JPS61207869A - Intake secondary air supply device of internal-combustion engine - Google Patents

Intake secondary air supply device of internal-combustion engine

Info

Publication number
JPS61207869A
JPS61207869A JP4722285A JP4722285A JPS61207869A JP S61207869 A JPS61207869 A JP S61207869A JP 4722285 A JP4722285 A JP 4722285A JP 4722285 A JP4722285 A JP 4722285A JP S61207869 A JPS61207869 A JP S61207869A
Authority
JP
Japan
Prior art keywords
secondary air
intake
engine
deceleration
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4722285A
Other languages
Japanese (ja)
Inventor
Toru Niwa
徹 丹羽
Yoshitaka Hibino
日比野 義貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4722285A priority Critical patent/JPS61207869A/en
Publication of JPS61207869A publication Critical patent/JPS61207869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent air-fuel ratio from generating large hunting, by detecting an overrich state of the air-fuel ratio from an engine operation parameter in good reaction for deceleration and supplying intake secondary air of quantity corresponding to said parameter. CONSTITUTION:If an engine being in a deceleration condition is decided from a change value DELTAPBA of the absolute pressure PBA, a supply device, opening an electromagnetic opening and closing valve 9 only for a time TSH corresponding to the change value DELTAPBA, supplies intake secondary air to the engine through an intake secondary air passage. In this way, when deceleration of the engine is started at a point of time t1 in the drawing, the device, earlier supplying the secondary air anticipating a change of air-fuel ratio in deceleration, can prevent the air-fuel ratio from its large change as shown by a full line B in the drawing. While a broken line A shows a case that the air-fuel ratio is corrected in accordance with an output level of an oxygen concentration sensor 14 in the past. While a one-dot chain line C shows a case that no intake secondary air is supplied.

Description

【発明の詳細な説明】 技術分野 本発明は内燃エンジンの吸気2次空気供給装置に関する
TECHNICAL FIELD The present invention relates to an intake secondary air supply system for an internal combustion engine.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等を目的として
排気ガス中の酸素濃度を酸素濃度センナによって検出し
、この酸素濃度センサの出力レベルに応じてエンジンへ
の供給混合気の空燃比をフィードバック制御する空燃比
制御装置が知られている。この空燃比制御装置として気
化器絞り弁下流の吸気マニホールド内に連通ずる吸気2
次空気供給通路に開閉弁を設けて酸素濃度センサの出力
レベルに応じて開閉弁の開閉、すなわち吸気2次空気量
をデエーティ制御するフィードバック制御用吸気2次空
気供給装置がある(例えば、特公昭55−3533号]
Background technology In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor, and the air-fuel ratio of the mixture supplied to the engine is fed back according to the output level of this oxygen concentration sensor. Air-fuel ratio control devices are known. As this air-fuel ratio control device, the intake air 2 is connected to the intake manifold downstream of the carburetor throttle valve.
There is an intake secondary air supply device for feedback control that provides an on-off valve in the secondary air supply passage and controls the opening/closing of the on-off valve according to the output level of the oxygen concentration sensor, that is, the amount of intake secondary air (for example, the No. 55-3533]
.

かかる従来の吸気2次空気供給装置においては、酸素濃
度センサの出力レベルから供給混合気の空燃比を検出す
るので空燃比が変化してもその空燃比の変化が検出され
るまでに時間が掛かる0故に、吸気2次空気の供給によ
る空燃比制御が若干遅れるので空燃比のハンチングを生
ずる場合がある。
In such conventional intake secondary air supply devices, the air-fuel ratio of the supplied air-fuel mixture is detected from the output level of the oxygen concentration sensor, so even if the air-fuel ratio changes, it takes time for the change in the air-fuel ratio to be detected. Therefore, the air-fuel ratio control by supplying the intake secondary air is slightly delayed, which may result in hunting of the air-fuel ratio.

特に、エンジンの減速開始直後には吸気マニホールド内
の負圧が急速に上昇することに、Cり吸気マニホールド
内壁面に付着した燃料が気化して供給混合気の空燃比が
オーパリフチとなるので制御遅れによる空燃比のハンチ
ングが大きくなり運転性の悪化を招来するという問題点
があった。
In particular, immediately after the start of engine deceleration, the negative pressure in the intake manifold rapidly increases, and the fuel adhering to the inner wall of the intake manifold evaporates, causing the air-fuel ratio of the supplied mixture to become over-left, resulting in a control delay. There was a problem in that hunting of the air-fuel ratio became large due to this, resulting in deterioration of drivability.

