JPS61208412A - Three-stage combustion method to suppress nox with simultaneous desulphurization - Google Patents

Three-stage combustion method to suppress nox with simultaneous desulphurization

Info

Publication number
JPS61208412A
JPS61208412A JP5074685A JP5074685A JPS61208412A JP S61208412 A JPS61208412 A JP S61208412A JP 5074685 A JP5074685 A JP 5074685A JP 5074685 A JP5074685 A JP 5074685A JP S61208412 A JPS61208412 A JP S61208412A
Authority
JP
Japan
Prior art keywords
combustion
zone
primary
combustion zone
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074685A
Other languages
Japanese (ja)
Other versions
JPH044485B2 (en
Inventor
Yoshimasa Miura
三浦 祥正
Noboru Okigami
沖上 昇
Yoshitoshi Sekiguchi
善利 関口
Kunio Sasaki
邦夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5074685A priority Critical patent/JPS61208412A/en
Publication of JPS61208412A publication Critical patent/JPS61208412A/en
Publication of JPH044485B2 publication Critical patent/JPH044485B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To save the amount of supplied desulphurization agent and the transportation cost for its use in recycling the recovered desulphurization agent by supplying the desulphurization agent to the tertiary combustion zone in a three-stage combustion method. CONSTITUTION:A primary fuel is burned at a high temperature and in an oxidizing atmosphere to form a primary combustion zone 3. The ash produced in this process is melted and taken out of a discharge outlet 4. The primary combustion gas contains substantially no ash. Secondary fuel is supplied to the primary combustion gas, and the latter is burned by the surplus air of the primary air in a reducing atmosphere to form a secondary combustion zone 7, and the NOx previously produced is reduced to N2. The fuel not burned in the secondary combustion gas is burned slowly at a low temperature in an oxidizing atmosphere to form a tertiary combustion zone 16. A powdered desulphurization agent in calcium family is directly jetted into the tertiary combustion zone 15 to form CaSO4 from SO2 in it. The tertiary combustion gas is passed through a bag filter 9 to catch the power containing the desulphurization agent, and part of the caught powder is again jetted into the tertiary combustion zone 16, and other part is discharged out of the system to be replaced by fresh desulphurization agent.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、燃焼ガス中の窒素酸化物(N。[Detailed description of the invention] Industrial applications This invention deals with nitrogen oxides (N) in combustion gas.

X)の発生を抑制すると同時に同ガスから硫黄分を除去
する3段燃焼法に関するものである。
This relates to a three-stage combustion method that suppresses the generation of X) and at the same time removes sulfur from the same gas.

従来技術およびその問題点 従来、この種の燃焼法としては、第2図に示すように、
供給燃料を高温還元雰囲気で燃焼して1次燃焼ゾーン(
21)を形成し、同ゾーン(21)の後流側で供給燃料
の未燃分を低温酸化雰囲気で緩慢に完全燃焼して2次燃
焼ゾーン(22)を形成する2段燃焼法において、脱硫
剤を1次燃焼ゾーン(21)に供給して、同ゾーン(2
1)において供給燃料を1次空気で高温還元雰囲気で燃
焼させ、生じた灰分および脱硫反応生成物を溶融状態で
1次燃焼室(23)の炉底に設けられた取出口(24)
から取出す方法が知られている。
Conventional technology and its problems Conventionally, this type of combustion method is as shown in Fig. 2.
The supplied fuel is burned in a high temperature reducing atmosphere to create a primary combustion zone (
Desulfurization The agent is supplied to the primary combustion zone (21) and
In step 1), the supplied fuel is burned in a high-temperature reducing atmosphere with primary air, and the resulting ash and desulfurization reaction products are molten and removed from the outlet (24) provided at the bottom of the primary combustion chamber (23).
There are known methods to extract it from

