JPS61208002A - Light transmission device - Google Patents

Light transmission device

Info

Publication number
JPS61208002A
JPS61208002A JP4827185A JP4827185A JPS61208002A JP S61208002 A JPS61208002 A JP S61208002A JP 4827185 A JP4827185 A JP 4827185A JP 4827185 A JP4827185 A JP 4827185A JP S61208002 A JPS61208002 A JP S61208002A
Authority
JP
Japan
Prior art keywords
light
output mirror
light transmitting
mirror
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4827185A
Other languages
Japanese (ja)
Inventor
Ken Ishikawa
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4827185A priority Critical patent/JPS61208002A/en
Publication of JPS61208002A publication Critical patent/JPS61208002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable laser light of which the distribution of the refractive index in the plane direction of light-transmittable substrates disposed to face each other is made uniform by insulating and holding the heat at the periphery of the substrates and passing a cooling medium in the spacing between the opposed surfaces of the substrates. CONSTITUTION:The cooling medium from a supply pipe 18 is stored in a pocket 20 and passes evenly through the spacing from respective square grooves 25 to cool the opposed surfaces of an output mirror 14 and a light transmittable body 15. The heat which is generated by the passage of the laser light outputted during laser oscillation and diffused to the entire part of the mirror 14 and the body 15 is less radiated from the boundary face at the periphery as the circumference is held by a spacer consisting of a heat insulating material. The temp. distribution within the plane of the output mirror is small and the temp. gradient between the mirror 14 and the body 15 is small. The gradient of the refractive index is thereby decreased to a small level and therefore such an inconvenience as to converge the laser light is prevented even if the laser light is transmitted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光透過装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a light transmission device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光透過装置の−であるレーザ発振器における光共振器の
場合、励起部(1)の両側に互いに対向して設けられる
全反射! (2)と出力鏡(3)と構成される。
In the case of an optical resonator in a laser oscillator, which is a light transmission device, total reflection is provided on both sides of the excitation part (1) facing each other! (2) and an output mirror (3).

出力鏡(3)から放出されるレーザ光(4)の出力の増
大をはかると、その指向性は図中破線で示すように集束
する方向に変化してくる。このよう表現数はレーザ光が
出力鏡(3)を透過する際に内部で吸収が生じ温度上昇
をもたらす。これによシ、屈折率が上昇したり、また、
透過する部分の熱膨張によって凸レンズ作用が生じるこ
とが原因で起きるものとされている。上記の現象を軽減
するなめに冷却カスを噴出するノズル(5)を設けこの
ノズル(5)から出力鏡(3)の面に冷却ガスを強制的
に吹きつけることが行われていた。しかし、吹き付けら
れた面が一様に冷却されず上記現象を十分に軽減するこ
とができなかった。
When the output of the laser beam (4) emitted from the output mirror (3) is increased, its directivity changes in the direction of convergence as shown by the broken line in the figure. When the laser beam is transmitted through the output mirror (3), absorption occurs inside the output mirror (3), resulting in a temperature rise. This may cause the refractive index to increase or
This phenomenon is thought to be caused by a convex lens effect caused by thermal expansion of the transparent part. In order to alleviate the above-mentioned phenomenon, a nozzle (5) for ejecting cooling gas has been provided, and cooling gas is forcibly blown onto the surface of the output mirror (3) from this nozzle (5). However, the sprayed surface was not uniformly cooled, and the above phenomenon could not be sufficiently alleviated.

また、透過窓の場合ではレーザ光が変形によって収束ビ
ームなどの光路の変更や移動してしまう問題があり九。
In addition, in the case of a transmission window, there is a problem that the laser light may change its optical path or move as a convergent beam due to deformation.

〔発明の目的〕[Purpose of the invention]

本発明は透過部での温度上昇による光屈折作用が軽減さ
れる光透過装置を提供するものである。
The present invention provides a light transmitting device in which the light refraction effect due to temperature rise in the transmitting portion is reduced.