発明の概要 そこで、本発明の目的はエンジン減速開始直後の空燃比
のハンチングを防止して運転性の向上を図ることができ
る吸気2次空気供給装置を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an intake secondary air supply device that can prevent hunting of the air-fuel ratio immediately after the start of engine deceleration and improve driveability.

本発明の内燃エンジンの吸気2次空気供給装置は排気成
分濃度を検出する第1検出手段と、エンジンの減速に応
じて値が変化するエンジン運転パラメータを検出する第
2検出手段と、吸気2次空気供給通路に設けられた流量
調整弁と、第1検出手段の検出レベルから空燃比を判別
しその判別結果に応じて流量調整弁を制御しかつ第2検
出手段の検出レベルからエンジンが減速状態にあること
を判別したときにのみ第1検出手段の検出レベルに無関
係に第2検出手段の検出レベルに応じて流量調整弁を制
御する制御手段とを含むことを特徴としている。
The intake secondary air supply device for an internal combustion engine according to the present invention includes a first detection means for detecting exhaust component concentration, a second detection means for detecting an engine operating parameter whose value changes in accordance with deceleration of the engine, and an intake secondary air supply device for an internal combustion engine. The air-fuel ratio is determined from the detection level of a flow rate adjustment valve provided in the air supply passage and the first detection means, the flow rate adjustment valve is controlled according to the determination result, and the engine is in a deceleration state from the detection level of the second detection means. and control means for controlling the flow rate regulating valve in accordance with the detection level of the second detection means, regardless of the detection level of the first detection means, only when it is determined that the flow rate adjustment valve is present.

実施例 以下、本発明の実施例を図面を参照しつつ説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図に示し九本発明の一実施例穴る車載内燃エンジン
の吸気2次空気供給装置においては、吸入空気が大気吸
入口lからエアクリーナ2、気化器3、そして吸気マニ
ホールド4を介してエンジン5に供給される。気化器3
には絞り弁6が設けられ、絞り弁6の上流にはペンチエ
リアが形成されている。
In the intake secondary air supply system for an on-vehicle internal combustion engine, which is an embodiment of the present invention shown in FIG. 5. vaporizer 3
is provided with a throttle valve 6, and a pliers area is formed upstream of the throttle valve 6.

吸気マニホールド4とエアクリーナ2の空気吐出口近傍
とは吸気2内空気供給通路8によって連通されている。
The intake manifold 4 and the vicinity of the air discharge port of the air cleaner 2 are communicated with each other by an air supply passage 8 within the intake 2.

吸気2次空気供給通路8には電磁開閉弁9が設けられて
いる。電磁開閉弁9はそのソレノイド9αへの通電にエ
フ開弁するようになっている。
An electromagnetic on-off valve 9 is provided in the intake secondary air supply passage 8 . The electromagnetic on-off valve 9 is opened when the solenoid 9α is energized.

一万、lOは吸気マニホールド4に設けられ吸気マニホ
ールド4内の吸気絶対圧に応じたレベルの出力を発生す
る絶対圧センサ、11はエンジン5のクランクシャフト
(図示せず)の回転に応じてパルスを発生するクランク
角センサ、12はエンジン5の冷却水温に応じたレベル
の出力を発生する冷却水温センナ、14はエンジン5の
排気マ酸素濃度センサ14の配設位置工9下流の排気マ
ニホールド15には排気ガス中の有害成分の低減を促進
させるために触媒−ンバータ33が設けられている。電
磁開閉弁9、絶対圧センサ10、クランク角センサ11
、水温センサ12及び酸素濃度センサ14は制御回路2
0に接続されている。
10,000, IO is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the intake absolute pressure in the intake manifold 4, and 11 is a pulse sensor that generates a pulse according to the rotation of the crankshaft (not shown) of the engine 5. 12 is a cooling water temperature sensor that generates an output at a level corresponding to the cooling water temperature of the engine 5; 14 is an exhaust manifold 15 located downstream of the exhaust gas oxygen concentration sensor 14 of the engine 5; A catalyst inverter 33 is provided to promote the reduction of harmful components in exhaust gas. Electromagnetic on-off valve 9, absolute pressure sensor 10, crank angle sensor 11
, the water temperature sensor 12 and the oxygen concentration sensor 14 are connected to the control circuit 2.
Connected to 0.

