JPS61207938A - Stress measuring method using sound elastic film - Google Patents
Stress measuring method using sound elastic filmInfo
- Publication number
- JPS61207938A JPS61207938A JP4811985A JP4811985A JPS61207938A JP S61207938 A JPS61207938 A JP S61207938A JP 4811985 A JP4811985 A JP 4811985A JP 4811985 A JP4811985 A JP 4811985A JP S61207938 A JPS61207938 A JP S61207938A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- test member
- stress
- reflected
- piezoelectric transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/25—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
- G01L1/255—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は音弾性被膜を用いた応力測定方法に関し、さら
に詳しくは試験部材表面に貼り付けた音弾性被膜を用い
た応力測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stress measuring method using an acoustoelastic coating, and more particularly to a stress measuring method using an acoustoelastic coating attached to the surface of a test member.
(従来の技術)
従来、光弾性被膜を用いた応力測定方法が広く知られて
いた。(Prior Art) Conventionally, stress measurement methods using photoelastic coatings have been widely known.
この既知の方法は、試験部材表面の応力状態が二次元で
あることを利用して、表面の主応力差を二次元光弾性の
場合と同様に求めるものである。This known method uses the fact that the stress state on the surface of the test member is two-dimensional to determine the principal stress difference on the surface in the same way as in the case of two-dimensional photoelasticity.
すなわち、第4図に示す如くよく暦いた模型または試験
部材表面21上に光弾性材料被膜22を作り、光源23
から発し、半透明鏡24において部分反射して矢印27
の方向に進む入射光27を偏光子(検光子)25及び四
分の一波長板26を経由して前記試験部材表面21に垂
直に入射させる。前記入射光27は光輝性材料被膜22
を通過して試験部材表面21において反射光28となっ
て四分の一波長板26及び偏光子21を経由して半透明
鏡24を通過した後、衝立29上に像を結ぶ。そして試
験部材表面の二次元歪に起因して結像上に現われるモア
レ縞によって、試験部材表面に加わっている応力を測定
するものである。That is, as shown in FIG.
, and is partially reflected by the semi-transparent mirror 24 to form an arrow 27
Incident light 27 traveling in the direction is made perpendicularly incident on the test member surface 21 via a polarizer (analyzer) 25 and a quarter-wave plate 26. The incident light 27 is applied to the glittering material coating 22.
It becomes reflected light 28 on the test member surface 21 , passes through the quarter-wave plate 26 and the polarizer 21 , passes through the semi-transparent mirror 24 , and then forms an image on the screen 29 . The stress applied to the surface of the test member is measured by the moiré fringes that appear on the image due to the two-dimensional strain on the surface of the test member.
(発明が解決しようとする問題点)
前記既知の光弾性被膜を用いる応力測定方法では、被膜
としての光弾性材料は光学的に透明であることが必須要
件であり、試験部材表面における反射光により応力の測
定を行うため、光弾性材料被膜の厚さは2倍のものの特
性と等価と考えて良い。この光弾性感度は被膜の光弾性
材料の厚さに依存し、従って厚さが大なるほど良いが、
実際上厚さは余り厚くすることができず、かつ光弾性材
料に生ずる歪はきわめて小さいため感度が悪い欠点があ
る。また被膜は均一の厚さにすることが必要であり、反
射光の状態は前記光弾性材料被膜の試験部材表面への接
着状態如何によって変化するにも拘わらず、良好に接着
することが困難であり、更に試験部材表面は好ましい反
射光を得るため磨きの精度をかあり高度に仕上げておく
必要性が存在するなど実際の精度上の問題点があった。(Problems to be Solved by the Invention) In the stress measurement method using the known photoelastic coating, it is essential that the photoelastic material used as the coating is optically transparent, and the light reflected on the surface of the test member In order to measure stress, the thickness of the photoelastic material coating can be considered to be equivalent to the characteristics of one twice as thick. This photoelastic sensitivity depends on the thickness of the photoelastic material in the coating, so the greater the thickness, the better.
