JPS61207990A - Nuclear fuel aggregate for reactor - Google Patents

Nuclear fuel aggregate for reactor

Info

Publication number
JPS61207990A
JPS61207990A JP60048393A JP4839385A JPS61207990A JP S61207990 A JPS61207990 A JP S61207990A JP 60048393 A JP60048393 A JP 60048393A JP 4839385 A JP4839385 A JP 4839385A JP S61207990 A JPS61207990 A JP S61207990A
Authority
JP
Japan
Prior art keywords
fuel assembly
support plate
spring
core support
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60048393A
Other languages
Japanese (ja)
Inventor
堀田 亮年
淳 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60048393A priority Critical patent/JPS61207990A/en
Publication of JPS61207990A publication Critical patent/JPS61207990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は原子炉に関し、特にその核燃料集合体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a nuclear reactor, and particularly to a nuclear fuel assembly thereof.

[従来の技術] 第7図に示すように、一般に原子炉運転中、炉心内にお
いて上部炉心支持板4及び下部炉心支持4Err!al
l1m14N141hL&LJ%、j−utpQ−+m
krlI−’pH1シーhLj、され支持された燃料集
合体1には、矢印で示すように下部炉心支持板6の流路
孔6b及び下部ノズル、7を通る高速の冷却材流れによ
りかなり大きな上向きの揚力が働いている。そのため、
原子炉運転中、燃料集合体1を確実に下部炉心支持板6
に着床させて、燃料集合体1の浮き上がりや冷却材流量
の変動に起因する振動による諸構成部材の疲労を防止す
るために、加圧木型原子炉の燃料集合体1においては、
燃料集合体1の上部ノズル2に押さえばね3からなる押
さえ装置5を設けて、上部炉心支持板4との協働作用に
より、燃料集合体1に下向きの力を働かせたホールドダ
ウン方式を採用している。
[Prior Art] As shown in FIG. 7, generally during nuclear reactor operation, upper core support plate 4 and lower core support plate 4Err! al
l1m14N141hL&LJ%, j-utpQ-+m
krlI-'pH1 seahLj, and the supported fuel assembly 1 has a considerably large upward flow due to the high-speed coolant flow passing through the flow passage hole 6b of the lower core support plate 6 and the lower nozzle 7, as shown by the arrow. Lifting force is working. Therefore,
During reactor operation, the fuel assembly 1 is securely attached to the lower core support plate 6.
In the fuel assembly 1 of the pressurized wooden reactor, in order to prevent fatigue of various structural members due to vibrations caused by floating of the fuel assembly 1 and fluctuations in the flow rate of the coolant, the fuel assembly 1 of the pressurized wooden reactor is
A hold-down system is adopted in which a holding device 5 consisting of a holding spring 3 is provided at the upper nozzle 2 of the fuel assembly 1, and a downward force is exerted on the fuel assembly 1 through cooperation with the upper core support plate 4. ing.

また、図示しないが高速増殖炉では液圧式ホールドダウ
ン機構により燃料集合体下端より下向きの力を働かせて
いる。
Although not shown, in the fast breeder reactor, a downward force is exerted from the lower end of the fuel assembly by a hydraulic hold-down mechanism.

しかし、原子炉の過渡運転時又は大出力炉心では、冷却
材流量が増すために燃料集合体1体当たりの揚力が増大
し、現行の加圧木型原子炉の燃料集合体1においても、
上部ノズル2の押さえばね3のみで安定した着床を保証
することは困難となり、余裕のない設計になっている。
However, during transient operation of a nuclear reactor or in a high-power reactor core, the lift force per fuel assembly increases due to the increase in coolant flow rate, and even in the fuel assembly 1 of the current pressurized wooden reactor,
It becomes difficult to ensure stable landing using only the presser spring 3 of the upper nozzle 2, and the design is designed with little leeway.