制御回路20は第2図に示すように絶対圧センサ10、
水温センサ12及び酸素濃度センサ14の各出力レベル
を変換するレベル変換回路21と、レベル変換回路21
を経た各センサ出力の1つを選択的に出力するマルチプ
レクサ22と、このマルチプレクサ22から出力される
信号をディジタル信号に変換するA/D変換器23と、
クランク角センサ11の出力信号を波形整形する波形整
形回路24と、波形整形回路24からパルスとして出力
されるTDC信号の発生間隔を計測するカウンタ25と
、電磁開閉弁9を開弁駆動する駆動回路28と、プログ
ラムに従ってディジタル演算を行なうCPU(中央演算
回路)29と、6糧の処理プログラム及びデータが予め
書き込まれたROM30と、RAM31とからなってい
る。マルチプレクサ22、A/D変換器23、カウンタ
25、駆動回路28、CPU29、R,0M30及び肋
N31は入出力バス32によって互いに接続されている
The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
A level conversion circuit 21 that converts each output level of the water temperature sensor 12 and the oxygen concentration sensor 14; and a level conversion circuit 21.
A multiplexer 22 that selectively outputs one of the sensor outputs that have passed through the multiplexer 22, and an A/D converter 23 that converts the signal output from the multiplexer 22 into a digital signal.
A waveform shaping circuit 24 that shapes the output signal of the crank angle sensor 11, a counter 25 that measures the generation interval of the TDC signal output as a pulse from the waveform shaping circuit 24, and a drive circuit that drives the electromagnetic on-off valve 9 to open. 28, a CPU (central processing circuit) 29 that performs digital calculations according to programs, a ROM 30 in which six processing programs and data are written in advance, and a RAM 31. The multiplexer 22, A/D converter 23, counter 25, drive circuit 28, CPU 29, R, OM 30, and rib N31 are connected to each other by an input/output bus 32.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧PBA、冷却水温Tw、排気ガス
中の酸素濃度の情報が択一的に、まにカウンタ25から
エンジン回転数を表わす情報がCPU29に入出力バス
32を介して各々供給される。CPU29は1デユ一テ
イ周期(例えば、100m5ec)毎に内部割込信号を
発生するようにされており、この割込信号に応じて後述
の如く吸気2次空気供給をデユーティ制御するための動
作を行なう。
In this configuration, the information on the absolute pressure PBA in the intake manifold 4, the cooling water temperature Tw, and the oxygen concentration in the exhaust gas is alternatively sent from the A/D converter 23, and the information representing the engine rotation speed is alternatively sent from the counter 25. are respectively supplied to the CPU 29 via an input/output bus 32. The CPU 29 is configured to generate an internal interrupt signal every duty cycle (for example, 100 m5ec), and in response to this interrupt signal, performs an operation for duty-controlling the intake secondary air supply as described later. Let's do it.

次に、かかる本発明による吸気2次空気供給装置の動作
を第3図に示したCPU29の動作フロー図に従って説
明する。
Next, the operation of the intake secondary air supply device according to the present invention will be explained according to the operation flow diagram of the CPU 29 shown in FIG.

CPU29においては、先ず、割込信号発生毎に減速時
2次空気供給判別用のフラグF8Hdf”t″に等しい
か否かが判別される(ステップ51)。
In the CPU 29, first, each time an interrupt signal is generated, it is determined whether or not it is equal to the flag F8Hdf"t" for determining secondary air supply during deceleration (step 51).

F’5H=oの場合にはエンジン5の始動時に初期設定
され次こと、又は前回までの本ルーチン実行時にエンジ
ン5が減速状態にないと判別されたことを表わすので単
位時間当りの吸気マニホールド4内の絶対圧PIIAの
変化値ΔPBAが第1所定値PK(例えば、−100m
Hf )より小であるかが判別される(ステップ52)
。ΔPBA≧P、ならば、エンジン4は減速状態でない
とされ、他の空燃比フィードバック(F/B )制御条
件を充足しているか否かが判別される(ステップ53)
。この判別は吸気マニホールド4内の絶対圧PBA、冷
却水温Tw及びエンジン回転数N2等から決定され、例
えば、低冷却水温時及び低エンジン回転数時には空燃比
フィードバック制御条件が充足されていないとされる。
If F'5H=o, it is initialized when the engine 5 is started, and it indicates that the engine 5 was determined not to be in a deceleration state during the previous execution of this routine, so the intake manifold 4 per unit time The change value ΔPBA of the absolute pressure PIIA within the first predetermined value PK (for example, −100 m
It is determined whether Hf ) is smaller than (step 52)
. If ΔPBA≧P, it is determined that the engine 4 is not in a deceleration state, and it is determined whether other air-fuel ratio feedback (F/B) control conditions are satisfied (step 53).
. This determination is determined based on the absolute pressure PBA in the intake manifold 4, the coolant temperature Tw, the engine speed N2, etc., and for example, it is determined that the air-fuel ratio feedback control condition is not satisfied at low coolant temperature and low engine speed. .

ここで、空燃比フィードバック制御条件を充足したと判
別されたならば、lデ瓢−ティ周期に対する基準2次空
気供給期間、すなわち電磁開閉弁9の基準開弁期間DB
A8mが設定される(ステップ54)。例えば、ROM
30には吸気マニホールド内絶対圧PBAとエンジン回
転数N、とから定まる基準開弁期間DBABEがデータ
マツプとして予め書き込まれ、CPU29は絶対圧PB
Aとエンジン回転数N、とを読み込み、読み込んだ6値
に対応する基準開弁期間DBASE t’データマツプ
から検索する。基準開弁期間DBAsEが設定されると
、排気ガス中の酸素濃度の情報から酸素濃度センサ14
の出力レベルL。2が目標空燃比に対応する基準レベル
Lrgfエク太であるか否かが判別される(ステップ5
5)。すなわち、エンジン5への供給混合気の空燃比が
目標空燃比エリリーンであるか否かが判別されるのであ
る。L、2)L□fならば、空燃比が目標空燃比エフリ
ーンであるので補正値I。UTから所定値工AFが減算
されてその算出値が新たな補正値l0UTとされる(ス
テップ56〕。
Here, if it is determined that the air-fuel ratio feedback control conditions are satisfied, the reference secondary air supply period for the l duty period, that is, the reference valve opening period DB of the electromagnetic on-off valve 9
A8m is set (step 54). For example, ROM
30, a reference valve opening period DBABE determined from the absolute pressure PBA in the intake manifold and the engine speed N is written in advance as a data map, and the CPU 29 reads the absolute pressure PB.
A and the engine speed N are read, and a reference valve opening period corresponding to the six read values is searched from the DBASE t' data map. When the reference valve opening period DBAsE is set, the oxygen concentration sensor 14
output level L. 2 is the reference level Lrgf Ext.2 corresponding to the target air-fuel ratio (step 5).
5). That is, it is determined whether the air-fuel ratio of the air-fuel mixture supplied to the engine 5 is equal to the target air-fuel ratio. If L, 2)L□f, the air-fuel ratio is the target air-fuel ratio Efree, so the correction value is I. A predetermined value AF is subtracted from UT, and the calculated value is used as a new correction value l0UT (step 56).

一方、Lox≦Lrtf ならば、空燃比が目標空燃比
よりリッチであるので補正値l0UTに所定値工AFが
加算されてその算出値が断交な補正値I。UTとされる
(ステップ57)。こうして補正値工0υTがステップ
56又は&7において算出されると、その補正値IoU
Tとステップ54において設定された基準開弁期間DB
A8Eとが加算されてその加算結果が1デ工−テイ周期
における電磁開閉弁9の開弁期間TOUTとされる(ス
テップ58)。そして、この開弁期間TOUTがCPU
29の内部タイムカウンタA(図示せず)にセットされ
てタイムカウンタAのダウン計数が開始され(ステップ
59〕、駆動回路28に対して開弁駆動指令が発生され
る(ステップ60〕oこの開弁駆動指令に応じて駆動回
路28が電磁開閉弁9會開弁駆動する。次いで、タイム
カウンタAの計数値が“0″に達したか否かが判別され
(ステップ61)、タイムカウンタAの計数値が“0“
に達していないならば、ステップ61が繰り返し実行さ
れる。タイムカウンタAの計数値が“0″に達したなら
ば、駆動回路28に対して開弁駆動停止指令が発生され
る(ステップ62)。ステップ62の実行によりステッ
プ58において算出された開弁期間T。UTたけ電磁開
閉弁9が開弁されてエンジン5へ吸気2次空気が吸気2
次空気供給通路8を介して供給される。上記の動作が繰
り返される故に吸気2次空気がデエーティ制御され、エ
ンジン5へ供給される混合気の空燃比が目標空燃比に制
御されるのである。
On the other hand, if Lox≦Lrtf, the air-fuel ratio is richer than the target air-fuel ratio, so a predetermined value AF is added to the correction value l0UT, and the calculated value is a correction value I that is discontinuous. UT (step 57). When the correction value IoU is thus calculated in step 56 or &7, the correction value IoU
T and the reference valve opening period DB set in step 54
A8E is added, and the addition result is set as the opening period TOUT of the electromagnetic on-off valve 9 in one working cycle (step 58). Then, this valve opening period TOUT is
29 is set in the internal time counter A (not shown), the time counter A starts counting down (step 59), and a valve opening drive command is generated to the drive circuit 28 (step 60). In response to the valve drive command, the drive circuit 28 drives the electromagnetic on-off valve 9 to open.Next, it is determined whether or not the count value of the time counter A has reached "0" (step 61). Count value is “0”
If it has not been reached, step 61 is repeated. When the count value of the time counter A reaches "0", a valve opening drive stop command is issued to the drive circuit 28 (step 62). Valve open period T calculated in step 58 by executing step 62. The UT-take solenoid on-off valve 9 is opened and the intake secondary air flows into the engine 5.
The next air is supplied via the air supply passage 8. Because the above-mentioned operation is repeated, the intake secondary air is subjected to duty control, and the air-fuel ratio of the air-fuel mixture supplied to the engine 5 is controlled to the target air-fuel ratio.

