JPS61207514A - Production of cast steel product having excellent ultrasonic flaw detectability - Google Patents

Production of cast steel product having excellent ultrasonic flaw detectability

Info

Publication number
JPS61207514A
JPS61207514A JP4641185A JP4641185A JPS61207514A JP S61207514 A JPS61207514 A JP S61207514A JP 4641185 A JP4641185 A JP 4641185A JP 4641185 A JP4641185 A JP 4641185A JP S61207514 A JPS61207514 A JP S61207514A
Authority
JP
Japan
Prior art keywords
cast
product
shape
ultrasonic flaw
cast steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4641185A
Other languages
Japanese (ja)
Inventor
Terushige Nakamura
中村 晴重
Tetsuro Watanabe
渡辺 哲朗
Masayuki Haniyu
羽生 誠之
Tsuneki Nagano
長野 恒己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4641185A priority Critical patent/JPS61207514A/en
Publication of JPS61207514A publication Critical patent/JPS61207514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the ultrasonic flaw detectability of a cast steel product and to make possible the inspection of the material for defect during use by casting the tubular end of said product to a projecting polygonal shape, elliptical shape, etc., and pressurizing the projecting part to deform plastically said part to a circular shape having a prescribed size then subjecting the product to a heat treatment for recrystallization. CONSTITUTION:A valve part 1 is cast of an austenitic stainless steel of a 2-phase type having a ferite phase. The end 6 to be welded to the other part is preliminarily cast to a square shape. Such part is grasped by a pair of dies 7 and 7 and is subjected repeatedly to pressurization with a press so that the part is bent and deformed over the entire circumference by the force 8 in the diametral direction to deform plastically the part to the circular section having the prescribed size. The par is thereafter subjected to heating to >=1,000 deg.C recrystallization temp. which serves also as a soln. heat treatment. The heated part is quickly cooled. The finer crystal grains of the structure are formed and the ultrasonic flaw detectability is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波探傷性に優れた鋳鋼品の製造法に関し
、特に溶接組立てされるオーステナイト系ステンレス鋳
鋼製ポンプ部品、パルプ部品、直管、曲管等配管部品等
の鋳鋼品であって、超音波探傷特性に優れたものの製造
方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing cast steel products with excellent ultrasonic flaw detection properties, and in particular to pump parts, pulp parts, and straight pipes made of austenitic stainless steel cast steel that are assembled by welding. , relates to a method for manufacturing cast steel products such as piping parts such as curved pipes, which have excellent ultrasonic flaw detection characteristics.

(従来の技術) オーステナイト系ステンレス鋼鋳鋼品は一般に数チ以上
のフェライト相を含有させて鋳造欠陥の低減が図られる
。フェライト相が混在するためフェライト相を含まない
同系のステンレス鋼の冷延材や鍛圧材に比べると溶接性
、耐粒界腐食性、耐応力腐食割れ性に優れ、また鋳物と
しての容易に任意の形状のものが製作できる特長を有す
るため、オーステナイト系ステンレス鋼鋳鋼品は原子力
発電プラントや石油化学プラント等の厳しい条件下で使
用される配管系、ポンプ、パルプ部品の主要部材に多用
されている。
(Prior Art) Austenitic stainless steel cast products are generally made to contain a ferrite phase of several atoms or more to reduce casting defects. Because it contains a ferrite phase, it has superior weldability, intergranular corrosion resistance, and stress corrosion cracking resistance compared to cold-rolled and pressed stainless steels of the same type that do not contain a ferrite phase. Austenitic stainless steel castings are often used as main components for piping systems, pumps, and pulp parts that are used under harsh conditions in nuclear power plants, petrochemical plants, etc. because of their ability to be manufactured into shaped products.