In practice, the thickness cannot be increased very much, and the strain produced in the photoelastic material is extremely small, so it has the disadvantage of poor sensitivity. In addition, the coating needs to have a uniform thickness, and although the state of reflected light changes depending on the adhesion state of the photoelastic material coating to the test member surface, it is difficult to adhere well. Furthermore, there were problems in terms of actual accuracy, such as the need to polish the surface of the test member to a high degree of precision in order to obtain favorable reflected light.
それ故、かかる光弾性材料被膜を用いた応力測定方法を
実際の構造部材の応力測定に適用することは実用上可成
りの困難を伴うものであった。Therefore, it has been practically difficult to apply the stress measurement method using such a photoelastic material coating to the stress measurement of actual structural members.
(発明の目的)
本発明は前記の光を用いる技術の欠点を解決し、応力感
度の優れた測定方法を提供しようとするもので、しかも
産業上の利用範囲の拡大が可能である音弾性被膜を用い
た応力測定方法を提供することをその目的とする。(Objective of the Invention) The present invention aims to solve the drawbacks of the above-mentioned technology using light and provide a method for measuring stress sensitivity that is excellent in stress sensitivity. The purpose is to provide a stress measurement method using
(問題点を解決するための手段)
前記目的を達成するため、本発明に係る応力測定方法は
、高周波電気信号の発振器及び受信器と、サーキュレー
タと、圧電トランスデユーサとを使用し、該トランスデ
ユーサと試験部材との間は超音波伝搬媒体をもって埋め
、前記試験部材表面には高分子材料の音弾性被膜を貼り
付け、該被膜のヤング率変化による被膜と前記伝搬媒体
との界面における音圧反射率の差異から試験部材の応力
を測定することを特徴とする特
(作 用)
本発明に係る応力測定方法によれば、試験部材表面に貼
り付けた被膜の光学的透明性、厚み均一性、厚さ制限お
よび試験部材表面の磨き精度等にはほとんど依存せず、
音響インピーダンスが比較的水に近い材料を被膜(塗膜
のようなものでよい)として使用することにより応力感
度の優れた測定法を構成することが可能となる。(Means for Solving the Problems) In order to achieve the above object, a stress measurement method according to the present invention uses a high frequency electric signal oscillator and receiver, a circulator, and a piezoelectric transducer, and The space between the deuser and the test member is filled with an ultrasonic propagation medium, and a sonoelastic film made of a polymeric material is pasted on the surface of the test member. Features (Function) characterized by measuring the stress of the test member from the difference in baroreflectance According to the stress measuring method of the present invention, the optical transparency and uniform thickness of the coating applied to the surface of the test member can be improved. It is almost independent of the characteristics, thickness limitations, polishing accuracy of the test member surface, etc.
By using a material whose acoustic impedance is relatively close to that of water as a coating (a coating may be used), it is possible to construct a measurement method with excellent stress sensitivity.
(実施例)
以下本発明に係る音弾性被膜を用いた応力測定方法を図
面を参照して詳述する。(Example) Hereinafter, a method for measuring stress using an anoelastic coating according to the present invention will be described in detail with reference to the drawings.