−万、ステップ52においてΔPBA<Pl  ならば
、減速状態とされて減速2次空気供給期間TSHが設定
される(ステップ63)。R10M30には絶対圧PB
Aの変化値ΔPBAに対して第4図に示すように定めら
れ次減速2次空気供給期間TSHがデータマツプとして
予め書き込まれているので、CPO29は変化値ΔPB
Aに対応する減速2次空気供給期間TSHをデータマツ
プかも検索する。減速2次空気供給期間TSHが設定さ
れると、CPU29の内部タイムカウンタB(図示せず
)に減速2次空気供給期間T8Hがセットされてタイム
カウンタBのダウン計数が開始される(ステップ64)
- If ΔPBA<Pl in step 52, a deceleration state is established and a deceleration secondary air supply period TSH is set (step 63). Absolute pressure PB for R10M30
Since the secondary deceleration secondary air supply period TSH determined as shown in FIG. 4 for the change value ΔPBA of A is written in advance as a data map, CPO29 is the change value ΔPB
The data map is also searched for the deceleration secondary air supply period TSH corresponding to A. When the deceleration secondary air supply period TSH is set, the deceleration secondary air supply period T8H is set in the internal time counter B (not shown) of the CPU 29, and down counting of the time counter B is started (step 64).
.

そしてフラグF’SHに減速状態を表わす“1“がセッ
トされる(ステップ65)。次に、絶対圧PBAの変化
値ΔPBAが第2所定値P2(例えば、50■Ht)よ
り犬であるか否かが判別される(ステップ67)。この
判別はFSH=1とされた後にエンジン5が加速状態に
移行したか否かを検出するために行なわれる。ΔPBA
≦P2  ならば、タイムカウンタBの計数値が“O“
に達し比か否かが判別される(ステップ68)oタイム
カウンタBの計数値が“O“に達していないならば、駆
動回路28に対して開弁駆動指令が発生される(ステッ
プ66)。
Then, the flag F'SH is set to "1" indicating a deceleration state (step 65). Next, it is determined whether the dog is a dog or not based on the change value ΔPBA of the absolute pressure PBA being a second predetermined value P2 (for example, 50 Ht) (step 67). This determination is performed to detect whether the engine 5 has transitioned to an acceleration state after FSH=1. ΔPBA
If ≦P2, the count value of time counter B is “O”
It is determined whether the count value of the time counter B has reached "O" (step 68), and a valve opening drive command is issued to the drive circuit 28 (step 66). .

一方、タイムカウンタBの計数値が“O“に達し念なら
ば、駆動回路28に対して開弁駆動停止指令が発生され
(ステップ69)、そして7ラグF’SHに“0″′が
セ、ヅトされる(ステップ70)。ステップ67におい
て、ΔPBA>Pt  と判別されたならば、エンジン
5が減速状態から加速状態に移行したとしてタイムカウ
ンタBの計数値が“0″′にリセットされ(ステップ7
1)、その後、ステップ69が実行される。
On the other hand, if the count value of the time counter B reaches "O", a valve opening drive stop command is issued to the drive circuit 28 (step 69), and "0"' is set in the 7-lag F'SH. , and are removed (step 70). If it is determined in step 67 that ΔPBA>Pt, the count value of time counter B is reset to "0'', assuming that the engine 5 has transitioned from the deceleration state to the acceleration state (step 67).
1), then step 69 is executed.