しかしこの方法では、灰分は一般に珪酸を主成分として
いるため、1次燃焼ゾーン(21)に供給された脱硫剤
は大部分この珪酸と反応して複雑な珪酸塩化合物を形成
してしまう。そのため高い脱硫効率を確保するには脱硫
剤を多量使用する必要があり、脱硫剤の単位使用間当り
の脱硫効率は低いものとなった。また取出口(24)か
ら取出した回収脱硫剤には灰分が多量混入しているため
、これを循環使用するには循環総量が多過ぎて、脱硫剤
の単位量当りの循環輸送コス[−がはなはだ高くついた
However, in this method, since the ash generally contains silicic acid as a main component, the desulfurizing agent supplied to the primary combustion zone (21) mostly reacts with this silicic acid to form a complex silicate compound. Therefore, in order to ensure high desulfurization efficiency, it is necessary to use a large amount of desulfurization agent, and the desulfurization efficiency per unit use of desulfurization agent is low. In addition, since the recovered desulfurization agent taken out from the outlet (24) contains a large amount of ash, the total amount of ash is too large to be recycled, and the circulating transportation cost per unit amount of desulfurization agent is It was very expensive.

この発明は、上記のような実情からなされたものであっ
て、a5A剤の供給量が少なくてすみかつ回収脱硫剤の
循環再使用のための輸送コストを節減することのできる
3段燃焼法を提供することを目的とする。
This invention was made in view of the above-mentioned circumstances, and provides a three-stage combustion method that can reduce the amount of A5A agent supplied and reduce the transportation cost for recycling and reusing the recovered desulfurization agent. The purpose is to provide.

問題点の解決手段 この発明による燃焼法は、上記目的の達成のために、1
次燃料を過剰の1次空気で高温酸化雰囲気で燃焼して1
次燃焼ゾーンを形成し、同ゾーンの後流側に2次燃料を
供給して1次空気の余剰分で還元雰囲気で燃焼して2次
燃焼ゾーンを形成し、同ゾーンの後流側に2次空気を供
給して2次燃料の未燃分を低温酸化雰囲気で緩慢に燃焼
して3次燃焼ゾーンを形成する3段燃焼法において、脱
硫剤を3次燃焼ゾーンに供給することを特徴とする。
Means for Solving the Problems The combustion method according to the present invention achieves the above objectives by:
The secondary fuel is burned in a high temperature oxidizing atmosphere with excess primary air.
A secondary combustion zone is formed, and secondary fuel is supplied to the downstream side of the zone, and the surplus of the primary air is burned in a reducing atmosphere to form a secondary combustion zone. In the three-stage combustion method, in which a tertiary combustion zone is formed by supplying secondary air and slowly burning the unburned content of the secondary fuel in a low-temperature oxidizing atmosphere, a desulfurizing agent is supplied to the tertiary combustion zone. do.

この発明による燃焼法において、1次燃焼ゾーンの燃焼
温度は灰分の流動点以上の高温になされ、同ゾーンで生
じた灰分の溶融物は炉底から取出される。
In the combustion method according to the present invention, the combustion temperature in the primary combustion zone is set to a temperature higher than the pour point of the ash, and the molten ash produced in the zone is taken out from the bottom of the furnace.

また3次燃焼ゾーンから3次燃焼ガスに同伴して出た脱
硫剤の残部は回収されてその少なくとも一部が同ゾーン
に循環供給される。
Further, the remainder of the desulfurizing agent discharged from the tertiary combustion zone together with the tertiary combustion gas is recovered, and at least a portion of it is recycled and supplied to the zone.

脱硫剤としてはたとえばCaC(L+ 、Ca(OH)
2 、’caos ドロマイトなどのカルシウム系化合
物が通常は粉状で用いられる。
Examples of desulfurization agents include CaC(L+, Ca(OH)
2,'caos Calcium-based compounds such as dolomite are usually used in powder form.