〔発明の概要〕[Summary of the invention]

少なくとも2枚の光透過体を間隙をもって対向させ、こ
の間隙に冷却媒体を流すようKしたものである。
At least two light transmitting bodies are arranged to face each other with a gap between them, and a cooling medium is allowed to flow through the gap.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例を示す図面に基いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings showing embodiments.

レーザにおける光共振器を例に挙げ、説明を簡略にする
ため、出力鏡側の構成のみを示し念第1図乃至第4図に
て説明する。すなわち、上記構成は大きく分けて中央部
にそれぞれ透過孔αCをもち。
Taking an optical resonator in a laser as an example, in order to simplify the explanation, only the configuration on the output mirror side will be shown and explained with reference to FIGS. 1 to 4. That is, the above configuration can be roughly divided into each having a transmission hole αC in the center.

ポル)(1υによシ容器状に合体された2部材からなる
保持体α2と、この保持体内に透過孔α0と同軸に間隙
α3)ヲおいて平行に配置された第1の基板である出力
!IC14)および第2の基板である光透過体(l!9
と。
(Pol) (A holder α2 consisting of two members combined into a container shape by 1υ, and a first substrate disposed in parallel with a gap α3 coaxially with the transmission hole α0 within this holder) ! IC14) and a light transmitting body (l!9) which is the second substrate.
and.

これら出力鏡a4)、光透過体α9の外周部の両面を個
々に保持しこれら両者を上記透過孔α1部に気密に当接
しているスペーサ(16a)、 (16b)と、上記保
持体(I3に接続体αDを介して接続される供給管鱈お
よび排出管α9とで構成されている。上記構成をさらに
詳述すると、保持体(1つは合体によって図中上下にポ
ケット(2G、+21)を形成している。これらは同じ
く合体時に形成された孔ノ、@を通シ供給管(18,σ
1に連通している。スペーサ(16a)、 (16b)
は熱絶縁性材料から作られ念それぞれ二つ割りになる分
割体で構成され1合体時において外形が矩形になシ内側
に透過孔αQと同径の空間部を有し、この空間部側Km
状の凹溝が形成されている。出力鏡α荀と光透過体α四
とはとの凹溝に嵌入されている。また。
These output mirrors a4), spacers (16a) and (16b) that individually hold both sides of the outer peripheral part of the light transmitting body α9 and airtightly abut both of them against the transmitting hole α1, and the holding body (I3) It is composed of a supply pipe and a discharge pipe α9, which are connected to each other via a connecting body αD.The above structure is explained in more detail. These also form the holes formed at the time of merging, and the supply pipe (18, σ
It is connected to 1. Spacer (16a), (16b)
is made of a thermally insulating material and is divided into two halves, and when combined, the outer shape is rectangular and has a space on the inside with the same diameter as the through hole αQ, and this space side Km
A groove shaped like this is formed. The output mirror α4 and the light transmitting body α4 are fitted into the grooves. Also.

これらスペーサ(16a)、 (16b)は保持体HI
C形成された段差部C24)に嵌め込まれている。さら
にスペーサ(16a)、 (16b)の互いに対向する
面にはポケット(4)、CD方向に出力鏡α荀および光
透過体αつの表面を露出させる角溝(ハ)が多数刻設さ
れていて、これら角溝はポケットtn、a1)と間隙(
13とを連通させる流路になっている。なお、上記供給
管18は図示せぬ冷却空気等の冷却媒体発生装置に接続
され、排出管(1ωは排出した媒体をその冷却媒体発生
装置足戻すように接続されこれによシ、循環流路を形成
するように構成されている。一方、出力鏡Iの光透過体
a5に対面する面の反対側の面には誘電体多層膜がコー
ティングされている。
These spacers (16a) and (16b) are attached to the holding body HI.
It is fitted into the stepped portion C24). Further, the opposing surfaces of the spacers (16a) and (16b) are provided with pockets (4) and a large number of square grooves (c) that expose the surfaces of the output mirror and the light transmitting body in the CD direction. , these square grooves have pockets tn, a1) and gaps (
13. The supply pipe 18 is connected to a cooling medium generator such as cooling air (not shown), and the discharge pipe (1ω) is connected to return the discharged medium to the cooling medium generator, thereby creating a circulation flow path. On the other hand, the surface of the output mirror I opposite to the surface facing the light transmitting body a5 is coated with a dielectric multilayer film.