第1図は本発明の第1実施例を示す。試験部材1の表面
に音弾性被膜2を接着あるいは塗布によって貼り付ける
。該被膜2には通常の高分子膜或いは塗膜の如きものが
使用できるが、代表的なものとして光弾性被膜材料とし
ても使用されるベークライトセルロイド、エポキシ樹脂
、ポリカーボネイトをはじめ、テフロン樹脂等の光学的
不透明材料も使用可能である。この場合の被膜の厚さは
約10μm以上であればよく、その厚さに多少の不均一
性があってもよい。更に、高周波電気信号の発振器4及
び受信器5と、超音波を発生し、かつ受信する圧電トラ
ンスデユーサ3と、サーキュレータ6とを具え、前記試
験部材lと圧電トランスデユーサ3との間を超音波伝搬
媒体7をもって満す。この超音波伝搬媒体7は超音波の
界面における反射減衰及び伝搬径路における減衰を抑制
する機能を有し、通常は水が使用される。FIG. 1 shows a first embodiment of the invention. The sonoelastic coating 2 is attached to the surface of the test member 1 by adhesive or coating. The film 2 can be made of ordinary polymer films or paint films, but typical examples include bakelite celluloid, epoxy resin, polycarbonate, which is also used as a photoelastic film material, and optical materials such as Teflon resin. Transparent opaque materials can also be used. In this case, the thickness of the coating may be about 10 μm or more, and the thickness may have some non-uniformity. Furthermore, it is provided with an oscillator 4 and a receiver 5 for high-frequency electric signals, a piezoelectric transducer 3 that generates and receives ultrasonic waves, and a circulator 6. Fill with ultrasonic propagation medium 7. The ultrasonic propagation medium 7 has a function of suppressing the reflection attenuation at the interface and the attenuation in the propagation path of the ultrasonic wave, and usually water is used.
上記構成において、発振器4により発生された高周波電
気信号はサーキュレータ6を経て圧電トランスデユーサ
3に導かれ、超音波に変換される。In the above configuration, the high frequency electric signal generated by the oscillator 4 is guided to the piezoelectric transducer 3 via the circulator 6 and converted into an ultrasonic wave.
該超音波は更に超音波伝搬媒体7に放射されて入射超音
波8となり試験部材10表面に垂直に入射する。The ultrasonic wave is further radiated to the ultrasonic propagation medium 7 to become an incident ultrasonic wave 8 which is perpendicularly incident on the surface of the test member 10 .
音弾性被膜材料の応力(σ)−歪(ε)関係は第3図に
示すように非線形な関係を有しているため、その縦弾性
関数の値(δσ/ aε)も歪(ε)に対し非線形をな
す。Since the stress (σ)-strain (ε) relationship of the acoustoelastic coating material has a nonlinear relationship as shown in Figure 3, the value of its longitudinal elastic function (δσ/aε) also depends on the strain (ε). However, it is non-linear.
一般に試験部材1の表面と同一の歪を有する音弾性被膜
2と超音波伝搬媒体7との界面における音圧反射率(反
射波強度)は
る。Generally, the sound pressure reflectance (reflected wave intensity) at the interface between the acoustoelastic coating 2 and the ultrasonic propagation medium 7, which has the same strain as the surface of the test member 1, is high.
但し、
Z、:伝搬媒体の音響インピーダンス、Z2:音弾性被
膜の音響インピーダンス、δl:伝搬媒体の密度、
δ2:被膜の密度、
C1:伝搬媒体の縦波音速、
B2=被膜のヤング率
を示す。However, Z: Acoustic impedance of the propagation medium, Z2: Acoustic impedance of the acoustic elastic coating, δl: Density of the propagation medium, δ2: Density of the coating, C1: Longitudinal sound velocity of the propagation medium, B2 = Young's modulus of the coating. .
したがって、伝搬媒体7の音響インピーダンスに近いイ
ンピーダンスを有する材料を選択し、例えば試験部材1
との界面の反射波の強度が小さくなる減衰の大きい高分
子材料の如き音弾性被膜2を試験部材1の表面に接着等
により被覆すれば、歪の差異によるヤング率の変化が第
3図に示すように音圧反射率の差として大きく現われる
ことになる。Therefore, a material with an impedance close to the acoustic impedance of the propagation medium 7 is selected, e.g.
If the surface of the test member 1 is coated with an acoustoelastic coating 2 such as a high-attenuation polymer material that reduces the intensity of the reflected wave at the interface, the change in Young's modulus due to the difference in strain will be as shown in Figure 3. As shown, this appears as a large difference in sound pressure reflectance.