しかし、オーステナイト系ステンレス鋼鋳鋼品は鋳造時
に結晶粒が粗大化してしまい、超音波探傷性(以下、U
T性という)に劣る。すなわち、超音波が結晶粒界で散
乱・減衰して超音波探傷試験では欠陥検出が極めて困難
である。
However, the crystal grains of austenitic stainless steel castings become coarse during casting, and the ultrasonic flaw detection (hereinafter referred to as U)
(referred to as T-character). That is, ultrasonic waves are scattered and attenuated at grain boundaries, making it extremely difficult to detect defects in ultrasonic flaw detection tests.

UT性向上対策の一つとして鋳鋼品に塑性変形を加えて
、その後に加熱することにより再結晶させて細粒化する
方法がある。塑性変形の加え方として、例えば端部に円
形状断面の直管部を有する鋳鋼品の直管部を対象とする
場合、予め所定寸法に対して10俤以上の大径に鋳造し
ておいて絞り加工で縮径する方法がある(特公昭58−
441.27号公報参照)。
One of the measures to improve UT properties is to apply plastic deformation to a cast steel product, and then heat it to recrystallize it and refine the grain. For example, when plastic deformation is applied to a straight pipe part of a cast steel product that has a straight pipe part with a circular cross section at the end, it is cast in advance to a diameter larger than 10 mm compared to the specified dimensions. There is a method of reducing the diameter by drawing (Tokuko Sho 58-
(See Publication No. 441.27).

すなわち、第8図(A)のように鋳鋼品10大径部2を
一対のダイス4で加圧して大径部2とテーバ状の隣接部
3とを扁平に圧縮して第8図(A)(a)(正断面図)
、(b)(側断面図)のように楕円状断面に変形する。
That is, as shown in FIG. 8(A), the large diameter portion 2 of the cast steel product 10 is pressurized with a pair of dies 4 to compress the large diameter portion 2 and the tapered adjacent portion 3 into a flat shape. )(a) (Front sectional view)
, deforms into an elliptical cross section as shown in (b) (side sectional view).

その稜、第8図(C)のように所定の鋳鋼品口径と一致
する半円弧状の加圧成形面を有する一対の半割ダイス5
を介して楕円の長径方向から加圧し、第8図(D)のよ
うにダイス5が相合するまで圧縮して所定寸法の縮径さ
れた鋳鋼品を得る。この場合には、第8図(E)のよう
゛にダイス5と大径部2との接点の摩擦によってα部の
みが加工されて座屈したシ外側に出てしまったりする虞
れがある。また、テーパ状の隣接部3〔第り図(A)〕
が加圧の影響で凹んだりし易い。このように技術的に困
難な面がある他、ダイス5の汎用性にとほしく経済的で
なく、単に塑性変形を付与することを目的とする場合に
は得策でない。
A pair of half-split dies 5 each having a semicircular arc-shaped pressure forming surface that matches the diameter of a predetermined cast steel product as shown in FIG. 8(C).
Pressure is applied from the long axis direction of the ellipse through the ellipse until the dies 5 meet as shown in FIG. 8(D), thereby obtaining a cast steel product having a reduced diameter of a predetermined size. In this case, as shown in Fig. 8(E), there is a risk that only the α part will be processed due to the friction of the contact point between the die 5 and the large diameter part 2, and the buckled part will come out to the outside. . In addition, the tapered adjacent portion 3 [Figure (A)]
is easily dented due to pressure. In addition to this technical difficulty, the die 5 is uneconomical due to its versatility, and is not a good idea when the purpose is simply to impart plastic deformation.

他の塑性変形の加え方として、予め所定寸法に対して1
0係以上の小径に鋳造しておいてプラグを押し込んで拡
管加工する方法が提案されている(前記特公昭5B−4
4127号公報参照)が、厚肉鋳造品では大規模な装置
が必要となる。
Another method of adding plastic deformation is to apply 1
A method has been proposed in which the tube is cast to a small diameter of 0 or more and the tube is expanded by pushing in a plug (see the above-mentioned Japanese Patent Publication No. 5B-4).
4127), however, large-scale equipment is required for thick-walled cast products.