以上の構成によシ、供給管α樽よシ供給された冷却媒体
はポケット(イ)に溜められそれぞれの角溝(ト)から
平均的に間隙を通って出力鏡住4.光透過体(isの対
向面を冷却する。したがって、レーザ発振時。
With the above configuration, the cooling medium supplied from the supply pipe α barrel is collected in the pocket (A) and passes through the gaps from each square groove (G) evenly to the output mirror 4. The opposite surface of the light transmitting body (IS) is cooled. Therefore, during laser oscillation.

出力されたレーザ光の通過で発生し出力鏡α荀、光透過
体α四全体に拡散した熱は平均的に冷却されるため、厚
さ方向の温度勾配ができても、面方向の温度勾配は著し
く小さいものとなる。このことくより、出力鏡σ荀、光
透過体霞はともに極めて平坦的に保之れ、レーザ光を集
束させるような現象が十分に軽減された。
The heat generated by the passage of the output laser beam and diffused throughout the output mirror αX and the light transmitting body α4 is cooled down evenly, so even if a temperature gradient occurs in the thickness direction, there is no temperature gradient in the surface direction. becomes significantly smaller. As a result, both the output mirror σ and the light transmitting body haze were kept extremely flat, and the phenomenon of focusing the laser beam was sufficiently reduced.

ti、上記厚さ方向の温度勾配で変形が生じても、出力
鏡との組合せでなく、光透過体どうしを対向させた透過
窓構造の場合にはその熱変形を第5図に示すように光透
過体(l!9の配置によって対称にすることもできるか
らレーザ光(4)の平行移動を防止することができる。
ti, even if deformation occurs due to the temperature gradient in the thickness direction mentioned above, in the case of a transmission window structure in which light transmitting bodies are opposed to each other rather than in combination with an output mirror, the thermal deformation will be as shown in Fig. 5. Since it can be made symmetrical by arranging the light transmitting body (l!9), parallel movement of the laser beam (4) can be prevented.