発明の効果 以上の次第で、この発明の3段燃焼法によりば、脱硫剤
は3次燃焼ゾーンに供給され、また1次燃焼ゾーンで生
じた灰分は同ゾーンから溶融状態で取出されるので、灰
分溶融物と脱硫剤は完全に分離され、3次燃焼ゾーンに
おいて脱硫剤は灰分をほとんど含まない。したがって本
明細書の冒頭で説明したような珪酸塩化合物の形成に起
因する脱硫剤の供給量の増大の問題を解消して、脱硫剤
の単位供給量当りの脱硫効率を大幅に向上することがで
きる。
In addition to the effects of the invention, according to the three-stage combustion method of the present invention, the desulfurization agent is supplied to the tertiary combustion zone, and the ash produced in the primary combustion zone is taken out in a molten state from the same zone. The ash melt and the desulfurization agent are completely separated, and the desulfurization agent contains almost no ash in the tertiary combustion zone. Therefore, it is possible to solve the problem of increasing the amount of desulfurization agent supplied due to the formation of silicate compounds as explained at the beginning of this specification, and to significantly improve the desulfurization efficiency per unit amount of desulfurization agent supplied. can.

また上記のように脱硫剤が3次燃焼ゾーンに供給される
ことにより、同ゾーンから回収された残部脱硫剤は上述
のように灰分をほとんど含まないので、同脱硫剤を3次
燃焼ゾーンに循環供給する際の循環総量が少なくなり、
循環輸送、コストを大幅に節減することができる。
In addition, by supplying the desulfurization agent to the tertiary combustion zone as described above, the residual desulfurization agent recovered from the zone contains almost no ash as described above, so the desulfurization agent is circulated to the tertiary combustion zone. The total amount of circulation during supply is reduced,
Circular transportation, costs can be significantly reduced.

またこうして回収脱硫剤を低輸送コストで循環使用する
ことが可能になったことにより、新鮮な脱硫剤の使用量
を節減することができ、この点でも脱硫剤の単位使用量
当りの脱硫効率を向上することができる。
In addition, by making it possible to recycle the recovered desulfurization agent at low transportation costs, the amount of fresh desulfurization agent used can be reduced, and in this respect, the desulfurization efficiency per unit amount of desulfurization agent used can be improved. can be improved.

さらに1次燃焼ゾーンから取出された灰分溶融物は脱硫
剤を全く含まないので、灰処理が容易である。
Furthermore, the ash melt removed from the primary combustion zone does not contain any desulfurization agent, making ash disposal easy.

実  施  例 つぎに上記効果を実証するためにこの発明の実施例を挙
げる。
EXAMPLES Next, examples of the present invention will be given to demonstrate the above effects.

第1図において、1次燃焼室(1)の側部に設けられた
バーナー(2)に1次燃料と1次空気を供給して、1次
燃料を高温で酸化雰囲気で燃焼′させる。1次燃料とし
ては燃焼により灰分を多量発生するものを用い、燃焼温
度は灰分の流動点以上の高温とし、1次空気は空気比(
実際に供給される空気量/燃焼に理論上必要な空気量)
1以上好ましくは約1.4の空気過剰状態を生じるよう
に供給する。こうして1次燃料の燃焼により1次燃焼室
(1)内に1次燃焼ゾーン(3)が形成される。
In FIG. 1, primary fuel and primary air are supplied to a burner (2) provided on the side of a primary combustion chamber (1), and the primary fuel is combusted at high temperature in an oxidizing atmosphere. The primary fuel used is one that generates a large amount of ash through combustion, the combustion temperature is set to be higher than the pour point of the ash, and the primary air has an air ratio (
Actual amount of air supplied/amount of air theoretically required for combustion)
The feed is applied to create an air excess of 1 or more, preferably about 1.4. In this way, a primary combustion zone (3) is formed within the primary combustion chamber (1) by combustion of the primary fuel.

