of the North Star (x+y) from the image of the selected sensor. (x
, y), the surrounding area of the image is 3×3.
The gray steel P(IIJ) of the pixel is taken and both Xy and y are calculated as the center of gravity of the image as follows. (X ljp
'j ij) represents the pixel position corresponding to P(i, j).

J −1 次に、XsVから、ロール角、ピッチ角を算出する。算
出アルゴリズムは、以下の通りである。
J −1 Next, the roll angle and pitch angle are calculated from XsV. The calculation algorithm is as follows.

北極星は赤経31.8°、赤緯89.9°に位置する。Polaris is located at right ascension 31.8° and declination 89.9°.

これを赤緯90°すなわち真北に位置すると近似すれば
、スターセンサの焦点距離をfとすると、ロール角or
、ヨー角θyはそれぞれo r =−− θy” − で求めることができる。ただしセンサ面のX方向は、ヨ
ー軸に、X方向はロール軸に一致させるものとする。
If we approximate this to be located at 90° declination, that is, due north, then if the focal length of the star sensor is f, then the roll angle or
, yaw angle θy can be determined by or = −− θy” − respectively. However, it is assumed that the X direction of the sensor surface coincides with the yaw axis, and the X direction coincides with the roll axis.

さらに精度よく、姿勢を決定するためには、北極星の真
北からのズレを考慮する必要がある。すなわち、北極星
の方位ベクトルを(εつeE’/+ε2)とし衛星のグ
リニッジ角度をことするとで計算する。
In order to determine the attitude more accurately, it is necessary to take into account the deviation of the North Star from true north. That is, the azimuth vector of the pole star is (ε×eE'/+ε2), and the Greenwich angle of the satellite is calculated.

以上、複数のスターセンサを使用した姿勢決定方式につ
いて説明したが、スターセンサが2個となったら、18
0’間隔に配置すればよい。4つの場合は、太陽パドル
の影となる部分に必ず2つのスターセンサが入ることに
なり、フェイルセイフ上からも有効である。
Above, we have explained the attitude determination method using multiple star sensors, but when there are two star sensors, 18
They may be arranged at 0' intervals. In the case of four star sensors, two star sensors will always be placed in the shadow of the solar paddle, which is also effective from a fail-safe point of view.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、北極星トラッカに
よるスターセンサ姿勢決定システムの問題点であった太
陽光防害の問題を解決することができる。
As described above, according to the present invention, it is possible to solve the solar damage prevention problem that was a problem with star sensor attitude determination systems using pole star trackers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は衛星の運動を説明する模式図、第2図は衛星の
全体図、第3図は衛星のロール、ヨ一平面図、第4図は
スターセンサによる姿勢決定システム構成を示すブロッ
ク図、第5図は画像センサ面上の北極星の像を示す模式
図である。 1・・・衛星本体、2・・・太陽パドル、3・・・スタ
ーセン第1図 ′−14 第2図 第3図 罵 4  図 % 5  図
Fig. 1 is a schematic diagram explaining the motion of the satellite, Fig. 2 is an overall view of the satellite, Fig. 3 is a roll and side plan view of the satellite, and Fig. 4 is a block diagram showing the configuration of an attitude determination system using a star sensor. , FIG. 5 is a schematic diagram showing an image of the North Star on the image sensor surface. 1... Satellite main body, 2... Solar paddle, 3... Starsen Figure 1'-14 Figure 2 Figure 3 4 Figure % 5 Figure

Claims (1)

【特許請求の範囲】[Claims] スターセンサを用いて北極星を追尾し衛星の姿勢変動を
検出するシステムにおいて、北極星方向に複数のスター
センサを等角度間隔で設置し、太陽パドルの影になるス
ターセンサを選択し、そのセンサの北極星の画像から姿
勢変動を検出するスターセンサによる姿勢決定システム
In a system that uses star sensors to track Polaris and detect attitude changes of satellites, multiple star sensors are installed at equal angular intervals in the direction of Polaris, a star sensor that is in the shadow of the solar paddle is selected, and the polar star of that sensor is A posture determination system using a star sensor that detects posture fluctuations from images.
JP12171784A 1984-06-15 1984-06-15 Posture determining system using star sensor Pending JPS612086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12171784A JPS612086A (en) 1984-06-15 1984-06-15 Posture determining system using star sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12171784A JPS612086A (en) 1984-06-15 1984-06-15 Posture determining system using star sensor

Publications (1)

Publication Number Publication Date
JPS612086A true JPS612086A (en) 1986-01-08

Family

ID=14818133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12171784A Pending JPS612086A (en) 1984-06-15 1984-06-15 Posture determining system using star sensor

Country Status (1)

Country Link
JP (1) JPS612086A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572791B2 (en) 1999-12-10 2003-06-03 Bridgestone Corporation Electroconductive elastic member, elastic member and image formation equipment
US7209760B2 (en) * 2001-05-08 2007-04-24 Lucent Technologies Inc. Methods and apparatus for mitigating the effects of solar noise and the like on a wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572791B2 (en) 1999-12-10 2003-06-03 Bridgestone Corporation Electroconductive elastic member, elastic member and image formation equipment
US7209760B2 (en) * 2001-05-08 2007-04-24 Lucent Technologies Inc. Methods and apparatus for mitigating the effects of solar noise and the like on a wireless communication system

Similar Documents

Publication Publication Date Title
US5109346A (en) Autonomous spacecraft navigation system
US5107434A (en) Three-axis spacecraft attitude control using polar star sensor
US11079234B2 (en) High precision—automated celestial navigation system
JP2844090B2 (en) Attitude control system for geosynchronous satellite
US5749545A (en) Autonomous on-board satellite control system
US5257759A (en) Method and apparatus for controlling a solar wing of a satellite using a sun sensor
US5458300A (en) Method for controlling the attitude of a satellite aimed towards a celestial object and a satellite suitable for implementing it
JPH0719100U (en) Image navigation support device for camera-mounted satellite
US6577929B2 (en) Miniature attitude sensing suite
US5852792A (en) Spacecraft boresight calibration filter
JPH11291997A (en) Satellite-borne attitude control device based on sensing of fixed star
US6158694A (en) Spacecraft inertial attitude and rate sensor control system
EP0881554A2 (en) Satellite imaging system
CN106289156B (en) The method of photography point solar elevation is obtained when a kind of satellite is imaged with any attitude
US10317218B2 (en) Planetary surveillance system
JP2638686B2 (en) Lightweight missile guidance system
CN111060077A (en) Remote sensing satellite image positioning method based on sparse control points
JPH0820269B2 (en) Astronomical search and acquisition method for 3-axis stable spacecraft
Cai et al. A polar rapid transfer alignment assisted by the improved polarized-light navigation
US3448272A (en) Optical reference apparatus utilizing a cluster of telescopes aimed at a selected group of stars
JPS612086A (en) Posture determining system using star sensor
JP7139089B2 (en) Satellite constellations, ground equipment and satellites
RU82678U1 (en) OBSERVING SYSTEM FOR SPACE OBJECTS
US6501419B2 (en) Sensor system and method for determining yaw orientation of a satellite
Meller et al. Digital CMOS cameras for attitude determination