なお、出力IKW以上の炭酸ガスレーザ発振器の透過窓
として適用する場合、対向して設けられる光透過体の厚
さは薄い方がレーザ光の吸収が小さいので有利であるが
、真空容器窓の場合のように両側に圧力差がある場合知
は機械的な強度を必要とするため、真空側の光透過体の
板厚は十分厚くする必要がある。
When applied as a transmission window for a carbon dioxide laser oscillator with an output of IKW or more, it is advantageous to have a thinner light transmitting body provided facing each other because absorption of laser light is smaller. When there is a pressure difference on both sides, mechanical strength is required, so the thickness of the light transmitting member on the vacuum side must be sufficiently thick.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように対向配置した光透過性の基板の間隙
に平均的に冷却媒体を流す構造にしたので、たとえばレ
ーザの光共振器や透過窓においてはレーザ光が集束した
り平行移動する現象は解消され安定したレーザ光を得る
ことができるようKなった。
As detailed above, the structure is such that the cooling medium flows evenly through the gap between the optically transparent substrates placed opposite each other, so for example, in the laser optical resonator or transmission window, the laser beam may be focused or moved in parallel. K has been eliminated and stable laser light can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す正面図、第2図は同じ
く側面図、第3図は第1図の■−■線における断面図、
第、4図は第2図のff−ff線における断面図、第5
図は本発明の他の実施例を示す要部構成図、第6図は従
来の一例を示す構成図である。 鵠・・・透過孔   (I渇・・・保持体(IS・・・
間隙    (14)・・・出力鏡(is−・・光透過
体    (16a)、 (16b)−xヘ−”J−α
υ・・・供給管   αト・・排出管(ハ)・・・角 
溝 第1図  第2図 第3図   1i4図 第5図 手続補正書(龜疑) 1、事件の表示 特願昭60−48271号 2、発明の名称 光透過装置 3、補正をする者 事件との関係 特許出願人 (307)  株式会社 東芝 4、代理人 〒105 東京都港区芝浦−丁目1番1号 株式会社東京 本社事務所内 明細書全文 6、補正の内容 別紙のとおり 明    細    書 1、発明の名称    光透過装置 2、特許請求の範囲 光透過性の第1の基板とこの第1の基板と間隙をもって
対向される少なくとも一以上の第2の光透過性の第2の
基板と、上記間隙が冷却媒体の通路にして上記両者を熱
絶縁させて保持する保持手段と、上記間隙に冷却媒体を
供給する冷却手段とを備えたことを特徴とする光透過装
置。 3、発明の詳細な説明 〔発明の技術分野〕 本発明は光透過装置lこ関する。 〔発明の技術的背景とその問題点〕 光透過装置の−であるレーザ発振器ζこおける光□共振
器の場合、励起部(1)の両側に互いに対向して設けら
れる全反射鏡(2)と出力鏡(3)と構成される。 出力鏡(3)から放出されるレーザ光(4)の出力の増
大をはかると、その指向性は図中破線で示すように集束
する方向に変化してくる。このような現象はレーザ光が
出力便(3)を透過する際に内部で吸収が生じ温度上昇
をもたらす。これにより、屈折率が上昇したり、また、
透過する部分の熱膨張によって凸レンズ作用が生じるこ
とが原因で起きるものとされている。上記の現象を軽減
するために冷却ガスを噴出するノズル(5)を設けこの
ノズル(5)から出力鏡(3)の面に冷却ガスを強制的
に吹きつけることが行われていた。しかし、吹き付けら
れた面が一様に冷却されず上記現象を十分に軽減するこ
とができなかった。 また、透過窓の場合ではレーザ光が変形によって収束ビ
ームなどの光路の変更や移動してしまう問題があった。 〔発明の目的〕 本発明は透過部での温度上昇による光屈折作用が軽減さ
れる光透過装置を提供するものである。 〔発明の概要〕 少なくとも2枚の光透過体を間隙をもって対向させ、こ
の間隙に冷却媒体を流すようにしたものである。 〔発明の実施例〕 以下1本発明を実施例を示す図画に基いて説明する。 レーザにおける光共振器を例に挙げ、説明を簡略にする
ため、出力鏡側の構成のみを示した第1図乃至第4図に
て説明する。すなわち、上記構成は大きく分けて中央部
にそれぞれ透過孔住0をもち。 ポル)(11)により容器状に合体された2部材からな
る保持体(12と、この保持体内に透過孔明と同軸に間
隙α階をおいて平行lこ配置された第1の基板である出
力鏡Iおよび第2の基板である光透過体α9と。 これら出力*ff411.光透過体(L!9の外周部の
両面を個々に保持しこれら両者を上記透過孔四部に気密
に当接しているスペーサ(16a)、 (16b)と、
上記保持体(2)に接続体aηを介して接続される供給
管α枠および排出管0とで構成されている。上記構成を
さらに詳述すると、保持体(1りは合体によりて図中上
下にポケット(ホ)、Ql)を形成している。これらは
同じく合体時に形成された孔(社)、(至)を通り供給
管端、α優に連通している。スペーサ(16a)、 (
16b)は熱絶縁性材料から作られたそれぞれ二つ割り
になる分割体で構成され1合体時において外形が矩形に
なり内側に透過孔α1と同径の空間部を有し、この空間
部側に環状の凹溝が形成されている。出力鏡←4と光透
過体霞とはこの凹溝に嵌入されている。また。 これらスペーサ(16a)、 (16b)は保持体αり
に形成された段差部01こ嵌め込まれている。さらにス
ペーサ(16a)、 (16b)の互いに対向する面に
はポケット(イ)、 (21)方向に出力鏡Iおよび光
透過体α9の表面を露出させる角溝(ハ)が多数刻設さ
れていて、これら角溝はポケット(至)、Ql)と間隙
αjとを連通させる流路になっている。な詔、上記供給
管α旧ま図示せぬ冷却空気等の冷却媒体発生装置に接続
され、排出管α■は排出した媒体をその冷却媒体発生装
置に戻すように接続されこれにより、循環流路を形成す
るように構成されている。一方、出力鏡aくの光透過体
(USに対面する面の反対側の面には誘電体多層膜がコ
ーティングされている。 以上の構成により、供給管a樽より供給された冷却媒体
はポケット(イ)iこ溜められそれぞれの角溝(ハ)か
ら平均的に間隙を通って出力鏡I、光透過体(19の対
向間を冷却する。したがって、レーザ発振時。 出力されたレーザ光の通過で発生し出力鏡αく、光透過
体(is全全体拡散した熱は周囲を熱絶縁性材料から成
るスペーサで保持されているから1周辺の境界面からの
放熱は小さく、出力鏡の面内での温度分布は熱拡散によ
り温度勾配は小さいものとなり、冷却は出力鏡α荀およ
び光透過体住9の対向面から平均的に冷却されるため、
第1.第2の基板の温度勾配は厚さ方向に形成され、こ
の厚さ方向の温度勾配ができても1面方向の温度勾配は