また、高転換型の加圧木型原子炉のように燃料棒の短尺
、稠密化により燃料集合体の重量は比較的軽いのに揚力
が格段に大きくなるような炉心の場合、従来の加圧木型
原子炉のごときホールドダウン方式による燃料集合体の
押さえ装置は、スペースの関係上ばね力に限界が生じる
ため十分な押さえ付けが不可能である。更に、高速増殖
炉で用いているような液圧式のホールドダウン機構も、
加圧木型原子炉炉心では、高圧水中であるため差圧を生
じず、下部炉心支持板構造を複雑なものにしても十分な
作用を期待できない。
In addition, in the case of a core such as a high-conversion type pressurized wooden reactor, where the fuel rods are short and dense, the weight of the fuel assembly is relatively light but the lift force is significantly large. A fuel assembly holding device using a hold-down method such as a wooden nuclear reactor cannot hold down the fuel assembly sufficiently because the spring force is limited due to space limitations. Furthermore, hydraulic hold-down mechanisms such as those used in fast breeder reactors,
In a pressurized wooden reactor core, since it is submerged in high-pressure water, no differential pressure is generated, and even if the lower core support plate structure is complicated, sufficient effects cannot be expected.

また、一般にばね力は、高速中性子の照射による応力緩
和のために徐々に低下するが、高松換型炉心では通常の
加圧木型原子炉炉心よりも高速中性子束が高くなること
から、上記傾向が増大する。
Additionally, in general, the spring force gradually decreases due to stress relaxation due to irradiation with fast neutrons, but since the fast neutron flux in the Takamatsu Replacement Core is higher than in a normal pressurized wooden reactor core, the above-mentioned tendency increases.

[発明が解決しよう、とする問題点1 以上のように、従来のホールドダウン型の軸方向支持方
式では、揚力増大や照射によるばね力の低下に対し、余
裕の小さい設計となっている問題点がある。本発明はか
かる問題7αを速やかに解決する原子炉用燃料集合体を
提供することを目的とするものである。
[Problem to be solved by the invention 1 As mentioned above, the conventional hold-down type axial support system has a problem in that the design has a small margin for the increase in lift force and the decrease in spring force due to irradiation. There is. It is an object of the present invention to provide a fuel assembly for a nuclear reactor that promptly solves the problem 7α.

E問題、αを解決するための手段] この目的から、本発明は、それぞれ流路孔を有する下部
炉心支持板及び上部炉心支持板の間に装着され、冷却材
が下部炉心支持板の流路孔から入って上部炉心支持板の
流路孔に抜ける原子炉用核燃料集合体において、該核燃
料集会体の下部ノズルに、該冷却材の流れにより核燃料
集合体に働く揚力と同方向に該核燃料集合体を付勢する
弾性部材からなる押さえ装置を装備したことを特徴とす
るものである。
Means for Solving Problem E, α] For this purpose, the present invention is provided between a lower core support plate and an upper core support plate each having a flow passage hole, and the coolant is supplied from the flow passage hole of the lower core support plate. In a nuclear fuel assembly for a nuclear reactor that enters and exits through a passage hole in an upper core support plate, a lower nozzle of the nuclear fuel assembly is configured to move the nuclear fuel assembly in the same direction as the lift force acting on the nuclear fuel assembly due to the flow of the coolant. This device is characterized by being equipped with a pressing device made of an elastic member that applies bias.

[作用J このように、本発明によれば、燃料集合体に作用する押
さえ装置の付勢力の方向が、運転中の冷却材流れによる
揚力の方向と同じになるように、押さえ装置を燃料集合
体に対し冷却材流れの上流側に装備し、燃料集合体を上
部炉心支持板に押さえ付けるホールドアツプ式としてい
る。第6図に示すように、燃料集合体に働く力としては
、燃料集合体自重W1浮力B、冷却材揚力し、押さえば
ね力(付勢力)F等があり、ホールドダウン方式では、
必要とされる下向きのばね力が、 F>L+B−W で規定され、揚力が増大すればばね押さえ力も増加させ
る必要がある。これに対し、本発明のようにホールドア
ツプ式の構造を採用すれば、運軟状態において F>W−L−B を満たせば燃料集合体は上部炉心支持板に押さえ付けら
れることとなり、更に揚力が増加すれば押さえばねの必
要押さえ力は減少する。即ち、この場合必要とされる最
小押さえ力は冷却材流れのない状態で決まり、 F=W−B で与えられるので、ホールドダウン方式に比べ非常に小
さなものとすることが可能である。また、+ l+ I
+ L i    ゴ嘘 1ム ☆マ ↓↓    顛
 シ 11 ム 赫 神 □鉦 ill、  J−’!
  ++力もかなり軽減させることが可能であり、照射
によるばね力低下も減少させることができ、かくして本
発明による原子炉用燃料集合体は従来のものに比べ格段
に確実性の増した軸方向支持を与えるものである。
[Operation J] Thus, according to the present invention, the holding device is attached to the fuel assembly so that the direction of the biasing force of the holding device acting on the fuel assembly is the same as the direction of the lifting force due to the flow of coolant during operation. It is installed on the upstream side of the coolant flow with respect to the reactor body, and is a hold-up type in which the fuel assembly is pressed against the upper core support plate. As shown in Fig. 6, the forces acting on the fuel assembly include the fuel assembly's own weight W1, buoyancy force B, coolant lift force, presser spring force (biasing force) F, etc. In the hold-down method,
The required downward spring force is defined by F>L+B-W, and as the lift force increases, the spring holding force must also increase. On the other hand, if a hold-up type structure is adopted as in the present invention, if F > W-L-B is satisfied in a weak state, the fuel assembly will be pressed against the upper core support plate, and the lift will be further increased. If , the required pressing force of the pressing spring decreases. That is, the minimum holding force required in this case is determined in a state where there is no flow of coolant and is given by F=W-B, so it can be made much smaller than in the hold-down method. Also, + l + I
+ L i go lie 1mu ☆ma ↓↓ 顛 shi 11 mu 赫God □ go ill, J-'!
++ force can be significantly reduced, and the reduction in spring force due to irradiation can also be reduced, and thus the nuclear reactor fuel assembly according to the present invention can provide axial support with much greater reliability than conventional ones. It is something to give.

[実施例] 次に、本発明の好適な実施例について添付図面を参照し
て詳細に説明するが、図中、同一符号は同−又は対応部
分を示すものとする。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts.

第1A図及びl18図は、例えば、本発明をそれぞれ断
面正方形及び正六角形の燃料集合体1に適用した実施例
を示している。各燃料集合体゛1の下部ノズル7はいず
れもホールドアツプ機構の押さえ装置を有する構造のも
のであり、該下部ノズル構造は断面形状以外は実質的に
同一と考えてよく、第2図に示すように、燃料集合体1
の技手方向下方に延びる延長部8aを有する本体部8と
、該!L長部8aを貫いて本体部8内に延入する中空体
9と、該中空体9及び延長部8aの開に配設された弾性
部材、即ちばね10とを備え、燃料集合体装荷時に上向
きのばね力を提供するものである。本体部8と延長部8
aとの接合部からは半径方向内方に向かって7ランジ1
1が延びており、また、中空体9の上端及び下端からは
それぞれ7ランノ12.13が半径方向外方に向かって
延在している。7ランノ11の上面は、7ランジ12の
下面と協働して中空体9の下方への移動を制限するスト
ッパーとして機能しており、7ランノ11の下面及び7
ランジ13の上面はばね10の支持面となっている。ま
た、下部ノズル7の中空体9内には上下に可動な炉内計
装用案内管14を支持し水力振動から保護するための支
持体15が設けられている。
1A and 118 show, for example, an embodiment in which the present invention is applied to a fuel assembly 1 having a square cross section and a regular hexagonal cross section, respectively. The lower nozzles 7 of each fuel assembly 1 are of a structure having a holding device of a hold-up mechanism, and the lower nozzle structures can be considered to be substantially the same except for the cross-sectional shape, as shown in FIG. As such, fuel assembly 1
A main body part 8 having an extension part 8a extending downward in the direction of the operator's hand, and the! It includes a hollow body 9 that extends into the main body 8 through the L-long portion 8a, and an elastic member, that is, a spring 10, disposed at the opening between the hollow body 9 and the extension portion 8a. It provides an upward spring force. Main body part 8 and extension part 8
7 flange 1 radially inward from the joint with a.
1 extends radially outward from the upper and lower ends of the hollow body 9, respectively. The upper surface of the 7-run no. 11 functions as a stopper to limit the downward movement of the hollow body 9 in cooperation with the lower surface of the 7-run no. 12.
The upper surface of the flange 13 serves as a support surface for the spring 10. Further, a support 15 is provided in the hollow body 9 of the lower nozzle 7 to support a vertically movable in-core instrumentation guide pipe 14 and protect it from hydraulic vibration.

第2図の(A)は燃料集合体1の吊り下げ時を示してお
り、この無負荷状態下では、7ランジ11及び12の係
合作用によりばね10を延長部8a及び中空体9間に圧
縮状態で収容し、ばね10に燃料集合体1の自重を支え
るための一定の撓みが与えられている。従って、第2図
の(B)で示すような自立状態の着床時には、ばね10
は燃料集合体1の自重を受けても新たに撓むことなく、
安定した着座性を得ることができる。また、第2図の(
C)に示すように、燃料集合体1を下部炉心支持板6上
に載置した後、上部炉心支持板4及びその他の図示しな
い上部炉心構造物を装着した状態では、ばね10が更に
撓むように設計されており、原子炉運転中の昇温による
炉内構造の熱膨張があっても、所定のばね力が燃料集合
体1及び下部炉心支持板6間に働くようになっている。
(A) in FIG. 2 shows the fuel assembly 1 when it is suspended, and under this no-load condition, the spring 10 is moved between the extension part 8a and the hollow body 9 by the engagement of the seven flanges 11 and 12. The fuel assembly 1 is housed in a compressed state, and the spring 10 is given a certain amount of deflection to support the weight of the fuel assembly 1 . Therefore, when landing on the floor in a freestanding state as shown in FIG. 2(B), the spring 10
does not bend even under the weight of the fuel assembly 1,
It is possible to obtain stable seating comfort. Also, in Figure 2 (
As shown in C), after the fuel assembly 1 is placed on the lower core support plate 6, when the upper core support plate 4 and other upper core structures (not shown) are attached, the spring 10 is bent further. The design is such that a predetermined spring force acts between the fuel assembly 1 and the lower core support plate 6 even if there is thermal expansion of the reactor internal structure due to temperature rise during reactor operation.

炉内計装用案内W14については、その下端が、上部炉
心支持板4に設けた位置決めピン4aを上部ノズル2に
嵌合した上部炉心構造物装着時以外は、中空体9の下端
から下方に突出しないように設計されており、安定した
炉内計装の保護を可能にしている。
Regarding the in-core instrumentation guide W14, its lower end protrudes downward from the lower end of the hollow body 9, except when the upper core structure is attached to the upper core structure by fitting the positioning pin 4a provided on the upper core support plate 4 to the upper nozzle 2. It is designed to ensure stable protection of in-core instrumentation.

前述したように、本発明は断面正方形及び正六角形の燃
料集合体に実施したが、勿論、その他種々の断面形状の
ものに対して上述した構造を適用可能である。また、こ
れから説明する第3図〜第5図に示された本発明のそれ
ぞれ異なる別の実施例についても、同様に種々の断面形
状のものとすることができる。
As mentioned above, although the present invention was applied to fuel assemblies with square and regular hexagonal cross sections, it is of course possible to apply the above-described structure to fuel assemblies with various other cross-sectional shapes. Furthermore, the different embodiments of the present invention shown in FIGS. 3 to 5, which will be described hereinafter, can also have various cross-sectional shapes.

第3図の実施例においては、下部ノズル7の本体部8の
底部に沿って設けられ、下部ノズル7の中央に向かって
延びる7ランシ11の適宜の位置に、複数の位置決め用
脚部又はビン16がその尖頭を下方に向けて取着されて
おり、一方、下部炉心支持板6には該位置決め用ピン1
6に対応する位置に孔17が穿設され、この孔17が位
置決め用ピン16を受は入れている。各位置決め用ピン
16の回りには、7ランジ11の下面と下部炉心支持板
6の上面との間において、弾性部材であるばね18が、
好適には7ランジ11の下面に符号19で示すように溶
接で固定されて、配設されているにれ等のばね18が第
2図に示した実施例のばね10と同様に作用して上向き
の押さえ力を燃料集合体1に及ぼす。第3図の実施例は
第2図のものと比較して下部ノズル7の軸方向寸法を小
さくすることができ、また、下部炉心板流路孔を分散し
、中央に炉内計装案内用の小孔を設けることができるの
で、炉内計装の案内貞デ上n穴J!、 L4たス  l
lt A ’FfAめ宙愉伺1け七いヂは、下部ノズル
7の本体部8の7ランジ11を貫き下部ノズル7内に延
入する複数のばね受け2oが設けられており、該ばね受
け20の回りに比較的に細径のコイルばね21が下部ノ
ズル7内において装着されている。燃料集合体1の着床
時及び運献時、各ばね受け20の下端は中空体9の下部
7ランジ13に当接する。本実施例の作用は第2図のも
のと同様であるが、弾性部材であるコイルばね21を複
数個用いて全体としてのばね剛性を高めることにより、
下部ノズル7の軸方向寸法を小さくすることができ、ま
た、大径コイルばねを使用する場合より、ばね収納のた
めに要する投影面積が小さいので、下部炉心支持板6の
流路孔6aのスペースもより大きくすることができる。
In the embodiment of FIG. 3, a plurality of positioning legs or pins are provided along the bottom of the main body 8 of the lower nozzle 7 at appropriate positions of the runner 11 extending toward the center of the lower nozzle 7. 16 is attached with its point facing downward, while the positioning pin 1 is attached to the lower core support plate 6.
A hole 17 is bored at a position corresponding to 6, and this hole 17 receives the positioning pin 16. A spring 18, which is an elastic member, is installed around each positioning pin 16 between the lower surface of the seven flange 11 and the upper surface of the lower core support plate 6.
Preferably, a spring 18, such as a rib, which is fixed to the lower surface of the 7 flange 11 by welding as indicated by the reference numeral 19, acts in the same manner as the spring 10 of the embodiment shown in FIG. An upward pressing force is applied to the fuel assembly 1. The embodiment shown in FIG. 3 can reduce the axial dimension of the lower nozzle 7 compared to the one shown in FIG. Since it is possible to provide a small hole, it is possible to provide a small hole for guiding the in-furnace instrumentation. , L4 tas l
ltA'FfAme air travel 1-7 is provided with a plurality of spring receivers 2o extending into the lower nozzle 7 through the 7 langes 11 of the main body 8 of the lower nozzle 7, and the spring receivers 2o extend into the lower nozzle 7. A coil spring 21 having a relatively small diameter is mounted around the coil spring 20 in the lower nozzle 7. When the fuel assembly 1 is placed on the floor and transported, the lower end of each spring receiver 20 comes into contact with the lower 7 flange 13 of the hollow body 9. The operation of this embodiment is similar to that of FIG. 2, but by using a plurality of coil springs 21, which are elastic members, to increase the overall spring rigidity,
The axial dimension of the lower nozzle 7 can be reduced, and the projected area required for storing the spring is smaller than when using a large-diameter coil spring, so the space of the flow passage hole 6a of the lower core support plate 6 can be reduced. can also be made larger.

更に、第3図の場合と同様の理由により、炉内計装の案
内もより容易になる。
Furthermore, for the same reason as in the case of FIG. 3, the guidance of the in-core instrumentation becomes easier.

ms図の実施例においては、下部ノズル本体部8の7ラ
ンジ11と中空体9の7ランジ13との開に複数の板ば
ね22を弾性部材として配設している。
In the embodiment shown in the ms diagram, a plurality of leaf springs 22 are disposed as elastic members between the seventh flange 11 of the lower nozzle body 8 and the seventh flange 13 of the hollow body 9.

その作用原理は第2図及びm4図の実II6@とは綿で
あるが、板ばね22を用いることにより、より狭いスペ
ースで十分なばね力を提供することができるため、下部
7xルアの軸方向寸法を更に小さくすることができ、流
路孔6bのスペースをより大きくすることができる。ま
た、炉内計装の案内も更に容易になる。
Its working principle is that the real II6@ in Fig. 2 and m4 is cotton, but by using the leaf spring 22, sufficient spring force can be provided in a narrower space, so the axis of the lower 7x Lua The directional dimension can be further reduced, and the space of the channel hole 6b can be made larger. Furthermore, the guidance of the in-core instrumentation becomes easier.

[発明の効果] 以上のように、本発明による原子炉用核燃料集合体は、
燃料集合体に作用する押さえ装置の付勢力の方向が、運
献中の冷却材流れによる揚力の方向と同じになるように
、押さえ装置を燃料集合体に対し冷却材流れの上流側に
装備し、燃料集合体を上部炉心支持板に押さえ付けるホ
ールドアツプ式となっているので、揚力の大きさに拘わ
らず、燃料集合体の軸方向支持を安定して行うことがで
き、現行の加圧木型原子炉より高速の冷却材流を有する
炉心や、燃料棒配列がより稠密になる燃料集合体の支持
方式として十分な信頼性を与えるものである。しかも、
押さえ装置の付勢力と揚力とは同方向に作用するので、
弾性部材に加わる力が従来と比べて小さくなり、該弾性
部材の応力レベルを下げることができ、照射による弾性
部材のばね力紙下を緩和することができる。
[Effects of the Invention] As described above, the nuclear fuel assembly for a nuclear reactor according to the present invention has the following effects:
The holding device is installed on the upstream side of the coolant flow with respect to the fuel assembly so that the direction of the urging force of the holding device acting on the fuel assembly is the same as the direction of the lifting force due to the coolant flow during transport. Since it is a hold-up type that presses the fuel assembly against the upper core support plate, it is possible to stably support the fuel assembly in the axial direction regardless of the magnitude of the lift force, and it is possible to achieve stable support in the axial direction of the fuel assembly, compared to the current pressurized wood. It provides sufficient reliability as a support system for cores with a faster coolant flow than that of nuclear reactors, and for fuel assemblies in which fuel rods are arranged more densely. Moreover,
Since the urging force and lifting force of the holding device act in the same direction,
The force applied to the elastic member is smaller than in the past, the stress level of the elastic member can be lowered, and the spring force of the elastic member due to irradiation can be alleviated.

【図面の簡単な説明】 Pt51Δ図は、本発明に従って構成された断面正方形
の燃料集合体を上部炉心支持板及び下部炉心支持板間に
装着して一部断面で示す側面図、第1B図は、本発明に
従って構成された断面正六角形の燃料集合体を上部炉心
支持板及び下部炉心支持板間に装着して一部断面で示す
側面図、第2図(A)、(B)及び(C)は本発明によ
る燃料集合体の吊り下げ時、着床時及び運転時の状態を
それぞれ示す断面図、第3図、@4図及び第5図は本発
明によるそれぞれ別の実施例を示す断面図、第6図は本
発明によるホールドアツプ方式と従来のホールドダウン
方式の作用を比較対照して示す説明図、第7図は従来の
燃料集合体を上部炉心支持板及び下部炉心支持板間に装
着して一部断面で示す側面図である。 1・・・燃料集合体   2・・・上部ノズル4・・・
上部炉心支持板 6・・・下部炉心支持板6b・・・流
路孔     7・・・下部ノズル10・・・弾性部材
(ばね)18・・・弾性部材(ばね)21・・・弾性部
材(ばね)22・・・弾性部材(ばね)第1A図   
第旧図 第3図 鷺4図 第7図
[BRIEF DESCRIPTION OF THE DRAWINGS] Pt51Δ is a side view partially showing a fuel assembly having a square cross section constructed according to the present invention between an upper core support plate and a lower core support plate, and FIG. FIGS. 2(A), 2(B), and 2(C) are side views showing a fuel assembly having a regular hexagonal cross section constructed according to the present invention installed between an upper core support plate and a lower core support plate; ) are cross-sectional views showing the states of the fuel assembly according to the present invention during suspension, landing, and operation, respectively, and FIGS. 3, 4, and 5 are cross-sectional views showing different embodiments according to the present invention, respectively. Figure 6 is an explanatory diagram that compares and contrasts the effects of the hold-up method according to the present invention and the conventional hold-down method, and Figure 7 shows a conventional fuel assembly between the upper core support plate and the lower core support plate. FIG. 3 is a partially sectional side view of the device installed. 1...Fuel assembly 2...Upper nozzle 4...
Upper core support plate 6... Lower core support plate 6b... Channel hole 7... Lower nozzle 10... Elastic member (spring) 18... Elastic member (spring) 21... Elastic member ( Spring) 22...Elastic member (spring) Fig. 1A
Old Figure 3 Figure 4 Heron Figure 7

Claims (1)

【特許請求の範囲】[Claims] それぞれ流路孔を有する下部炉心支持板及び上部炉心支
持板の間に装着され、冷却材が下部炉心支持板の流路孔
から入って上部炉心支持板の流路孔に抜ける原子炉用核
燃料集合体において、該核燃料集合体の下部ノズルに、
該冷却材の流れにより核燃料集合体に働く揚力と同方向
に該核燃料集合体を付勢する弾性部材からなる押さえ装
置を装備したことを特徴とする原子炉用核燃料集合体。
In a nuclear fuel assembly for a nuclear reactor, which is installed between a lower core support plate and an upper core support plate each having a flow passage hole, and in which coolant enters through the flow passage hole in the lower core support plate and exits to the flow passage hole in the upper core support plate. , in the lower nozzle of the nuclear fuel assembly,
A nuclear fuel assembly for a nuclear reactor, characterized in that it is equipped with a holding device made of an elastic member that urges the nuclear fuel assembly in the same direction as the lift force acting on the nuclear fuel assembly due to the flow of the coolant.
JP60048393A 1985-03-13 1985-03-13 Nuclear fuel aggregate for reactor Pending JPS61207990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048393A JPS61207990A (en) 1985-03-13 1985-03-13 Nuclear fuel aggregate for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048393A JPS61207990A (en) 1985-03-13 1985-03-13 Nuclear fuel aggregate for reactor

Publications (1)

Publication Number Publication Date
JPS61207990A true JPS61207990A (en) 1986-09-16

Family

ID=12802049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048393A Pending JPS61207990A (en) 1985-03-13 1985-03-13 Nuclear fuel aggregate for reactor

Country Status (1)

Country Link
JP (1) JPS61207990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589311A1 (en) * 1992-09-24 1994-03-30 Siemens Power Corporation Upwarding biased fuel assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574488A (en) * 1978-11-24 1980-06-05 Combustion Eng Nuclear fuel assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574488A (en) * 1978-11-24 1980-06-05 Combustion Eng Nuclear fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589311A1 (en) * 1992-09-24 1994-03-30 Siemens Power Corporation Upwarding biased fuel assembly

Similar Documents

Publication Publication Date Title
US4061536A (en) Fuel assembly for nuclear reactors
JP2911065B2 (en) Guide thimble dashpot for control rod
US4278501A (en) Spring element for holding down nuclear reactor fuel assembly
JPH02266292A (en) Vibration reducer for neutron flux thimble tube of fuel assembly
JPS61191990A (en) Fuel aggregate for nuclear reactor
JP2553333B2 (en) Fuel assembly
JPS61254889A (en) Fuel aggregate
US4019954A (en) Safety device for a nuclear reactor and especially a fast reactor
JPS61207990A (en) Nuclear fuel aggregate for reactor
US5859887A (en) Nuclear fuel assembly support grid
US3600276A (en) Fuel systems for nuclear reactors
KR20090021477A (en) Top nozzle assembly having on-off holddown spring in nuclear fuel assembly
US4820058A (en) Control rod end plug with a stabilizing configuration
US5490191A (en) BWR nuclear fuel assembly
JP3108189B2 (en) Top nozzle of nuclear fuel assembly
JPH0643286A (en) Vibration damper
US4311560A (en) Stabilizing device for control rod tip
US6631176B2 (en) Fuel assembly
JPH10123274A (en) Fuel assembly
JPS623691A (en) Fuel aggregate
JPS61219890A (en) Nuclear fuel aggregate
JP2023120990A (en) Fuel assembly loading method and fuel assembly coupling jig
Pickman Interactions between fuel pins and assembly components
JPS6295492A (en) Fuel aggregate
JPS63241386A (en) Core structure