(発明が解決しようとする問題点) 本発明は、ステンレス鋼鋳鋼品、特にフェライトを含有
するオーステナイト系ステンレス鋼鋳鋼品の溶接開先部
とその周辺のUT性を向上して、実プラントでの使用中
検査(以下、工SIという)を容易にし、欠陥の有無及
び欠陥寸法の把握を可能とするための塑性変形、再結晶
化熱処理方法を提案せんとするもので、またこの場合の
塑性変形量が10%以下のような小加工を付与するため
の効率のよい変形方法を提案せんとするものである。
(Problems to be Solved by the Invention) The present invention improves the UT properties of the weld groove and the surrounding area of stainless steel casting products, particularly austenitic stainless steel casting products containing ferrite, and improves the UT properties in actual plants. This paper aims to propose a plastic deformation and recrystallization heat treatment method to facilitate in-use inspection (hereinafter referred to as SI) and to make it possible to grasp the presence or absence of defects and the defect size. The purpose of this paper is to propose an efficient deformation method for applying small-scale processing of 10% or less.

(問題点を解決するだめの手段) 本発明は、鋳鋼品の管状端部を目的製品の管周とほぼ同
一寸法で目的製品の断面形状と異なる凸多角形若しくは
楕円形に鋳造後、凸部を加圧し所定の断面形状に塑性変
形させて、再結晶温度以上に加熱することを特徴とする
超音波探傷特性に優れた鋳鋼品の製造方法に関する1、
すなわち本発明の特徴は次の通りである。
(Another Means to Solve the Problems) The present invention involves casting the tubular end portion of a cast steel product into a convex polygon or ellipse shape having approximately the same dimensions as the pipe circumference of the target product and different from the cross-sectional shape of the target product, and then 1. Concerning a method for manufacturing cast steel products with excellent ultrasonic flaw detection characteristics, which involves pressurizing and plastically deforming steel into a predetermined cross-sectional shape and heating it above the recrystallization temperature;
That is, the features of the present invention are as follows.

(1)所定形状として端部に溶接開先部となる直管部を
有するステンレス鋼鋳鋼品を対象とし、核部への塑性変
形として曲げ変形を付与する。
(1) A stainless steel cast product having a straight pipe part that becomes a welding groove at the end as a predetermined shape is targeted, and bending deformation is applied as plastic deformation to the core part.

(2)  そのため核部を予め管状と異なる形状、例え
ば断面形状が楕円、四角などに鋳造しておく周長は所定
の前部寸法と略同−とする。
(2) Therefore, the core portion is cast in advance in a shape different from the tubular shape, for example, in a cross-sectional shape of an ellipse or a square, and the circumferential length is set to be approximately the same as the predetermined front dimension.

(3) 曲げ変形は単純な形状の一対のダイスを用いて
核部の軸と直角方向に圧縮することにより付与する。
(3) Bending deformation is applied by compressing the core in a direction perpendicular to its axis using a pair of simple-shaped dies.

(4)  絞り加工に必要な所定直管寸法に児全に合致
するダイスに比べて、単純形状のダイスやマンドレルを
用いる方が寸法の異なる鋳鋼品に対しての汎用性があシ
経済的である他、曲げ変形のため厚肉部分でも小さな装
置で対処できる。
(4) Compared to a die that perfectly matches the specified straight pipe dimensions required for drawing, it is more versatile and economical to use a die or mandrel with a simple shape for cast steel products with different dimensions. In addition, due to bending deformation, even thick parts can be handled with small equipment.

本発明におけるオーステナイト系ステンレス80819
などの代表例がある。J工S BOSllなどの   
□鋼鋳銅品にはJ工880813 、 80814 、
 80816 。
Austenitic stainless steel 80819 in the present invention
There are representative examples such as J Engineering S BOSll etc.
□For cast steel and copper products, J Engineering 880813, 80814,
80816.