著しく小さいものとなる。このことにより、出力鏡(1
荀。 光透過体はともに面内での温度勾配が小さいから屈折率
の勾配も小さく抑えられ、このためレーザ光を透過させ
ても、レーザ光を収束させるような不都合な現象を防止
することができた。 また、上記厚さ方向の温度勾配で変形が生じても、出力
鏡との組合せでなく、光透過体どうしを対向させた透過
窓構造の場合にはその熱変形を第5図に示すように光透
過体α$の配置によって対称にすることもできるからレ
ーザ光(4)の収束作用や平行移動を防止することがで
きる。 なお、出力IKW以上、たとえば出力10Kwを越える
炭酸ガスレーザ発振器の透過窓として適用する場合、対
向して設けられる光透過体の厚さは薄い方がレーザ光の
吸収が小さいので有利であるが。 真空容器窓の場合のように両側に圧力差がある場合には
機械的な強度を必要とするため、真空側の光透過体の板
厚は十分厚くする必要がある。 また、上記実施例では出力鏡等の基板を熱絶縁性の保持
手段で保持することによりて周囲からの放熱を防止した
が、あらかじめ基板の保持部分となる周囲に断熱材をコ
ーティングし、このコーティング部分を保持するように
構成してもよい。 〔発明の効果〕 以上詳述したように対向配置した光透過性の基板の周辺
を断熱して保持し、その対向間である間隙に冷却媒体を
流すようにしたので基板の面方向での屈折率の分布が均
一化されたので、レーザの光共振器や透過窓lこ詔いて
はレーザ光が収束したり平行移動する現象は解消され安
定したレーザ光を得ることができるようになった。 4、図面の簡単な説明 第1図は本発明の一実施例を示す正面図、第2図は同じ
く側面図、第3図は第1図の■−■線における断面図、
第4図は第2図のff−IV線における断面図、第5図
は本発明の他の実施例を示す要部構成図、第6図は従来
の一例を示す構成図である。 α1・・・透過孔    @・・・保持体←謙・・・間
 隙       α荀・・・出力鏡α[有]・・・光
透過体 (16M)、 (16b) ・・・熱絶縁性スヘーサ錦
・・・供給管      a9・・・排・出管(ハ)・
・・角 溝
FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side view, and FIG. 3 is a sectional view taken along the line ■-■ in FIG.
Figures 4 and 4 are cross-sectional views taken along the ff-ff line in Figure 2;
The figure is a block diagram of main parts showing another embodiment of the present invention, and FIG. 6 is a block diagram showing a conventional example. Mouse...Permeation hole (I...Holding body (IS...
Gap (14)...Output mirror (is-...Light transmitter (16a), (16b)-xH-"J-α
υ...Supply pipe αt...Discharge pipe (c)...Square
Groove Figure 1 Figure 2 Figure 3 Figure 1i4 Figure 5 Procedural amendment (suspect) 1. Indication of the incident Japanese Patent Application No. 60-48271 2. Name of the invention Light transmitting device 3. Person making the amendment Relationship between patent applicant (307) Toshiba Corporation 4, agent 1-1 Shibaura-chome, Minato-ku, Tokyo 105 Tokyo Co., Ltd. Head Office Office Full text of the specification 6, details of amendments as shown in the appendix 1, Title of the invention: Light transmitting device 2, claims: a first light transmitting substrate; at least one or more second light transmitting second substrates facing the first substrate with a gap therebetween; A light transmitting device comprising: a holding means for thermally insulating and holding the two, with the gap serving as a passage for a cooling medium; and a cooling means for supplying the cooling medium to the gap. 3. Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a light transmitting device. [Technical background of the invention and its problems] In the case of an optical resonator in a laser oscillator ζ, which is the main part of a light transmission device, total reflection mirrors (2) are provided on both sides of an excitation part (1) to face each other. and an output mirror (3). When the output of the laser beam (4) emitted from the output mirror (3) is increased, its directivity changes in the direction of convergence as shown by the broken line in the figure. In this phenomenon, when the laser beam passes through the output tube (3), absorption occurs inside the output tube (3), resulting in a temperature rise. This increases the refractive index and