前記被膜2と伝搬媒体7との界面において、前、記の音
圧反射率で反射した超音波9は再び圧電トランスデユー
サ3に戻り、そこでその反射波強度に比例した電気信号
に変換され、サーキュレータ6を経て受信器5に導かれ
、反射電圧が得られる。At the interface between the coating 2 and the propagation medium 7, the ultrasonic wave 9 reflected by the above-mentioned sound pressure reflectance returns to the piezoelectric transducer 3 again, where it is converted into an electrical signal proportional to the intensity of the reflected wave, The signal is guided to the receiver 5 via the circulator 6, and a reflected voltage is obtained.
該反射電圧は試験部材1の歪を反映したものとなる。The reflected voltage reflects the distortion of the test member 1.
上述のように、音弾性被膜2にて覆われた試験部材lに
超音波8を垂直入射させれば、試験部材1の歪に依存し
た音圧反射率(反射波強度)を得ることができる。これ
は第3図に示すように音弾性被膜材料の歪量とヤング率
とが一義的に対応しているためで、音弾性被膜2と超音
波伝搬媒体7の界面における音圧反射率は上記のように
で表わされるため、ヤング率を介して歪量と音圧反射率
とを関連づけることが可能となる。As mentioned above, if the ultrasonic waves 8 are perpendicularly incident on the test member l covered with the acoustoelastic coating 2, it is possible to obtain a sound pressure reflectance (reflected wave intensity) that depends on the strain of the test member 1. . This is because, as shown in Fig. 3, the strain amount of the acoustoelastic coating material and the Young's modulus are uniquely related, and the sound pressure reflectance at the interface between the acoustoelastic coating 2 and the ultrasonic propagation medium 7 is as shown above. Since it is expressed as follows, it is possible to relate the amount of distortion and the sound pressure reflectance via Young's modulus.
この場合、超音波伝搬媒体7として、水を使用し、音弾
性被膜2として吸水性が少く、かつ水と音響インピーダ
ンスの値が近似しているポリカーボネートのような高分
子材料を使用すれば、応力感度のよい測定が可能となる
。In this case, if water is used as the ultrasonic propagation medium 7 and a polymer material such as polycarbonate, which has low water absorption and has an acoustic impedance value similar to that of water, is used as the sonoelastic coating 2, stress can be reduced. This allows for highly sensitive measurements.
しかし乍らこの場合は、試験部材1と音弾性被膜2との
界面における反射波が雑音となる。それ故、減衰の大き
い高分子材料を被膜として使用し、前記界面における反
射波の強度が、伝搬媒体7と音弾性被膜2との界面にお
ける反射波の強度に比較して著しく小さくなるように前
記被膜2の厚さを選択する必要がある。However, in this case, the reflected waves at the interface between the test member 1 and the sonoelastic coating 2 become noise. Therefore, a high-attenuation polymeric material is used as the coating so that the intensity of the reflected wave at the interface is significantly smaller than the intensity of the reflected wave at the interface between the propagation medium 7 and the acoustic elastic coating 2. It is necessary to select the thickness of the coating 2.
逆に前記被膜2の厚さが定められている場合には、伝搬
媒体7と音弾性被膜2との界面における反射波と、試験
部材1と音弾性被膜2との界面における反射波とが分離
できるような短パルスの入射波を発生させることが可能
な発振器4を使用することが必要である。Conversely, when the thickness of the coating 2 is determined, the reflected wave at the interface between the propagation medium 7 and the acousto-elastic coating 2 and the reflected wave at the interface between the test member 1 and the acousto-elastic coating 2 are separated. It is necessary to use an oscillator 4 that is capable of generating an incident wave with such short pulses as possible.