同ゾーン′(3)で生じた灰分は、上記高温雰囲気によ
り溶融せられ、溶融物は炉内面に付着堆積し、さらに同
面に沿って流下して、1次燃焼室(1)の炉底に設けら
れた取出口(4)から連続的に取出される。そのため1
次燃焼ガスは灰分をほとんど同伴しない。1次燃焼ゾー
ン(3)では燃焼が高温酸化雰囲気で行なわれるため、
NOxがかなり発生する。
The ash generated in the zone' (3) is melted by the high-temperature atmosphere, and the molten material adheres and accumulates on the inner surface of the furnace, and further flows down along the same surface to the bottom of the furnace in the primary combustion chamber (1). It is continuously taken out from the takeout port (4) provided in the. Therefore 1
The secondary combustion gas contains almost no ash. In the primary combustion zone (3), combustion takes place in a high temperature oxidizing atmosphere;
A considerable amount of NOx is generated.

1次空気の余剰分を含んだ1次燃焼ガスは、1次燃焼室
(1)から隔壁(14)の連通孔(5)を経て同室(1
)の上方すなわち後流側に連接された2次燃焼室(6)
に導かれる。同室(6)には2次燃料を供給し、1次空
気の余剰分で還元雰囲気で燃焼する。2次燃料の供給量
は燃料の全供給量の30%以下である。こうして2次燃
焼室(6)内に2次燃焼ゾーン(7)が形成される。同
ゾーン(7)では上記のように還元雰囲気で燃焼が行な
われるため、先に生じたNOxはN2に還元される。
The primary combustion gas containing surplus primary air flows from the primary combustion chamber (1) through the communication hole (5) of the partition wall (14) to the same chamber (1).
) Secondary combustion chamber (6) connected to the upper side, that is, the wake side
guided by. Secondary fuel is supplied to the same chamber (6) and burned in a reducing atmosphere using the surplus of primary air. The amount of secondary fuel supplied is less than 30% of the total amount of fuel supplied. A secondary combustion zone (7) is thus formed within the secondary combustion chamber (6). In the zone (7), combustion is performed in a reducing atmosphere as described above, so the NOx generated earlier is reduced to N2.

2次燃焼ガスには炭化水素ラジカルや一酸化炭素などの
未燃分が多量に含まれているので、ついで同ガスを、2
次燃焼室(7)の上方すなわち後流側に連設されかつ吸
熱管群(8)を備えた3次燃焼室(15)に導いて、同
室(15)に2次空気を供給して、上記未燃分を低温酸
化雰囲気で緩慢に燃焼する。こうして3次燃焼室(15
)に3次燃焼ゾーン(16)を形成する。同ゾーン(1
6)では上記のように低温酸化雰囲気で緩慢な燃焼が行
なわれるため、サーマルNOXの発生は少なく、全N0
xQ度は極めて低い。また2次燃焼ガスに同伴して来る
灰分の量は、2次燃料の供給量が燃料の全供給量の30
%以下であるため、やはり全灰分量の30%以下となる
Since the secondary combustion gas contains a large amount of unburned components such as hydrocarbon radicals and carbon monoxide, the secondary combustion gas is then
Leading the secondary air to a tertiary combustion chamber (15) connected above the secondary combustion chamber (7), that is, on the downstream side and equipped with a heat absorption tube group (8), and supplying the secondary air to the same chamber (15), The unburned components are slowly burned in a low-temperature oxidizing atmosphere. In this way, the tertiary combustion chamber (15
) to form a tertiary combustion zone (16). Same zone (1
In 6), as mentioned above, slow combustion takes place in a low-temperature oxidizing atmosphere, so there is little thermal NOX generation, and total NOx is reduced.
xQ degree is extremely low. In addition, the amount of ash accompanying the secondary combustion gas is determined by the fact that the amount of secondary fuel supplied is 30% of the total amount of fuel supplied.
% or less, it is also 30% or less of the total ash content.