This phenomenon is thought to be caused by a convex lens effect caused by thermal expansion of the transparent part. In order to alleviate the above phenomenon, a nozzle (5) for ejecting cooling gas has been provided, and the cooling gas is forcibly blown onto the surface of the output mirror (3) from this nozzle (5). However, the sprayed surface was not uniformly cooled, and the above phenomenon could not be sufficiently alleviated. Further, in the case of a transmission window, there is a problem in that the laser beam is deformed and the optical path of the convergent beam or the like changes or moves. [Object of the Invention] The present invention provides a light transmitting device in which the light refraction effect due to temperature rise in the transmitting portion is reduced. [Summary of the Invention] At least two light transmitting bodies are arranged to face each other with a gap between them, and a cooling medium is allowed to flow through the gap. [Embodiments of the Invention] The present invention will be explained below based on drawings showing embodiments. Taking an optical resonator in a laser as an example, in order to simplify the explanation, the explanation will be given with reference to FIGS. 1 to 4, which show only the configuration on the output mirror side. That is, the above configuration can be roughly divided into two holes each having a transmission hole in the center. A holder (12) consisting of two members combined into a container shape by a transparent hole (11), and an output which is a first substrate disposed parallel to the transparent hole coaxially with a gap α in this holder. The mirror I and the light transmitting body α9 which is the second substrate. These output *ff411. Both sides of the outer peripheral part of the light transmitting body (L!9) are individually held and both are brought into airtight contact with the four parts of the above-mentioned transmission hole. spacers (16a), (16b),
It is composed of a supply pipe α frame and a discharge pipe 0, which are connected to the holder (2) via a connecting body aη. To explain the above structure in more detail, the holder (1) is combined to form pockets (E) and Ql at the top and bottom in the figure. These also communicate with the supply pipe end, α, through the holes formed at the time of joining. Spacer (16a), (
16b) is made of a thermally insulating material and is divided into two parts, and when combined, the outer shape is rectangular and has a space on the inside with the same diameter as the through hole α1, and an annular shape on the side of this space. A concave groove is formed. The output mirror←4 and the light transmitting body haze are fitted into this groove. Also. These spacers (16a) and (16b) are fitted into a stepped portion 01 formed on the holder α. Further, the opposing surfaces of the spacers (16a) and (16b) are provided with pockets (A) and a large number of square grooves (C) that expose the surfaces of the output mirror I and the light transmitting body α9 in the direction (21). These square grooves serve as flow paths that communicate the pocket (to), Ql) and the gap αj. The above-mentioned supply pipe α is connected to a cooling medium generating device such as cooling air (not shown), and the discharge pipe α is connected to return the discharged medium to the cooling medium generating device. is configured to form a On the other hand, the light transmitting body of the output mirror a (the surface opposite to the surface facing the US is coated with a dielectric multilayer film. With the above configuration, the cooling medium supplied from the supply pipe barrel a is (a) The output mirror I and the light transmitting body (19) are cooled by passing through the gap from each square groove (c) on an average basis. Therefore, during laser oscillation. The heat generated by passing through the output mirror and diffused throughout the light transmitting body (is) is held by a spacer made of a thermally insulating material, so the heat dissipated from the boundary surface around the output mirror is small. The temperature distribution within the mirror has a small temperature gradient due to thermal diffusion, and the cooling is averaged from the opposing surfaces of the output mirror α and the light transmitting body 9.