なお、通常使用される圧電トランスデユーサ3は直径1
0mm程度の大きさであるため、応力測定における方位
分解能が悪い。それ故、該方位分解能を向上させるため
に、第2図の他の実施例に示すように圧電トランスデユ
ーサ3と超音波伝搬媒体7との間に音響レンズ10を介
装して超音波を集束させて集束入射超音波11を作り、
かつ音弾性被膜2の表面に正焦点をわあせ、前記集束入
射超音波11試験部材1の表面に垂直入射するようにす
ればよい。これにより使用する超音波の波長レベルの分
解能を得ることができる。Note that the piezoelectric transducer 3 normally used has a diameter of 1
Since the size is about 0 mm, the azimuth resolution in stress measurement is poor. Therefore, in order to improve the lateral resolution, an acoustic lens 10 is interposed between the piezoelectric transducer 3 and the ultrasonic propagation medium 7 to transmit the ultrasonic waves, as shown in another embodiment of FIG. to create a focused incident ultrasonic wave 11;
In addition, a positive focal point may be set on the surface of the acoustoelastic coating 2 so that the focused incident ultrasonic wave 11 is perpendicularly incident on the surface of the test member 1. This makes it possible to obtain resolution at the wavelength level of the ultrasonic waves used.
実験においては、円孔をあけた鉄系材料の試験片表面に
厚さ0.3mmのポリカーボネートの被膜を貼り付けた
後、前記試験片を引張り、周波数120MHzの超音波
を使用した反射超音波顕微鏡によって約12.5μmの
方位分解能を示す歪分布を得ることができた。In the experiment, a polycarbonate film with a thickness of 0.3 mm was pasted on the surface of a test piece of iron-based material with a circular hole, and then the test piece was pulled and subjected to a reflection ultrasound microscope using ultrasonic waves with a frequency of 120 MHz. As a result, it was possible to obtain a strain distribution with a lateral resolution of about 12.5 μm.
(発明の効果)
本発明に係る音弾性被膜を用いた応力測定方法は、上述
のような構成を有するので、従来の光弾性被膜測定法に
おいては不可能であった光学的に不透明な材料をも被膜
として使用することができ、またその際使用可能の被膜
の厚さは約10μm以上であればよく、その厚さに多少
の不均一性があっても、試験部材との界面の反射波は減
衰させるか、伝搬媒体との界面の反射波と分離するよう
になっているから問題にならない。(Effects of the Invention) Since the stress measurement method using an acoustoelastic coating according to the present invention has the above-described configuration, it is possible to measure optically opaque materials, which was impossible with the conventional photoelastic coating measurement method. can also be used as a coating, and in that case, the thickness of the coating that can be used only needs to be about 10 μm or more, and even if there is some non-uniformity in the thickness, the reflected waves at the interface with the test member is not a problem because it is attenuated or separated from the reflected wave at the interface with the propagation medium.
また、このように試験部材との界面の反射波は全く使用
しないために、試験部材表面の磨き精度もあまり問題で
はなく、試験部材の歪が音弾性被膜に正確に伝わるよう
な接着であれば支障はない。In addition, since the reflected waves from the interface with the test member are not used at all, the polishing accuracy of the test member surface is not so much of an issue. There is no problem.
さらに音響レンズを用いて超音波を集束させることによ
り方位分解能を向上させることもできる。Furthermore, the azimuth resolution can be improved by focusing the ultrasonic waves using an acoustic lens.
したがって本発明に係る応力測定方法は利用範囲が拡大
され、例えば既存の金属材料等の防蝕膜等すでに設けで
あるものがそのまま利用できる利点を有する。従来の公
知技術に比し多くの優れた利点を有する。Therefore, the stress measuring method according to the present invention has the advantage that the scope of use is expanded, and that it can be used as is, for example, with existing corrosion-resistant coatings for metal materials and the like. It has many advantages over conventional known techniques.
第1図は本発明の一実施例を示す構成概略図、第2図は
同じく他の実施例を示す構成概略図、第3図は本発明に
係る音弾性被膜材料の応カー歪関係曲線図、
第4図は従来の光弾性被膜を用いた応力測定方法の構成
概略図である。
1・・・試験部材 2・・・音弾性被膜3・・・
圧電トランスデユーサ
4・・・発振器 5・・・受信器6・・・サー
キュレータ 7・・・超音波伝搬媒体8−入射超音波
9.12・・・反射超音波 10・・・音響レンズ1
1・・・集束入射超音波
第1図
第2図
第3図
−εFIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing another embodiment, and FIG. 3 is a stress-strain relationship curve diagram of the acoustoelastic coating material according to the present invention. , FIG. 4 is a schematic diagram of the structure of a conventional stress measurement method using a photoelastic coating. 1... Test member 2... Acoustic elastic coating 3...