なお、隔壁(14)は1次燃焼室(1)と2次燃焼室(
6)を区分して、NOx低減効果を増大させる役目と、
1次燃焼ゾーン(3)で生じた灰分が1次燃焼ガスに同
伴して2次燃焼ゾーン(7)に移行するのを防止する役
目とを果たすものであるが、これは場合によっては設け
られないこともある。
Note that the partition wall (14) separates the primary combustion chamber (1) and the secondary combustion chamber (
6), and the role of increasing the NOx reduction effect;
The function is to prevent the ash generated in the primary combustion zone (3) from moving to the secondary combustion zone (7) along with the primary combustion gas, but this may be provided in some cases. Sometimes there isn't.

3次燃焼ゾーン(16)においては硫黄分はS02とし
て存在している。そこで3次燃焼室(15)の2次空気
供給位置のやや上側から粉状のカル ・シウム系脱硫剤
を当量比Ca/S=4で気送空気で3次燃焼ゾーン(1
5)に直接噴射供給すると、802は脱硫剤と反応して
Ca S O4に変化する(脱硫率的70%)。
In the tertiary combustion zone (16), sulfur content exists as S02. Therefore, from slightly above the secondary air supply position of the tertiary combustion chamber (15), powdered calcium-sium desulfurization agent was introduced into the tertiary combustion zone (15) using pneumatic air at an equivalent ratio of Ca/S = 4.
When directly injected into 5), 802 reacts with the desulfurization agent and changes to Ca 2 SO 4 (70% desulfurization rate).

3次燃焼室(15)の炉頂から排出される3次燃焼ガス
は、バグフィルタ−(9)に通され、同ガスに同伴して
来た脱硫剤含有粉体が捕捉され、捕捉粉体がコンベア(
10)で収集される。収集粉体の一部はエジェクター(
11)により3次燃焼ゾーン(16)に気送されて、や
はり同ゾーン(16)に噴射供給される。こうして回収
脱硫剤を循環再使用しているうちに、脱硫剤含有粉体中
に含まれる脱硫反応生成物、未反応物、フライアッシュ
などの量が徐々に増加してこれらが蓄積してくるので、
上記脱硫剤含有粉体の一部を系外に排出し、その代わり
に新鮮な脱硫剤をホッパー(12)からエジェクター(
13)で3次燃焼ゾーン(16)に気送し、回収脱硫剤
との混合状態で同ゾーン(16)内に補足供給する。系
外に排出された上記粉体は灰分をほとんど含まないので
、これを他の原料に使用することもできる。
The tertiary combustion gas discharged from the top of the tertiary combustion chamber (15) is passed through the bag filter (9), and the desulfurizing agent-containing powder that has accompanied the gas is captured. is the conveyor (
10). A part of the collected powder is transferred to the ejector (
11) to the tertiary combustion zone (16) and is also injected into the same zone (16). While the recovered desulfurization agent is recycled and reused in this way, the amount of desulfurization reaction products, unreacted materials, fly ash, etc. contained in the desulfurization agent-containing powder gradually increases and accumulates. ,
A part of the desulfurizing agent-containing powder is discharged outside the system, and fresh desulfurizing agent is instead transferred from the hopper (12) to the ejector (
13), it is pneumatically fed to the tertiary combustion zone (16) and supplementary supplied into the zone (16) in a mixed state with the recovered desulfurization agent. Since the powder discharged outside the system contains almost no ash, it can also be used for other raw materials.

上記脱硫剤の循環をたとえば循環比(新鮮な脱硫剤/循
環脱硫剤)約1の割合で行なうと、みかけの当量比Ca
/Sを約4にするためには、新鮮な脱硫剤の使用間は当
量比Ca/Sが約2となる量でよく、脱硫剤の単位使用
量当りの脱硫効率が向上する(本明細書の冒頭で述べた
従来法では脱硫剤は当量比Ca/Sが約4となる量で使
用される)。
If the desulfurization agent is circulated at a circulation ratio (fresh desulfurization agent/circulated desulfurization agent) of approximately 1, the apparent equivalence ratio Ca
In order to make /S about 4, it is sufficient to use fresh desulfurization agent in an amount such that the equivalence ratio Ca/S is about 2, and the desulfurization efficiency per unit amount of desulfurization agent used improves (in this specification). In the conventional method mentioned at the beginning, the desulfurization agent is used in an amount such that the equivalent ratio Ca/S is about 4).