1st. A temperature gradient in the second substrate is formed in the thickness direction, and even if this temperature gradient is created in the thickness direction, the temperature gradient in one surface direction is extremely small. This allows the output mirror (1
Xun. Both light-transmitting materials have small in-plane temperature gradients, so the gradient of refractive index can be kept small, and therefore, even when laser light is transmitted through them, it is possible to prevent disadvantageous phenomena such as convergence of laser light. . Furthermore, even if deformation occurs due to the temperature gradient in the thickness direction, in the case of a transparent window structure in which light transmitting bodies are opposed to each other, rather than in combination with an output mirror, the thermal deformation will occur as shown in Figure 5. Since it can be made symmetrical by arranging the light transmitting body α$, convergence and parallel movement of the laser beam (4) can be prevented. Note that when applied as a transmission window for a carbon dioxide laser oscillator with an output of more than IKW, for example, an output of more than 10KW, it is advantageous if the thickness of the light transmitting body provided oppositely is thinner, since absorption of laser light is smaller. When there is a pressure difference on both sides, as in the case of a vacuum container window, mechanical strength is required, so the thickness of the light transmitting member on the vacuum side must be sufficiently thick. In addition, in the above embodiment, heat radiation from the surroundings was prevented by holding the substrate such as the output mirror with a thermally insulating holding means. It may also be configured to hold parts. [Effects of the Invention] As described in detail above, the peripheries of the light-transmitting substrates placed opposite each other are held insulated, and the cooling medium is allowed to flow through the gap between the opposing sides, thereby reducing refraction in the plane direction of the substrates. Since the ratio distribution has been made uniform, the phenomenon of convergence or parallel movement of laser light due to the laser's optical resonator or transmission window has been eliminated, making it possible to obtain stable laser light. 4. Brief description of the drawings Figure 1 is a front view showing an embodiment of the present invention, Figure 2 is a side view, and Figure 3 is a sectional view taken along the line ■-■ in Figure 1.
FIG. 4 is a sectional view taken along line ff-IV in FIG. 2, FIG. 5 is a block diagram of main parts showing another embodiment of the present invention, and FIG. 6 is a block diagram showing a conventional example. α1...Transmission hole @...Holder←Holder...Gap α荀...Output mirror α [with]...Light transmitting body (16M), (16b)...Heat insulation spacer Nishiki...supply pipe a9...discharge/outlet pipe (c)/
・Corner groove

Claims (1)

【特許請求の範囲】[Claims] 光透過性の第1の基板とこの第1の基板と間隙をもって
対向される少なくとも一以上の第2の光透過性の第2の
基板と、上記間隙が冷却媒体の通路にして上記両者を保
持する保持手段と、上記間隙に冷却媒体を供給する冷却
手段とを備えたことを特徴とする光透過装置。
a light-transmitting first substrate; at least one or more second light-transmitting second substrates facing the first substrate with a gap therebetween; the gap serves as a passage for a cooling medium to hold the two; 1. A light transmitting device comprising: a holding means for holding a cooling medium; and a cooling means for supplying a cooling medium to the gap.
JP4827185A 1985-03-13 1985-03-13 Light transmission device Pending JPS61208002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4827185A JPS61208002A (en) 1985-03-13 1985-03-13 Light transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4827185A JPS61208002A (en) 1985-03-13 1985-03-13 Light transmission device

Publications (1)

Publication Number Publication Date
JPS61208002A true JPS61208002A (en) 1986-09-16

Family

ID=12798775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4827185A Pending JPS61208002A (en) 1985-03-13 1985-03-13 Light transmission device

Country Status (1)

Country Link
JP (1) JPS61208002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938009A1 (en) * 1998-02-20 1999-08-25 Carl Zeiss Optical device and a microlithography projection exposure system with passive thermal compensation
EP1351091A2 (en) * 2002-03-07 2003-10-08 Carl Zeiss Laser Optics GmbH Opical device with a diaphragm
US7274430B2 (en) 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation
JP2013532380A (en) * 2010-06-16 2013-08-15 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas laser and method of operating the gas laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938009A1 (en) * 1998-02-20 1999-08-25 Carl Zeiss Optical device and a microlithography projection exposure system with passive thermal compensation
EP1596235A1 (en) * 1998-02-20 2005-11-16 Carl Zeiss SMT AG Optical device and a microlithography projection exposure system with passive thermal compensation
US7274430B2 (en) 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation
EP1351091A2 (en) * 2002-03-07 2003-10-08 Carl Zeiss Laser Optics GmbH Opical device with a diaphragm
EP1351091A3 (en) * 2002-03-07 2007-11-21 Carl Zeiss Laser Optics GmbH Opical device with a diaphragm
JP2013532380A (en) * 2010-06-16 2013-08-15 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas laser and method of operating the gas laser
US8817833B2 (en) 2010-06-16 2014-08-26 Trumpf Laser-Und Systemtechnik Gmbh Controlling temperature differences in a gas laser

Similar Documents

Publication Publication Date Title
US3696230A (en) Laser lens cooling and cleaning system
US4797896A (en) Solid state optical ring resonator and laser using same
US7832879B2 (en) Heat dissipating layers in deformable mirrors
JPH07120829B2 (en) Laser optical element mounting structure and method
US4961627A (en) Two-axis beam steering apparatus
US5737133A (en) Module for optical fiber receptacle used in a scanning device
JPS61208002A (en) Light transmission device
US4225826A (en) Laser apparatus
US6118804A (en) Laser amplification system
JP2001051102A (en) Fly eye lens
US5349603A (en) Solid-state laser resonator
US3894795A (en) Plural element window construction for an opening of a laser cavity
JPH05335662A (en) Solid-state laser device
US5128953A (en) Transmissive optics for high power lasers
US3652150A (en) Transparent membranes for gas lenses and light guidance system employing same
US20060256419A1 (en) Method, array, and influencing unit for said array in order to modify a wavefront of an optical beam
US4761789A (en) Cooling method for a slab-geometry solid state laser medium and a laser device which employs that cooling method
JP2588931B2 (en) Solid state laser
JP2002198596A (en) Solid laser oscillator device and solid laser oscillating method
JP2004117746A (en) Optical device
JPH025584A (en) Solid-state laser device
JPH0786673A (en) Gas laser oscillator
JPH0268501A (en) Solid etalon
JPH01119082A (en) Method of forming protective film for laser medium
JPH05198868A (en) Laser equipment