Piezoelectric transducer 4... Oscillator 5... Receiver 6... Circulator 7... Ultrasonic propagation medium 8 - Incident ultrasound 9.12... Reflected ultrasound 10... Acoustic lens 1
1... Focused incident ultrasound Figure 1 Figure 2 Figure 3 - ε
Claims (1)
の発振器より生ずる高周波電気信号をサーキュレータを
介して、圧電トランスデューサに供給して超音波に変換
し、該圧電トランスデューサと試験部材との間に満して
ある超音波伝搬媒体を介して試験部材に指向させ、試験
部材の表面には音響インピーダンスが前記超音波伝搬媒
体のそれに近く、かつ試験部材との界面の反射波の強度
が小さくなる減衰の大きい高分子材料の如き音弾性被膜
を塗布、接着等により被着し、該被膜のヤング率変化に
よる被膜と前記伝搬媒体との界面における音圧反射率の
差異を反射超音波として前記の圧電トランスジューサで
検知し、これにより変換された電気信号をサーキュレー
タにより高周波電気信号の受信器に指向させ、該受信器
で前記試験部材に生じた歪に起因する音圧反射率の差異
として検出して、前記試験部材の応力を測定することを
特徴とする音弾性被膜を用いた応力測定方法。 2、試験部材の応力測定方法において、高周波電気信号
の発振器より生ずる高周波電気信号をサーキュレータを
介して、圧電トランスデューサに供給して超音波に変換
し、該圧電トランスデューサと試験部材との間に満して
ある超音波伝搬媒体を介して試験部材に指向させ、試験
部材の表面には音響インピーダンスが前記超音波伝搬媒
体のそれに近く、かつ試験部材との界面の反射波の強度
が小さくなる減衰の大きい高分子材料の如き音弾性被膜
を塗布、接着等により被着し、該被膜のヤング率変化に
よる被膜と前記伝搬媒体との界面における音圧反射率の
差異を反射超音波として前記の圧電トランスジューサで
検知し、これにより変換された電気信号をサーキュレー
タにより高周波電気信号の受信器に指向させ、該受信器
で前記試験部材に生じた歪に起因する音圧反射率の差異
として検出して、前記試験部材の応力を測定する音弾性
被膜を用いた応力測定方法であって、前記圧電トランス
デューサと超音波媒体の間に音響レンズとを使用して超
音波を集束することを特徴とする音弾性被膜を用いた応
力測定方法。[Claims] 1. In a method for measuring stress on a test member, a high-frequency electric signal generated from a high-frequency electric signal oscillator is supplied to a piezoelectric transducer via a circulator and converted into an ultrasonic wave, and the piezoelectric transducer and the test member are The acoustic impedance of the surface of the test member is close to that of the ultrasonic propagation medium, and the intensity of the reflected wave at the interface with the test member is A sonoelastic coating such as a polymeric material with large attenuation is applied by coating, adhesive, etc., and the difference in sound pressure reflectance at the interface between the coating and the propagation medium due to the change in the Young's modulus of the coating is reflected by ultrasonic waves. is detected by the piezoelectric transducer, the electrical signal converted by this is directed to a receiver for high-frequency electrical signals by a circulator, and the receiver detects the difference in sound pressure reflectance due to the strain caused in the test member. A method for measuring stress using an acoustoelastic coating, characterized in that the stress in the test member is measured by detecting the stress in the test member. 2. In the method of measuring stress on a test member, a high-frequency electric signal generated from a high-frequency electric signal oscillator is supplied to a piezoelectric transducer via a circulator and converted into an ultrasonic wave, and a signal is filled between the piezoelectric transducer and the test member. The ultrasonic wave is directed to the test member through a certain ultrasonic propagation medium, and the surface of the test member has an acoustic impedance close to that of the ultrasonic propagation medium, and has a large attenuation that reduces the intensity of the reflected wave at the interface with the test member. In the piezoelectric transducer described above, an acoustoelastic coating such as a polymeric material is applied by coating, adhesive, etc., and the difference in sound pressure reflectance at the interface between the coating and the propagation medium due to a change in the Young's modulus of the coating is used as reflected ultrasound. The detected and converted electric signal is directed to a high-frequency electric signal receiver by a circulator, and the receiver detects the difference in sound pressure reflectance due to the strain generated in the test member, and performs