また上記粉体中に含まれるフライアッシュも回収脱硫剤
とともに2次燃焼ゾーン(8)に循環されるため、フラ
イアッシュ中に含まれる未燃分も再度燃焼に供され、燃
焼効率が向上し、燃焼炉のコンパクト化が果たせる。
In addition, since the fly ash contained in the powder is also circulated to the secondary combustion zone (8) together with the recovered desulfurization agent, the unburned content contained in the fly ash is also subjected to combustion again, improving combustion efficiency. The combustion furnace can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す2段燃焼法のフローシ
ート、第2図は従来の2段燃焼法のフローシートである
。 (1)・・・1次燃焼室、(2)・・・バーナー、(3
)・・・1次燃焼ゾーン、(4)・・・取出口、(5)
・・・連通孔、(6)・・・2次燃焼室、(7)・・・
2次燃焼ゾーン、(8)・・・吸熱管群、(9)・・・
バグフィルタ−1(10)・・・コンベア、(11)・
・・エジェクター、(12)・・・ホッパー、(13)
・・・ニジ1クター、(14)・・・隔壁、(15)・
・・3次燃焼室、(16)・・・3次燃焼ゾーン。 以  上 第2図
FIG. 1 is a flow sheet for a two-stage combustion method showing an embodiment of the present invention, and FIG. 2 is a flow sheet for a conventional two-stage combustion method. (1)...Primary combustion chamber, (2)...Burner, (3
)...Primary combustion zone, (4)...Outlet, (5)
...Communication hole, (6)...Secondary combustion chamber, (7)...
Secondary combustion zone, (8)... Endothermic tube group, (9)...
Bag filter-1 (10)...conveyor, (11)...
...Ejector, (12) ...Hopper, (13)
...Niji1ctor, (14)...Bulkhead, (15)・
...Third combustion chamber, (16)...Third combustion zone. Figure 2 above

Claims (3)

【特許請求の範囲】[Claims] (1)1次燃料を過剰の1次空気で高温酸化雰囲気で燃
焼して1次燃焼ゾーンを形成し、同ゾーンの後流側に2
次燃料を供給して1次空気の余剰分で還元雰囲気で燃焼
して2次燃焼ゾーンを形成し、同ゾーンの後流側に2次
空気を供給して2次燃料の未燃分を低温酸化雰囲気で緩
慢に燃焼して3次燃焼ゾーンを形成する3段燃焼法にお
いて、脱硫剤を3次燃焼ゾーンに供給することを特徴と
する、脱硫を同時に行なうNOx抑制3段燃焼法。
(1) Burn primary fuel in a high-temperature oxidizing atmosphere with excess primary air to form a primary combustion zone, and create a secondary combustion zone on the downstream side of the zone.
Secondary fuel is supplied and the surplus of the primary air is combusted in a reducing atmosphere to form a secondary combustion zone, and secondary air is supplied to the downstream side of the zone to reduce the unburned content of the secondary fuel to a low temperature. A NOx suppression three-stage combustion method that simultaneously performs desulfurization, characterized in that a desulfurizing agent is supplied to the tertiary combustion zone in a three-stage combustion method in which a tertiary combustion zone is formed by slow combustion in an oxidizing atmosphere.
(2)1次燃焼ゾーンの燃焼温度を灰分の流動点以上の
高温にし、同ゾーンで生じた灰分の溶融物を炉底から取
出す、特許請求の範囲第1項記載の燃焼法。
(2) The combustion method according to claim 1, wherein the combustion temperature in the primary combustion zone is set to a high temperature higher than the pour point of ash, and the molten ash produced in the zone is taken out from the bottom of the furnace.
(3)3次燃焼ゾーンから3次燃焼ガスに同伴して出た
脱硫剤の残部を回収し、その少なくとも一部を同ゾーン
に循環供給する、特許請求の範囲第1または2項記載の
燃焼法。
(3) Combustion according to claim 1 or 2, in which the remainder of the desulfurizing agent discharged from the tertiary combustion zone along with the tertiary combustion gas is recovered and at least a part of it is circulated and supplied to the zone. Law.
JP5074685A 1985-03-14 1985-03-14 Three-stage combustion method to suppress nox with simultaneous desulphurization Granted JPS61208412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074685A JPS61208412A (en) 1985-03-14 1985-03-14 Three-stage combustion method to suppress nox with simultaneous desulphurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074685A JPS61208412A (en) 1985-03-14 1985-03-14 Three-stage combustion method to suppress nox with simultaneous desulphurization