一方、ステップ51においてF’5H=1と判別された
場合、すなわち電磁開閉弁Eが開弁動作中の場合には直
ちにステップ67が実行される。
On the other hand, if it is determined in step 51 that F'5H=1, that is, if the electromagnetic on-off valve E is in the opening operation, step 67 is immediately executed.

かかる本発明による吸気2次空気供給装置においては、
エンジン5が減速状態にあることが絶対圧PBAの変化
値ΔPBAから判別されると、変化値ΔPBAに応じ九
時間T、□たけ電磁開閉弁9が開弁されて吸気2次空気
が吸気2次空気供給通路4’i介してエンジン5に供給
される。すなわち、減速の大きさに応じに量の吸気2次
空気が供給される。
In the intake secondary air supply device according to the present invention,
When it is determined from the change value ΔPBA of the absolute pressure PBA that the engine 5 is in a deceleration state, the □take solenoid on-off valve 9 is opened for 9 hours T according to the change value ΔPBA, and the intake secondary air is transferred to the intake secondary air. The air is supplied to the engine 5 via the air supply passage 4'i. That is, the amount of intake secondary air is supplied depending on the magnitude of deceleration.

よって、第5図に示す工うに時点1Kにおいてエンジン
5が減速を開始した場合、従来の如く酸素濃度センサ1
4の出力レベルに応じて吸気2次空気を供給して減速時
の空燃比を補正すると破線Aで示す工うに減速開始直後
に空燃比が大きく変動して大きなハンチングが生ずる。
Therefore, when the engine 5 starts decelerating at time 1K shown in FIG.
If the air-fuel ratio during deceleration is corrected by supplying intake secondary air according to the output level of No. 4, the air-fuel ratio will fluctuate greatly immediately after the start of deceleration, resulting in large hunting, as shown by broken line A.

しかしなから、かかる本発明による吸気2次空気供給装
置によれば、減速時の空燃比の変動を予測して早めに2
次空気が供給されるので実線Bで示すように空燃比の犬
なる変動を防止することができる。なお、1点鎖線Cで
示した特性は吸気2次空気供給をしない場合の減速時の
変化特性である。
However, according to the intake secondary air supply device according to the present invention, fluctuations in the air-fuel ratio during deceleration can be predicted and the air-fuel ratio can be adjusted as early as possible.
Since the secondary air is supplied, it is possible to prevent the air-fuel ratio from fluctuating as shown by the solid line B. Note that the characteristic shown by the dashed line C is the change characteristic during deceleration when the intake secondary air is not supplied.

ま几エンジン5が減速状態から加速状態に移行すると、
直ちに電磁開閉弁9t−閉弁して吸気2次空気の供給を
停止するので空燃比のリーフ化が防止され加速時の運転
性を向上することができる。
When the engine 5 shifts from the deceleration state to the acceleration state,
Since the electromagnetic on-off valve 9t is immediately closed and the supply of intake secondary air is stopped, leafing of the air-fuel ratio is prevented and drivability during acceleration can be improved.

tfc、がかる本発明による吸気2次空気供給装置にお
いては、車両が第6図(α)に示す工うな車速走行パタ
ーンで走行する場合、車両の加速運転から定速運転に移
行した直後、及び減速運転開始直後に第6図<b>に符
号りで示すように電磁開閉弁9の開弁デエーティ比が1
00%となり、減速時2次空気がエンジン5に供給され
る。
In the intake secondary air supply device according to the present invention, when the vehicle runs at the slow speed traveling pattern shown in FIG. Immediately after the start of operation, the opening duty ratio of the electromagnetic on-off valve 9 is 1, as shown by the symbol in Fig. 6<b>.
00%, and secondary air is supplied to the engine 5 during deceleration.

なお、上記した本発明の実施例においては、エンジンの
減速に応じて値が変化するエンジン運転パラメータとし
て吸気マニホールド内の吸気圧が用いられているが、こ
れに限らず、例えば絞り弁開度、車速又はエンジン回転
数を用いることも可能である。
In the embodiments of the present invention described above, the intake pressure in the intake manifold is used as an engine operating parameter whose value changes according to the deceleration of the engine; however, the intake pressure in the intake manifold is not limited thereto. It is also possible to use vehicle speed or engine speed.