フェライト−オーステナイト2相ステンレス銅“τ:二
二二:!二:’、a maii uA’*。7゜スを用
いる方法に適用できる。塑性変形の好ましい態様として
は、変形中に鋳鋼品の冷却及び昇温防止のため冷媒を噴
きつけたり、もしくは冷媒に浸漬した状態で塑性変形を
付与したり、あるいは冷媒中で予め充分冷却した後、冷
媒から取シ出し直ちに変形する仁とがあげられる。
It can be applied to a method using ferrite-austenite two-phase stainless steel "τ:222:!2:',a maii uA'*.7°.A preferred mode of plastic deformation is cooling of the cast steel product during deformation. In order to prevent temperature rise, a refrigerant is sprayed on the refrigerant, or the refrigerant is immersed in the refrigerant and plastically deformed, or the refrigerant is sufficiently cooled in advance and then deformed immediately after being removed from the refrigerant.

このような塑性変形とすることによシ、フェライト相の
硬さ上昇を著しくすることができ、該部の変形を抑制し
て、オーステナイト相に変形を集中させ、10%以下の
変形量でオーステナイト相に所望の変形を付与すること
ができる。
By performing such plastic deformation, it is possible to significantly increase the hardness of the ferrite phase, suppress the deformation of this part, concentrate the deformation in the austenite phase, and transform the austenite phase into austenite with a deformation amount of 10% or less. Desired deformations can be imparted to the phase.

上記の変形後の再結晶化温度以上の加熱については、約
900℃の加熱で充分であるが、この加熱に溶体化処理
を兼ねさせる場合には、オーステナイト粒界への炭化物
析出を避は得る1000℃以上壕で加熱し、急冷する。
Regarding heating above the recrystallization temperature after deformation, heating to approximately 900°C is sufficient, but if this heating also serves as solution treatment, it is necessary to avoid carbide precipitation at austenite grain boundaries. Heating in a trench above 1000℃ and cooling rapidly.

(実施例) 具体例1 第1図にオーステナイト系ステンレス鋼鋳鋼品の一例と
してのパルプ部品1の所定形状を示す。端部6は、第1
図(B)のように円形状断面の直管状であり、機械加工
される端面を他部材と溶接される。第2図は端部6を予
め曲げによる塑性変形に適する形状〔この場合は第2図
(B)のように4角〕に鋳造したパルプ部品1の形状を
示す図である。第3図は塑性変形に使用する一対のダイ
ス7である。
(Example) Specific Example 1 FIG. 1 shows a predetermined shape of a pulp part 1 as an example of an austenitic stainless steel cast product. The end 6 is the first
As shown in Figure (B), it has a straight tube shape with a circular cross section, and the end face to be machined is welded to other members. FIG. 2 is a diagram showing the shape of a pulp component 1 whose end portion 6 is cast in advance into a shape suitable for plastic deformation by bending (in this case, a square shape as shown in FIG. 2(B)). FIG. 3 shows a pair of dies 7 used for plastic deformation.

塑性変形は第4図のように、一対のダイス7の間に@部
品の予め所定形状と異なる形状に鋳造した部分6を挟ん
でダイス7を介してプレスで加圧して実施する。
As shown in FIG. 4, the plastic deformation is carried out by sandwiching the part 6 of the part previously cast in a shape different from a predetermined shape between a pair of dies 7 and pressurizing it with a press through the dies 7.

#J@品端部6の曲部分とダイス7とが接して加圧力が
鋳鋼品端部6に伝達される。このとき、端部6の外周面
に合成樹脂系dV」滑剤等を塗布して接触部の摩擦を減
じて1けば、加圧により凸部のダイス7との接触部は直
径方向の力8が付加されるため、全周に渡って曲げ変形
が生じ、目的の円形状断面が得られる。ダイス7の形状
により軸方向に連続して加圧したり、鋳鋼品1を回転さ
せて被加工位置を変える等によシ所定形状にできる。
#J@The curved portion of the product end 6 and the die 7 come into contact and the pressing force is transmitted to the cast steel product end 6. At this time, if a synthetic resin-based dV lubricant or the like is applied to the outer peripheral surface of the end portion 6 to reduce the friction at the contact portion, the contact portion of the convex portion with the die 7 due to pressurization will have a diametrical force of 8 is added, bending deformation occurs over the entire circumference, and the desired circular cross section is obtained. Depending on the shape of the die 7, it can be formed into a predetermined shape by applying continuous pressure in the axial direction or by rotating the cast steel product 1 to change the position to be machined.

第5図は塑性変形後再結晶化熱処理を施したパルプ部品
(オーステナイト系ステンレス鋼鋳鋼JI8 B0f3
13A )端部のUT性を示す。鋳造品の端部形状は厚
さ80鰭、コーナ部の内径25〇−、コーナ間の対角線
距1111550 amの4角型断面で、ダイスで挟ん
で塑性変形し、内径50011厚さ80閣の円形断面と
した。その後、1080℃X3H加熱して水冷した。U
T性は縦波垂直探触法により2.25 MHzの超音波
を外周よシ入射してその減衰を調べ、超音波の単位長さ
の進行に伴なう減衰量すなわち超音波減衰定数で7エ<
シた。第5図には比較のため塑性変形前の鋳造品の超音
波減衰定数を併記した。
Figure 5 shows a pulp part (austenitic stainless steel cast steel JI8 B0f3) subjected to recrystallization heat treatment after plastic deformation.
13A) Shows the UT property of the end. The end shape of the cast product is a square cross section with a thickness of 80 fins, an inner diameter of the corners of 250 mm, and a diagonal distance between the corners of 1111550 am, and is plastically deformed by being sandwiched between dies to form a circular shape with an inner diameter of 50011 mm and a thickness of 80 mm. It was taken as a cross section. Thereafter, it was heated at 1080° C. for 3 hours and cooled with water. U
The T property was determined by injecting a 2.25 MHz ultrasonic wave from the outer periphery using the longitudinal wave vertical probe method and examining its attenuation. <
Shita. For comparison, Fig. 5 also shows the ultrasonic attenuation constant of the cast product before plastic deformation.

曲げ変形による歪み甘は周長一定の場合、次のように表
わされる。
When the circumference is constant, the distortion due to bending deformation is expressed as follows.

ここに e:外周の歪み t:厚さ ro:変形前の板厚中央の曲率半径 r:変形稜の板厚中央の曲率半径 このときの外周の歪量は、コーナ部付近で約8%、コー
ナ間で約6%であった。
Here, e: Distortion on the outer periphery t: Thickness ro: Radius of curvature at the center of the plate thickness before deformation r: Radius of curvature at the center of the plate thickness at the deformed edge The amount of distortion on the outer periphery at this time is approximately 8% near the corner. It was about 6% between corners.

とのように部分的な曲げ変形付与後、再結晶化させるこ
とによシ、鋳造のままの状態に比べて、超音波の減衰が
大幅に低減し、UT性の向上が図れる。
By recrystallizing after applying partial bending deformation, the attenuation of ultrasonic waves is significantly reduced compared to the as-cast state, and the UT properties can be improved.

具体例2 第6図は鋳鋼品端部6の形状を楕円状断面としておき、
所定形状としての円形状断面に加圧変形する場合を示す
。平板状のダイス9を介して加圧することfCより容易
に円形状断面に塑1ノ1:変形することができる。
Concrete Example 2 In Fig. 6, the shape of the cast steel product end 6 is an elliptical cross section,
A case where the cross section is pressurized to a circular cross section as a predetermined shape is shown. By applying pressure through the flat die 9, it can be more easily deformed into a circular cross section.

具体例3 第7図(A)(正面図’) 、(B) (仙j断面図)
はQl」部品端部6の形状をひし形状断面としておき、
相対する凸部の2ケ所から加圧する場合を示す。
Specific example 3 Figure 7 (A) (Front view), (B) (Sacral sectional view)
is Ql'' The shape of the part end 6 is a diamond-shaped cross section,
A case is shown in which pressure is applied from two locations on opposing convex portions.

この場合は、ダイス9と接しない他の凸部が外側に出や
すく、凸部の間の部分の曲げ変形が生じにくい。これを
防止するには第7図のように丸棒、マンドレル等10を
内装すればよい。マンドレル10にはスライド式、エク
スパンド式など外径を変化できるものが端部6の変形に
追従させられるので好適である。
In this case, other convex portions that do not contact the die 9 tend to come out to the outside, and bending deformation of the portion between the convex portions is less likely to occur. To prevent this, a round bar, mandrel, etc. 10 may be installed inside as shown in FIG. The mandrel 10 is preferably of a sliding type, an expanding type, or the like, which can change its outer diameter, since it can follow the deformation of the end portion 6.

上記具体例1〜3の塑性変形は熱間加工、冷間加工のい
ずれも可能であり、さらには前述のように油、水、液体
窒素のような冷却媒体を噴きつけたりする低温における
加工も可能である。
The plastic deformation in Examples 1 to 3 above can be performed by either hot working or cold working, and furthermore, as mentioned above, processing at low temperatures by spraying a cooling medium such as oil, water, or liquid nitrogen is also possible. It is.

塑性変形後は、前述のような再結晶温度以上の加熱処理
を行う。
After plastic deformation, heat treatment is performed at a temperature higher than the recrystallization temperature as described above.

(発明の効果) 本発明方法においては、曲げ変形を端部に付加すること
により、10チまでの変形量が容易に加えられ、またU
T性の向上を図ることができ、■S工が容易になる等の
効果が得られる。
(Effects of the Invention) In the method of the present invention, by adding bending deformation to the end, a deformation amount of up to 10 inches can be easily applied, and
The T property can be improved, and effects such as (1) S machining becomes easier can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が対象とする目的鋳鋼品の一例を示す図
、第2図は第1図の目的鋳鋼品を得るだめの鋳造品の一
例を示す図、第3図は本発明に使用するダイスの一例を
示す図、第4図は本発明の実施態様例を示す図、第5図
は第2〜4図の態様で実施した場合の結果を示す図表、
第6.7図は本発明の他の実施態様例を示す図、第8図
は従来技術を説明するための図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図 (ハ)′  □ 第3図 第2図 (A) 箆4図′
Figure 1 is a diagram showing an example of a cast steel product targeted by the present invention, Figure 2 is a diagram showing an example of a cast product used to obtain the target steel product shown in Figure 1, and Figure 3 is a diagram showing an example of a cast product used in the present invention. FIG. 4 is a diagram showing an example of the embodiment of the present invention, FIG. 5 is a chart showing the results when implemented in the embodiment of FIGS. 2 to 4,
FIG. 6.7 is a diagram showing another embodiment of the present invention, and FIG. 8 is a diagram for explaining the prior art. Sub-agent 1) Clearance agent Ryo Hagiwara - Figure 1 (c)' □ Figure 3 Figure 2 (A) Figure 4'

Claims (1)

【特許請求の範囲】[Claims] 鋳鋼品の管状端部を目的製品の管周とほぼ同一寸法で目
的製品の断面形状と異なる凸多角形若しくは楕円形に鋳
造後、凸部を加圧し所定の断面形状に塑性変形させて、
再結晶温度以上に加熱することを特徴とする超音波探傷
特性に優れた鋳鋼品の製造方法。
After casting the tubular end of the cast steel product into a convex polygon or ellipse with dimensions that are approximately the same as the circumference of the target product and different from the cross-sectional shape of the target product, the convex portion is pressurized to plastically deform it into a predetermined cross-sectional shape.
A method for manufacturing cast steel products with excellent ultrasonic flaw detection characteristics, which involves heating to a temperature higher than the recrystallization temperature.
JP4641185A 1985-03-11 1985-03-11 Production of cast steel product having excellent ultrasonic flaw detectability Pending JPS61207514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4641185A JPS61207514A (en) 1985-03-11 1985-03-11 Production of cast steel product having excellent ultrasonic flaw detectability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4641185A JPS61207514A (en) 1985-03-11 1985-03-11 Production of cast steel product having excellent ultrasonic flaw detectability

Publications (1)

Publication Number Publication Date
JPS61207514A true JPS61207514A (en) 1986-09-13

Family

ID=12746408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4641185A Pending JPS61207514A (en) 1985-03-11 1985-03-11 Production of cast steel product having excellent ultrasonic flaw detectability

Country Status (1)

Country Link
JP (1) JPS61207514A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105521A (en) * 1976-03-01 1977-09-05 Kubota Ltd Production of stainless steel product having excellent grain boundary attack resistance and capable of ultrasonic detection of defects
JPS52105522A (en) * 1976-03-01 1977-09-05 Kubota Ltd Production of stainless steel product having excellent grain boundary attack resistance and capable of ultrasonic detection of defects
JPS5389819A (en) * 1977-01-18 1978-08-08 Kubota Ltd Manufacture of austenitic stainless steel product containing ferritic phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105521A (en) * 1976-03-01 1977-09-05 Kubota Ltd Production of stainless steel product having excellent grain boundary attack resistance and capable of ultrasonic detection of defects
JPS52105522A (en) * 1976-03-01 1977-09-05 Kubota Ltd Production of stainless steel product having excellent grain boundary attack resistance and capable of ultrasonic detection of defects
JPS5389819A (en) * 1977-01-18 1978-08-08 Kubota Ltd Manufacture of austenitic stainless steel product containing ferritic phase

Similar Documents

Publication Publication Date Title
JPH0534558B2 (en)
Shinkin The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Massage 2. Forces and moments
US4608851A (en) Warm-working of austenitic stainless steel
US3958732A (en) Method for breaking steel rod into billets
US4134287A (en) Method for mechanical removal of tensile stresses in a tube which has been expanded in a support
JPS61207514A (en) Production of cast steel product having excellent ultrasonic flaw detectability
CN111037219A (en) Manufacturing method of 630 ℃ ultra supercritical unit G115 large-caliber thick-wall seamless hot-pressing tee joint and tee joint
JP2008307594A (en) Uoe steel tube for line pipe excellent in deformability
JP2003342639A (en) Process for manufacturing uoe steel pipe showing excellent crushing strength
Nagasekhar et al. Equal channel angular extrusion of tubular aluminum alloy specimens—analysis of extrusion pressures and mechanical properties
JPS61207513A (en) Production of cast product having excellent ultrasonic flaw detectability
US6250125B1 (en) Method for producing iron-base dispersion-strengthened alloy tube
Aslani et al. Spiral welded tubes-imperfections, residual stresses, and buckling characteristics
JP2003340518A (en) Manufacturing method of uoe steel pipe having good crush strength
US4772336A (en) Method of improving residual stress in circumferential weld zone
JPH10277692A (en) Production of large diameter ring of austenitic and ferritic stainless steel
JP2768849B2 (en) Grain refining method for non-magnetic steel cylindrical forgings
JPS5845319A (en) Treatment of inside surface of steel pipe
Tamura et al. Effect of punch shape on multiprocess tube flaring for eccentric parts
JPS6312688B2 (en)
EP1375019B1 (en) Thick-walled small diameter pipe producing method
RU2635035C1 (en) Method for production of pipes
JPH06328125A (en) Manufacture of two phase stainless steel seamless tube
JPS61279328A (en) Method and device for upset working of pipe
SU1708565A1 (en) Method of thermal and mechanical treatment of welded joints