Publications (2)

Publication Number Publication Date
JPS61208412A true JPS61208412A (en) 1986-09-16
JPH044485B2 JPH044485B2 (en) 1992-01-28

Family

ID=12867401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074685A Granted JPS61208412A (en) 1985-03-14 1985-03-14 Three-stage combustion method to suppress nox with simultaneous desulphurization

Country Status (1)

Country Link
JP (1) JPS61208412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272207A (en) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The Water tube boiler and burning method therefor
JPH0792206B2 (en) * 1990-04-17 1995-10-09 エイ.アフルストロム コーポレーション Method for reducing nitrous oxide emissions when burning a nitrogen-containing fuel in a fluidized bed reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190606A (en) * 1982-04-28 1983-11-07 Hitachi Zosen Corp Desulfurization using three-stage combustion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190606A (en) * 1982-04-28 1983-11-07 Hitachi Zosen Corp Desulfurization using three-stage combustion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272207A (en) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The Water tube boiler and burning method therefor
JPH0470523B2 (en) * 1988-09-10 1992-11-11 Kansai Denryoku Kk
JPH0792206B2 (en) * 1990-04-17 1995-10-09 エイ.アフルストロム コーポレーション Method for reducing nitrous oxide emissions when burning a nitrogen-containing fuel in a fluidized bed reactor

Also Published As

Publication number Publication date
JPH044485B2 (en) 1992-01-28

Similar Documents

Publication Publication Date Title
CA1257809A (en) Combustion method
US4542704A (en) Three-stage process for burning fuel containing sulfur to reduce emission of particulates and sulfur-containing gases
CN1089429C (en) Electric arc furnace post combustion method
GB2095654A (en) Treating combustion waste gas
US4582005A (en) Fuel burning method to reduce sulfur emissions and form non-toxic sulfur compounds
JPH07179871A (en) Desulfurization of carbonaceous fuel
JP2694916B2 (en) Method of reducing sulfur oxide gas in circulating fluidized bed combustion apparatus and apparatus for carrying out the method
JPH0549617B2 (en)
JPS61208412A (en) Three-stage combustion method to suppress nox with simultaneous desulphurization
US4232615A (en) Coal burning method to reduce particulate and sulfur emissions
KR100244977B1 (en) Process for producing liquid iron or liquid steel base products and sponge iron and plant for implementing it
US4198385A (en) Reduction of sodium sulfate to sodium sulfide
JPS61208411A (en) Two-stage combustion method to suppress nox development with simultaneous desulphurization
JPS6131363B2 (en)
US4402273A (en) Reduction of nitrogen oxide emissions from calciners
US5423676A (en) Waste melting furnace
JPH0159489B2 (en)
KR100388237B1 (en) Reduction of Sulfur Dioxide in Sintered Flue Gas_
JPS6196319A (en) Method of low nox combustion to be performed along with desulfurization
JPS58190607A (en) Combustion with low nox performing desulfurization simultaneously
JPS6093212A (en) Cyclone type coal burning device
JPS63123904A (en) Desulphurization in circulating fluidized bed of two-stage-combustion type
RU2030684C1 (en) Method of thermal processing of hard wastes
JPS59195015A (en) Low nox and low sox combustion
JPH0611124A (en) Waste melting furnace and waste feeding method