また上記した本発明の実施例においては、吸気2次空気
供給通路に流量調整弁として応答性向上のために電磁開
閉弁が設けられているが、これに限らず、例えば負圧等
に応じて作動する圧力応動型開閉弁、又は開度を自由に
制御可能な調整弁を設けることもできる。
Further, in the embodiment of the present invention described above, an electromagnetic on-off valve is provided in the intake secondary air supply passage as a flow rate adjustment valve in order to improve responsiveness, but the invention is not limited to this. It is also possible to provide a pressure-responsive on-off valve that operates or a regulating valve whose opening degree can be freely controlled.

発明の効果 以上の如く、本発明の内燃エンジンの吸気2次空気供給
装置においては、エンジンの減速状態が空燃比フィード
バック制御中における排気成分濃度から空燃比のオーバ
リッチとして検出されるのではなく減速に対する反応性
が良いエンジン運転パラメータから検出され減速によっ
て空燃比がオーバリッチになる前にそのエンジン運転パ
ラメータに応じ次量の吸気2次空気が供給される。よっ
て、エンジン減速開始直後のオーバリッチを回避するこ
とができ、排気ガス中の有害成分が減少すると共に制御
遅れによる空燃比の大きなハンチングが防止されるので
運転性の向上を図ることができるのである。まfc窒燃
比フィードパ・ンク制御と減速時の空燃比補正とが同一
の吸気2次空気供給通路及び流量調整弁によって可能で
あるので構成が簡単であると共に低コスト化を図ること
ができるのである。
Effects of the Invention As described above, in the intake secondary air supply device for an internal combustion engine of the present invention, the deceleration state of the engine is not detected as an overrich air-fuel ratio from the exhaust component concentration during air-fuel ratio feedback control, but is detected as a deceleration state. The intake secondary air is detected from engine operating parameters that have good responsiveness to the engine operating parameters, and the next amount of intake secondary air is supplied in accordance with the engine operating parameters before the air-fuel ratio becomes overrich due to deceleration. Therefore, it is possible to avoid overrich conditions immediately after the start of engine deceleration, reduce harmful components in the exhaust gas, and prevent large hunting in the air-fuel ratio due to control delays, thereby improving drivability. . Since fc nitrogen fuel ratio feed puncture control and air fuel ratio correction during deceleration are possible using the same intake secondary air supply passage and flow rate adjustment valve, the configuration is simple and costs can be reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略図、第2図は第1図
の装置中の制御回路の具体的構成を示すブロック図、第
3図はCPUの動作を示すフロー図、第4図は減速2次
空気供給期間TSHの設定特性を示す図、第5因及び第
6図は第1図の装置の動作状態を示す図である。 主要部分の符号の説明 2・・・エアクリーナ   3・・・気化器4・・・吸
気マニホールド 6・・・絞り弁7・・・ベンチュリ 8・・・吸気2次空気供給通路 9・・・電磁開閉弁    lO・・・絶対圧センサ1
1・・・クランク角センサ 12・・・冷却水温センサ 14・・・酸素濃度センサ
15・・・排気マニホールド 33・・・触媒コンバータ
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a specific configuration of a control circuit in the device shown in FIG. 1, FIG. 3 is a flow diagram showing the operation of the CPU, and FIG. This figure shows the setting characteristics of the deceleration secondary air supply period TSH, and the fifth factor and FIG. 6 are diagrams showing the operating state of the apparatus shown in FIG. 1. Explanation of symbols for main parts 2... Air cleaner 3... Carburetor 4... Intake manifold 6... Throttle valve 7... Venturi 8... Intake secondary air supply passage 9... Electromagnetic opening/closing Valve lO...Absolute pressure sensor 1
1... Crank angle sensor 12... Cooling water temperature sensor 14... Oxygen concentration sensor 15... Exhaust manifold 33... Catalytic converter

Claims (5)

【特許請求の範囲】[Claims] (1)内燃エンジンの排気成分濃度を検出する第1検出
手段と、気化器絞り弁下流の吸気通路に連通する吸気2
次空気供給通路と、該吸気2次空気供給通路に設けられ
た流量調整弁と、エンジンの減速に応じて値が変化する
エンジン運転パラメータを検出する第2検出手段と、前
記第1検出手段の検出レベルから空燃比を判別しその判
別結果に応じて前記流量調整弁を制御しかつ前記第2検
出手段の検出レベルからエンジンが減速状態にあること
を判別したときにのみ前記第1検出手段の検出レベルに
無関係に前記第2検出手段の検出レベルに応じて前記流
量調整弁を制御する制御手段とを含むことを特徴とする
吸気2次空気供給装置。
(1) A first detection means for detecting the concentration of exhaust components of an internal combustion engine, and an intake 2 that communicates with the intake passage downstream of the carburetor throttle valve.
a secondary air supply passage; a flow rate adjustment valve provided in the intake secondary air supply passage; a second detection means for detecting an engine operating parameter whose value changes in accordance with deceleration of the engine; The air-fuel ratio is determined from the detection level, and the flow rate adjustment valve is controlled according to the determination result, and only when it is determined from the detection level of the second detection means that the engine is in a deceleration state, the first detection means is activated. and control means for controlling the flow rate adjustment valve according to the detection level of the second detection means regardless of the detection level.
(2)前記エンジン運転パラメータは前記気化器絞り弁
下流の吸気絶対圧であり、前記制御手段は該吸気絶対圧
の単位時間当りの変化値が所定値以下にあることを検出
したときを減速状態と判別することを特徴とする特許請
求の範囲第1項記載の吸気2次空気供給装置。
(2) The engine operating parameter is the intake absolute pressure downstream of the carburetor throttle valve, and the control means sets the deceleration state when it detects that the change value per unit time of the intake absolute pressure is below a predetermined value. The intake secondary air supply device according to claim 1, characterized in that the intake secondary air supply device is characterized in that:
(3)前記流量調整弁は電磁開閉弁であることを特徴と
する特許請求の範囲第1項記載の吸気2次空気供給装置
(3) The intake secondary air supply device according to claim 1, wherein the flow rate adjustment valve is an electromagnetic on-off valve.
(4)前記制御手段は減速状態と判別したとき前記運転
パラメータの単位時間当りの変化値に応じた時間だけ前
記流量調整弁を開弁させて減速時2次空気をエンジンに
供給させることを特徴とする特許請求の範囲第1項記載
の吸気2次空気供給装置。
(4) When the control means determines that there is a deceleration state, the control means opens the flow rate regulating valve for a time corresponding to the change value per unit time of the operating parameter to supply secondary air to the engine during deceleration. An intake secondary air supply device according to claim 1.
(5)前記制御手段は前記減速時2次空気供給中におい
てエンジンの加速状態が検出されたときには前記流量調
整弁を直ちに閉弁させることを特徴とする特許請求の範
囲第1項記載の吸気2次空気供給装置。
(5) The intake air system according to claim 1, wherein the control means immediately closes the flow rate adjustment valve when an acceleration state of the engine is detected during the supply of secondary air during deceleration. Next air supply device.
JP4722285A 1985-03-09 1985-03-09 Intake secondary air supply device of internal-combustion engine Pending JPS61207869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4722285A JPS61207869A (en) 1985-03-09 1985-03-09 Intake secondary air supply device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4722285A JPS61207869A (en) 1985-03-09 1985-03-09 Intake secondary air supply device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61207869A true JPS61207869A (en) 1986-09-16

Family

ID=12769157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4722285A Pending JPS61207869A (en) 1985-03-09 1985-03-09 Intake secondary air supply device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61207869A (en)

Similar Documents

Publication Publication Date Title
US4373187A (en) Corrective feedback technique for controlling air-fuel ratio for an internal combustion engine
US5103794A (en) Control system for internal combustion engine
US4721082A (en) Method of controlling an air/fuel ratio of a vehicle mounted internal combustion engine
JPS5848728A (en) Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine
US4690121A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
US4763265A (en) Air intake side secondary air supply system for an internal combustion engine with an improved duty ratio control operation
JPS61207869A (en) Intake secondary air supply device of internal-combustion engine
US4715350A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
US4705012A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS58124040A (en) Air-fuel ratio control method for internal-combustion engine
US4715352A (en) Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation
JPS60187732A (en) Control device for fuel injection of engine
JPS61241454A (en) Intake secondary air feeder for internal-combustion engine
JP2776139B2 (en) Engine fuel control device
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JPS62150044A (en) Fuel control device of engine
JP2795431B2 (en) Control method for deceleration of internal combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS61207871A (en) Secondary air supply device for car-mounted internal-combustion engine under deceleration
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JPH0735740B2 (en) Air-fuel ratio controller for internal combustion engine
KR840001327B1 (en) Method of controlling fuel of internal combustion engine
JPS61250369A (en) Supply device for intake secondary air to internal combustion engine
JPS61187569A (en) Intake secondary air feeder of internal-combustion engine