the test. A stress measuring method using an acousto-elastic coating for measuring stress in a member, the acousto-elastic coating being characterized in that an acoustic lens is used between the piezoelectric transducer and the ultrasonic medium to focus the ultrasonic waves. Stress measurement method used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4811985A JPS61207938A (en) | 1985-03-13 | 1985-03-13 | Stress measuring method using sound elastic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4811985A JPS61207938A (en) | 1985-03-13 | 1985-03-13 | Stress measuring method using sound elastic film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61207938A true JPS61207938A (en) | 1986-09-16 |
JPH0456936B2 JPH0456936B2 (en) | 1992-09-10 |
Family
ID=12794435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4811985A Granted JPS61207938A (en) | 1985-03-13 | 1985-03-13 | Stress measuring method using sound elastic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207938A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012141256A (en) * | 2011-01-06 | 2012-07-26 | Seiko Epson Corp | Ultrasonic sensor, tactile sensor and gripping device |
-
1985
- 1985-03-13 JP JP4811985A patent/JPS61207938A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012141256A (en) * | 2011-01-06 | 2012-07-26 | Seiko Epson Corp | Ultrasonic sensor, tactile sensor and gripping device |
US9127999B2 (en) | 2011-01-06 | 2015-09-08 | Seiko Epson Corporation | Ultrasonic sensor, tactile sensor, grasping apparatus, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JPH0456936B2 (en) | 1992-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Beard et al. | Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection | |
Beard et al. | Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones | |
JPS59105517A (en) | Fiber optic sensor for measuring physical quantity | |
Pouet et al. | Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser techniques | |
JPH0421139B2 (en) | ||
JPH05172739A (en) | Method of measuring ultrahigh speed surface vibration by means of ultrashort pulse light | |
US4563898A (en) | Acoustic microscope | |
Krischer | Optical measurements of ultrasonic attenuation and reflection losses in fused silica | |
Koch | Coated fiber-optic hydrophone for ultrasonic measurement | |
CN111948423A (en) | Graphene-based flow velocity sensor optical chip and application thereof | |
JPS61207938A (en) | Stress measuring method using sound elastic film | |
US5585563A (en) | Non-contact thickness measurement using UTG | |
Jungerman et al. | Optical probing of acoustic waves on rough surfaces | |
Bourkoff et al. | Low‐energy optical generation and detection of acoustic pulses in metals and nonmetals | |
RU2786510C1 (en) | Method for measuring sound velocity in thin polymeric sound-transparent films | |
JPS59192907A (en) | Measuring method of thickness | |
Hsu et al. | Generation and detection of plane‐polarized ultrasound with a rotatable transducer | |
JPS63157029A (en) | Measuring method for dynamic response characteristic or strain gauge | |
Moidu et al. | A new ultrasonic technique for the interfacial characterization of adhesive joints | |
JP2667684B2 (en) | Focus transducer | |
Mueller et al. | Coverslip induced artifacts in high resolution scanning laser acoustic microscope images | |
JPH05256828A (en) | Acoustic wave conversion element | |
JP3505753B2 (en) | Ultrasound spectrum microscope | |
SU1670393A1 (en) | Azimuth-indicating device | |
Parinov et al. | Calibration of acoustic transducers using holographic interferometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |