JPS61207488A - Method of evaluating quality of raw coal for production of coke for pig iron production - Google Patents

Method of evaluating quality of raw coal for production of coke for pig iron production

Info

Publication number
JPS61207488A
JPS61207488A JP4970085A JP4970085A JPS61207488A JP S61207488 A JPS61207488 A JP S61207488A JP 4970085 A JP4970085 A JP 4970085A JP 4970085 A JP4970085 A JP 4970085A JP S61207488 A JPS61207488 A JP S61207488A
Authority
JP
Japan
Prior art keywords
coke
carbonization
strength
index
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4970085A
Other languages
Japanese (ja)
Other versions
JPS6340833B2 (en
Inventor
Mitsumasa Seizan
聖山 光政
Katsuhiko Oguri
克彦 小栗
Akira Kitahara
北原 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP4970085A priority Critical patent/JPS61207488A/en
Publication of JPS61207488A publication Critical patent/JPS61207488A/en
Publication of JPS6340833B2 publication Critical patent/JPS6340833B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To accurately evaluate the quality of raw coal, by determining the yield of each of coke, coal gas and coal tar obtained in the carbonization of a raw coal and conducting calculation using the obtained data. CONSTITUTION:Determinations are made on the yield of each of coke, coal gas and coal tar obtained in the carbonization of raw coal, the fuel consumption required in the carbonization, the strength at ordinary temperature or strength after reaction with CO2 and the ash content and total sulfur content contained in the formed coke. The quality of the raw coal is evaluated by conducting calculation based on the obtained data using the formula. In the formula, IA is the sum of (yield of each carbonization product x index of availability), IB is the index of total energy required in the carbonization, IC is the index of impurities based on the ash content and total sulfur content and ID is the index of strength determined from the strength at ordinary temperature or the strength after reaction with CO2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製銑用コークス製造用原料炭の品質評価法に関
し、特に原料炭の乾留によって得られるコークスの収量
や品質だけで原料炭の品質を評価するのではナク、石炭
ガス及びコールタール等の副原料の収量や乾留に要する
総所要熱量、コークスの強度及びコークス中の灰分や全
硫黄分等を総合的に考慮して、原料炭の品質をより正確
に評価する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for evaluating the quality of coking coal for producing coke for ironmaking, and in particular, the quality of coking coal can be evaluated based solely on the yield and quality of coke obtained by carbonization of coking coal. To evaluate coking coal, we comprehensively consider the yield of auxiliary raw materials such as coking coal, coal gas, and coal tar, the total amount of heat required for carbonization, the strength of coke, and the ash and total sulfur content in coke. It concerns a method for more accurately evaluating quality.

〔従来の技術〕[Conventional technology]

高炉製銑法の実施に当たっては、塊状の鉄鉱石、焼結鉱
、ペレット鉱等の鉄源と共に、還元剤及び還元助剤とし
て大鰍のコークス及び消石灰が使用される。中でもコー
クスの使用量は銑鉄1トン当たり0.4〜0.5トンと
極めて多い為、その品質及び価格は銑鉄生産コストに重
大な影響を及ぼす。
In carrying out the blast furnace pig-making process, coke and slaked lime are used as reducing agents and reduction aids, along with iron sources such as lump iron ore, sintered ore, and pelleted ore. Among them, the amount of coke used is extremely large at 0.4 to 0.5 tons per ton of pig iron, and its quality and price have a significant impact on the production cost of pig iron.

ところで従来から実施されている製銑用コークスの評価
に当たっては、高炉内における反応性に影響する要因と
して、常温強度(JIS  K 2151に定めるドラ
ム強度)、及び高炉内における高温還元雰囲気下での劣
化を考慮した反応後強度(例えば、約20朋に整粒した
コークスを1100℃で一定時間CO2と反応させ、そ
の後の回転強度から求める方法等)の他、コークス中の
灰分や全硫黄分等を考慮して良否を判断している。そし
てこの様なコークスの生成源となる原料炭の品質を評価
する場合には、どの様な品質のコークスをどの様な収率
で得ることかできるかという観点から、乾留によるコー
クスの歩留り、及び原料炭から成品コークス中へ混入し
てくる灰分や全硫黄分を基準にして原料炭としての品質
を評価していた。
By the way, in the conventional evaluation of ironmaking coke, the factors that affect the reactivity in the blast furnace are the room temperature strength (drum strength specified in JIS K 2151) and the deterioration in the high temperature reducing atmosphere in the blast furnace. In addition to the post-reaction strength (for example, a method of reacting coke size-sized to about 20 mm with CO2 at 1100°C for a certain period of time and calculating it from the rotational strength after that), the ash content, total sulfur content, etc. We take this into consideration when deciding whether or not it is good or bad. When evaluating the quality of the coking coal that is the source of such coke, the yield of coke by carbonization and the The quality of coking coal was evaluated based on the ash content and total sulfur content mixed into finished coke from coking coal.

〔発明が解決しようとする問題点〕 ところか原料炭を乾留してコークスを得るには乾留用の
熱を大量に必要とし、この熱量は原料炭の品質によって
相当変わってくる。しかも乾留工程で副生ずる石炭ガス
やコールタール等はそれなりに経済的価値を有しており
副製品として有効利用することができるので、これら副
生物の収率も原料炭の経済的価値に少なからず影響を与
える。
[Problems to be Solved by the Invention] However, in order to obtain coke by carbonizing coking coal, a large amount of heat for carbonization is required, and the amount of heat varies considerably depending on the quality of the coking coal. Furthermore, coal gas, coal tar, etc., which are by-produced in the carbonization process, have a certain economic value and can be effectively used as by-products, so the yield of these by-products is also a significant factor in the economic value of coking coal. influence

即ち製銑用コークス製造用原料炭の品質を評価するに当
たって、単6と乾留生成物たるコークスの収率や品質、
強度等のみで判断するのは必ずしも妥当な方法とは言え
ず、乾留に要する熱量や副生物の回収率等を含めて総合
的に評価する必要かある。
In other words, when evaluating the quality of coking coal for producing coke for ironmaking, the yield and quality of coke, which is a carbonization product of AA, and
Judging only by strength etc. is not necessarily an appropriate method, and it is necessary to comprehensively evaluate it, including the amount of heat required for carbonization, the recovery rate of by-products, etc.

本発明はこうした知見を基になされたものであって、そ
の目的は、コークス製造用原料炭の品質を、主目的物で
あるコークスの品質や歩留りだけでなく乾留に要する熱
量、副生物の収率や経済的価値等を含めて総合的且つ正
確に評価することのできる方法を提供しようとするもの
である。
The present invention was based on these findings, and its purpose is to evaluate the quality of coking coal for coke production, not only the quality and yield of coke, which is the main object, but also the amount of heat required for carbonization, and the collection of by-products. The aim is to provide a method that can comprehensively and accurately evaluate the cost, economic value, etc.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係るコークス製造用原料炭の品質評価法とは、 A:原料炭の乾留により得られるコークス、石炭ガス及
びコールタールの各駅員。
The quality evaluation method of coking coal for coke production according to the present invention is as follows: A: Coke, coal gas, and coal tar obtained by carbonization of coking coal.

B:乾留に要する燃料消’1ml。B: 1ml of fuel required for carbonization.

C:生成コークスの常温強度又はω2反応後強度、及び D=生成コークス中の灰分及び全硫黄分を求め、これら
の値を基に、下記CI)式によって原料炭の品質を評価
するところに要旨を有するものである。
C: The room temperature strength or the strength after ω2 reaction of the coke produced, and D = the ash content and total sulfur content in the coke produced, and based on these values, the quality of coking coal is evaluated by the following CI) formula. It has the following.

総評価指数=、IA−IB−1c4−ID 、−−−−
−−・・CI)但しIA: (各乾留生成物の歩留り)
X(有用度指数)の総和 IB:乾留に要する総所要エネルギー指数 IC:生成コークス中の灰分及び全硫黄分に基づく不純
物指数 ■D=生成コークスの常温強度又は■2反応後強度から
定められる強度指 数 〔作用〕 本発明では、上記の様に(各乾留生成物の歩留り)×(
各乾留生成物の有用度指数)の総和(IA)、乾留に要
する総所要エネルギー指数(IB)、生成コークス中の
灰分及び全硫黄分に基づく不純物指数(1(1)、及び
生成コークスの常温強度又はCO2反応後強度から定め
られる強度指数(ID)のすべてを原料炭の評価要素と
して組入れ、上記IA及びIDをプラス要素、1B及び
Icをマイナス要素としてこれらを単純加算することに
より、前記CI)式で示す様に原料炭の総評価指数を求
め、この指数を基に原料炭の品質の優劣を評価するもの
である。
Total evaluation index =, IA-IB-1c4-ID, -----
--...CI) However, IA: (Yield of each carbonization product)
Sum of X (utility index) IB: Total energy required for carbonization IC: Impurity index based on ash content and total sulfur content in the coke produced ■D = Strength determined from the room temperature strength of the coke produced or ■2 strength after reaction Index [effect] In the present invention, as described above, (yield of each carbonization product) x (
The total energy index (IB) required for carbonization, the impurity index (1 (1)) based on the ash content and total sulfur content of the coke produced, and the room temperature of the coke produced. By incorporating all the strength indices (ID) determined from the strength or the strength after CO2 reaction as evaluation elements of coking coal, and simply adding them with the above IA and ID as positive elements and 1B and Ic as negative elements, the CI ) The total evaluation index of coking coal is determined as shown in the formula, and the quality of coking coal is evaluated based on this index.

上記lAは、原料炭の乾留によって得られるすべての生
成物(主生成物であるコークスの他、石炭ガス、コール
タール等の副生物)の各歩留りに各生成物の有用度指数
を乗じ、それらを合して得られるプラス要素である。即
ち原料炭の乾留によってコークスを製造する場合には、
同時に経済的価値を有する上記の様な副生物を得ること
ができ、これらも副製品として利益をもたらす。そこで
本発明ではコークスのみならず他の副生物の歩留りも求
めると共に、該歩留りに各生成物の有用度指数(商品化
することにより得られる利益の程度を示す指標〕を乗じ
てそれらを加算し、乾留生成物によってもたらされる利
益を総合的に評価できる様にしている。尚各乾留生成物
の歩留りは、原料炭の中から少量のサンプルを採取し乾
留試験によって実測することによって求めてもよく、或
は本出願人が先に提案した乾留製品の収率予測法(特開
昭59−145283号)を活用し、多くの実験データ
から求められる回帰式に当該原料炭の揮発分値及び元素
分析値を代入することによって求めることもできる。ま
た各乾留生成物の有用度指数は言わば5咳生成物の商品
価値を表わすものであり、最も単純でしかも適切な標準
となるのは商品としての平均的な単価である。
The above lA is calculated by multiplying the yield of all products obtained by carbonization of coking coal (main product coke and by-products such as coal gas and coal tar) by the utility index of each product. This is a positive element obtained by combining the following. In other words, when producing coke by carbonization of coking coal,
At the same time, by-products such as those mentioned above can be obtained which have economic value and are also profitable as by-products. Therefore, in the present invention, the yield of not only coke but also other by-products is determined, and the yields are multiplied by the usefulness index (an index indicating the degree of profit obtained by commercialization) of each product and added. This makes it possible to comprehensively evaluate the benefits brought about by carbonization products.The yield of each carbonization product may also be determined by taking a small sample from coking coal and actually measuring it through a carbonization test. Alternatively, by utilizing the method for predicting the yield of carbonized distillation products previously proposed by the present applicant (Japanese Patent Application Laid-Open No. 145283/1983), the volatile content value and elements of the coking coal are applied to the regression equation obtained from a large amount of experimental data. It can also be obtained by substituting analytical values.In addition, the usefulness index of each carbonization product represents the commercial value of the 5-cough product, and the simplest and appropriate standard is the value of the product as a product. Average unit price.

次に上記I、は乾留に必要な熱エネルギーに相当するも
ので、乾留の為に外部から供給される総所要エネルギー
であるから、総評価指数の中での位置付けとしてはマイ
ナス要素となる。このエネルギー指数は、前記IAを実
験的に求める際の乾留実験で供給される熱エネルギーを
基に実験的に求めてもよく、或は本出願人が先に提案し
た「コークスの製造法」(特開昭59−179582)
に開示した様な方法により計算で求めることもできる。
Next, the above I corresponds to the thermal energy required for carbonization, and since it is the total required energy supplied from the outside for carbonization, it is a negative element in terms of its position in the total evaluation index. This energy index may be determined experimentally based on the thermal energy supplied in the carbonization experiment when determining the IA experimentally, or may be determined experimentally based on the "coke manufacturing method" proposed earlier by the present applicant ( JP-A-59-179582)
It can also be calculated by the method disclosed in .

即ち乾留所要エネルギーは、〔原料炭を常温から各乾留
生成物か生成する温間まで昇温するに要する熱量(顕然
)と、原料炭から乾留生成物か生成するときの変動熱1
it(反応熱)との相、即ち乾留所要熱M(He))と
〔乾留の結果発生する諸カス中、水蒸気と生成コークス
との間の水性ガス生成による吸熱反応で持ち去られる熱
量を補填する為の熱ii1 (AC) )の総和と解す
ることができるか、上記()IG)は原料炭の揮発分値
(VM)及び元素分析値より得られる水素対炭素比(k
4/C)を’F記の恵回帰式に代入することによってほ
ぼ正確に求めることかでき、 )1c (K41Jc9)=a −VM4−b −(1
4/C) fa(但し2.b、αは回帰係数及び回帰定
数であって、ある特定の操業条件、例えば乾留温度、乾
留終了後のコークス養生時間か一定であるときは一定の
値を示す) また(AC)は原料炭の元素分析値より得られる酸素対
炭素比(0/C)を下記の回帰式に代入することによっ
てほぼ正確に求めることができる。
In other words, the energy required for carbonization is [the amount of heat (obvious) required to raise the temperature of coking coal from room temperature to a warm temperature at which each carbonization product is produced, and the fluctuating heat required to produce carbonization products from coking coal.
It (heat of reaction), that is, the required heat for carbonization M (He)) [Compensates for the amount of heat carried away by the endothermic reaction between water vapor and produced coke in the waste generated as a result of carbonization due to water gas production. The above ()IG) can be interpreted as the sum of the heat ii1 (AC)), or the hydrogen to carbon ratio (k) obtained from the volatile matter value (VM) and elemental analysis value of coking coal
4/C) can be obtained almost exactly by substituting it into the regression equation of 'F', and )1c (K41Jc9)=a −VM4−b −(1
4/C) fa (2.b, α is a regression coefficient and a regression constant, and indicates a constant value when certain operating conditions, such as carbonization temperature or coke curing time after completion of carbonization, are constant. ) Furthermore, (AC) can be almost accurately determined by substituting the oxygen-to-carbon ratio (0/C) obtained from the elemental analysis value of raw coal into the regression equation below.

AC(KcaL/&9)=c −(0/C)+β(但し
C1βは回帰係数及び回帰定数であって、ある特定の操
業条件例えば乾留温度、乾留終了後のコークスの養生時
間等が一定である場合には一定の値を示す) 即ち上記式によって得られるHCとACを合することに
より、実効乾留所要熱量を計算によって求めることかで
き、当該計算値に基づいて前記IB値を知ることができ
る。
AC (KcaL/&9) = c - (0/C) + β (where C1β is a regression coefficient and a regression constant, and certain operating conditions such as carbonization temperature, coke curing time after carbonization, etc. are constant) In other words, by combining HC and AC obtained by the above formula, the effective amount of heat required for carbonization can be calculated, and the IB value can be determined based on the calculated value. .

またCI)式のlcは、コークス中に含まれる灰分及び
全硫黄分によって高炉製銑後における脱灰賀及び脱硫費
か増加する点を踏まえ、これらをマイナス要素となる不
純物指数として捉えたもので、この指数は、コークス中
の灰分及び全硫黄分と高炉操業以降の脱灰、脱硫に要す
る費用の統計的実績との@係を求め、これを原料炭中の
灰分及び全硫黄分に換算することによって求められる。
In addition, lc in the CI) formula is based on the fact that the ash content and total sulfur content in the coke increase the cost of deashing and desulfurization after blast furnace ironmaking, and considers these factors as an impurity index that is a negative element. This index calculates the relationship between the ash content and total sulfur content in coke and the statistical performance of deashing and desulfurization costs after blast furnace operation, and converts this into ash content and total sulfur content in coking coal. required by.

更にCI)式のIDは、コークスの強度が高炉操業性に
相当の影響を与える点を考慮して総評価指数の中に組み
入れたものであり、予備乾留実験によって得られる生成
コークスの常温強度又はCO□反応反応度強度化量と、
それに見合う高炉操業効率の変化量との関係を高炉操業
の実績に基づいて統計的に把握しておき、実際に得られ
る生成コークスの常温強度又はCO2反応後強度を高炉
操業性に換算することによって求められる。尚高炉操業
時においては、コークスの特にω2反応後強度が高いも
のほど粉化が少なく高炉操業性に好影響を与えることが
確認されており、こうした意味からすればIDの算出基
準としてCO2反応後強度を採用するのが望ましい。
Furthermore, the ID of formula CI) is incorporated into the total evaluation index considering that coke strength has a considerable influence on blast furnace operability, and is calculated based on the room temperature strength or CO□ reaction reactivity intensification amount,
By statistically understanding the relationship with the amount of change in blast furnace operating efficiency commensurate with this based on the past experience of blast furnace operation, and converting the actually obtained room temperature strength or strength after CO2 reaction into blast furnace operability. Desired. During blast furnace operation, it has been confirmed that the higher the strength of coke, especially after the CO2 reaction, the less pulverization occurs, which has a positive effect on blast furnace operability. It is desirable to adopt strength.

上記の様な方法でLA、18%Ic及びIDを夫々求め
、これらのうちlAとIDをプラス要素、IBとlcを
マイナス要素として前記CI)式に代入し加算すること
によって、原料炭のより実際的な品質を評価することか
できる。
By calculating LA, 18% Ic, and ID using the method described above, and substituting them into the above CI formula with lA and ID as positive elements and IB and lc as negative elements, and adding them, the You can evaluate practical quality.

第1図はこうした総評価指数算出の一例を示すフロー図
であり、第1図により求められるIA。
FIG. 1 is a flowchart showing an example of such calculation of the total evaluation index, and the IA obtained from FIG.

■B、IC及びIDを前記CI)式に代入することによ
って、原料炭の総評側指数が算出される。尚第1図中の
略号及び分析法は下記の通りである。
(2) By substituting B, IC, and ID into the above-mentioned formula (CI), the overall evaluation side index of coking coal is calculated. The abbreviations and analysis methods in FIG. 1 are as follows.

C,Hlo:原料炭中の炭素、水素、酸素の元素分析値
(%)(JIS M 8813)■M:原料炭中の揮発
分値(%)(JISMASH:原料炭中の灰分(%)(
JIS M 8801)TS:原料炭中の全硫黄分(%
)(JISM〔実施例〕 第1表に示す性状の原料炭A、Bを使用し、その品質を
評価した。
C, Hlo: Elemental analysis value (%) of carbon, hydrogen, and oxygen in coking coal (JIS M 8813) M: Volatile content value (%) in coking coal (JISMASH: Ash content (%) in coking coal
JIS M 8801) TS: Total sulfur content in coking coal (%
) (JISM [Example] Coking coals A and B having the properties shown in Table 1 were used and their quality was evaluated.

第1表 弗1表の分析結果を見ると、原料炭Aは原料炭Bに比べ
て揮発分及び灰分か少なく且つ多檄のCを含み、コーク
ス強度も高い為良質の石炭であると思われるが、コーク
ス炉で乾留する際の各生成物の歩留りか不明である為、
副生物の歩留りを考慮した総合的且つ定菫的な評価は下
せない。
Looking at the analysis results in Table 1, it appears that coking coal A is of good quality compared to coking coal B, as it has less volatile matter and ash, contains a lot of C, and has a higher coking strength. However, since the yield of each product during carbonization in a coke oven is unknown,
It is not possible to make a comprehensive and consistent evaluation that takes into account the yield of by-products.

これ番こ対し第1表の分析値を基に本発明の方法によっ
て原料炭A%Bの品質を評価すると次の様になる。
When the quality of coking coal A%B is evaluated by the method of the present invention based on the analytical values shown in Table 1, the results are as follows.

まず第1表の測定値を基に下記式によって乾留生成物の
歩留り及び乾留所要熱量を求め、第2表に示す値を得た
。尚第2表には各乾留生成物の有用度指数として各生成
物の単価を併記した。
First, based on the measured values in Table 1, the yield of the carbonized product and the amount of heat required for carbonization were determined using the following formula, and the values shown in Table 2 were obtained. Table 2 also shows the unit price of each product as a usefulness index for each carbonization product.

く歩留り算出式〉 :) −y ス(%)=−0,78VM+−98.40
−C’石炭ガス(Ntd/T ) (3,11VME +−227)X t60.38VM
1!、−29,35(0) +−38001(但し、4
800Kad/N[として)コールタ 7k(%l=0
.38VME  3.17〈乾留所要エネルギーの算出
〉 (KCA/T) 22.8 VM−1550()i/C) +−320(
0/C) +−810但し C= 0.376 e O
°176(0)VME=VM  l 1.12 (0)
 +−0,051第2表の計算値と夫々の標準単価を基
に、原料炭の総合評価に与える各指数を求めると第3表
に示す通りとなる。
Yield calculation formula> :) -ys(%)=-0.78VM+-98.40
-C' Coal gas (Ntd/T) (3,11VME +-227)X t60.38VM
1! , -29,35(0) +-38001 (however, 4
800 Kad/N [as] Coulter 7k (%l=0
.. 38VME 3.17 <Calculation of energy required for carbonization> (KCA/T) 22.8 VM-1550()i/C) +-320(
0/C) +-810 However, C= 0.376 e O
°176 (0) VME=VM l 1.12 (0)
+-0,051 Based on the calculated values in Table 2 and the respective standard unit prices, each index given to the overall evaluation of coking coal is determined as shown in Table 3.

但し開切脱硫デメリット及び高炉脱灰デメリットは、第
1表に示した分析値と脱硫及び脱灰に要する統計的な平
均値から次式によって算出した。
However, the disadvantages of open-cut desulfurization and blast furnace deashing were calculated using the following formula from the analytical values shown in Table 1 and the statistical average values required for desulfurization and deashing.

脱硫デメリット−原料炭中の全硫黄分(%)×1%の硫
黄を除くのに必要な平均脱硫経費脱灰デメリット−原料
炭中の灰分(%IXI%の灰分を除くのに必要な平均脱
灰経買 第3表の結果から原料炭A、Hの品質を総合的に比較す
ると、原料炭Aは原料炭Bに比べて1200円/T優秀
なものであることが分かる。
Disadvantages of desulfurization - Total sulfur content (%) in coking coal Comprehensive comparison of the quality of coking coal A and H from the results of Table 3 shows that coking coal A is superior to coking coal B by 1200 yen/T.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており、乾留によって得ら
れるコークスの歩留りや灰分、全硫黄分のみならず、乾
留によって得られる他の生成物の歩留りやその有用性、
乾留に要する熱エネルギー、生成コークスの強度等を加
味して原料炭の品質を総合的に評価する方法であるから
、単にコークスの歩留りや品質に拘泥されることなく、
他のプラス要素やマイナス要素を含めた原料炭の実質的
な価値をより正確に評価することができる。
The present invention is configured as described above, and it is possible to improve not only the yield, ash content, and total sulfur content of coke obtained by carbonization, but also the yield and usefulness of other products obtained by carbonization.
This method comprehensively evaluates the quality of coking coal by taking into account the thermal energy required for carbonization, the strength of the coke produced, etc., so it is not simply concerned with the yield and quality of coke.
It is possible to more accurately evaluate the real value of coking coal, including other positive and negative factors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る品質評価法を例示する概略フロー
図である。
FIG. 1 is a schematic flow diagram illustrating a quality evaluation method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1) A:原料炭の乾留により得られるコークス、石炭ガス及
びコールタールの各歩留り、 B:乾留に要する燃料消費量、 C:生成コークスの常温強度又はCO_2反応後強度、
及び D:生成コークス中の灰分及び全硫黄分 を求め、これらの値を基に、下記式によって原料炭の品
質を評価することを特徴とする製銑用コークス製造用原
料炭の品質評価法。 総評価指数= I _A− I _B− I _C− I _D但し
I _A:(各乾留生成物の歩留り×有用度指数)の総
和 I _B:乾留に要する総所要エネルギー指数 I _C:生成コークス中の灰分及び全硫黄分に基づく
不純物指数 I _D:生成コークスの常温強度又はCO_2反応後
強度から定められる強度指数
(1) A: Each yield of coke, coal gas, and coal tar obtained by carbonization of coking coal, B: Fuel consumption required for carbonization, C: Room temperature strength of produced coke or strength after CO_2 reaction,
and D: A method for evaluating the quality of coking coal for producing coke for iron making, which comprises determining the ash content and total sulfur content in the produced coke, and evaluating the quality of the coking coal using the following formula based on these values. Total evaluation index = I _A− I _B− I _C− I _DHowever
I _A: Total sum of (yield x usefulness index of each carbonization product) I _B: Total energy required for carbonization I _C: Impurity index based on ash content and total sulfur content in the coke produced I _D: Room temperature of the coke produced Strength index determined from strength or strength after CO_2 reaction
JP4970085A 1985-03-12 1985-03-12 Method of evaluating quality of raw coal for production of coke for pig iron production Granted JPS61207488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970085A JPS61207488A (en) 1985-03-12 1985-03-12 Method of evaluating quality of raw coal for production of coke for pig iron production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970085A JPS61207488A (en) 1985-03-12 1985-03-12 Method of evaluating quality of raw coal for production of coke for pig iron production

Publications (2)

Publication Number Publication Date
JPS61207488A true JPS61207488A (en) 1986-09-13
JPS6340833B2 JPS6340833B2 (en) 1988-08-12

Family

ID=12838456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970085A Granted JPS61207488A (en) 1985-03-12 1985-03-12 Method of evaluating quality of raw coal for production of coke for pig iron production

Country Status (1)

Country Link
JP (1) JPS61207488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848181B1 (en) * 2016-12-27 2018-05-24 현대제철 주식회사 Evaluation method of cokes quality in the blast furnace based on hygrogen injection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154536U (en) * 1988-04-14 1989-10-24
JPH0755698Y2 (en) * 1988-11-29 1995-12-20 アルプス電気株式会社 Tape player mode switching device
CN112029539B (en) * 2020-09-08 2021-04-06 广州卓邦科技有限公司 Horizontal fixed gasifier for solid waste treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848181B1 (en) * 2016-12-27 2018-05-24 현대제철 주식회사 Evaluation method of cokes quality in the blast furnace based on hygrogen injection

Also Published As

Publication number Publication date
JPS6340833B2 (en) 1988-08-12

Similar Documents

Publication Publication Date Title
CN102206723B (en) Air-base direct reduction iron-making method for reducing iron concentrate powder by self-reforming of gas rich in methane
EP1641945A2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
CN110275007A (en) A kind of method for building up of coking coal cost performance evaluation model
CN102037145A (en) Method for melting raw iron while recirculating blast furnace gas by adding hydrocarbons
CN108219807A (en) A kind of preparation method of blast furnace biomass iron coke
WO2009047682A2 (en) Coke making
JPS61207488A (en) Method of evaluating quality of raw coal for production of coke for pig iron production
CN111690784B (en) Blast furnace fuel compensation and H in blast furnace gas2Method for quantifying content
CN113077132B (en) Method for evaluating cost performance of pulverized coal injection
Sun et al. Influence of operation parameters on dome temperature of COREX melter gasifier
CN103011163A (en) Method for producing calcium carbide from semi-coke obtained through destructive distillation of weakly caking coal
JPH026815B2 (en)
Wu et al. Mathematical model for blast furnace burden optimization based on the high-temperature reactivity
US1858274A (en) Process for reducing oxide ores
KR100206500B1 (en) Method of block coke for iron melting furnace
JP2003247026A (en) Briquette for recovering valuable metal in steel making by-product for electric smelting furnace and production method thereof
KR910008141B1 (en) Method of smetting reduction of ores containing metal oxides
Gangopadhyay et al. Alternative coke from inferior coal for ferro-alloy industry
Gonik et al. Features of the use of briquetted iron-bearing wastes
JPH0948977A (en) Production of blast furnace coke
CN115612762B (en) Iron coke with high cold and hot strength and preparation method thereof
US4159905A (en) Method of manufacturing green hot briquettes from fine coal for use in shaft furnaces
Yao et al. Thermodynamics of Hydrogen Production from Steam Reforming of Tar Model Compound with Blast Furnace Slag
CN115330039A (en) Carbon emission metering method in all working procedures of iron and steel smelting
CN117436921A (en) Rotary hearth furnace process parameter adjustment method based on cost accounting and operation interface