JPS61207356A - Apparatus for producing methyl ethyl ketone - Google Patents

Apparatus for producing methyl ethyl ketone

Info

Publication number
JPS61207356A
JPS61207356A JP60047820A JP4782085A JPS61207356A JP S61207356 A JPS61207356 A JP S61207356A JP 60047820 A JP60047820 A JP 60047820A JP 4782085 A JP4782085 A JP 4782085A JP S61207356 A JPS61207356 A JP S61207356A
Authority
JP
Japan
Prior art keywords
butene
column
mek
separation
isomerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047820A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ueda
俊之 上田
Toshiki Furue
古江 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60047820A priority Critical patent/JPS61207356A/en
Publication of JPS61207356A publication Critical patent/JPS61207356A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To synthesize MEK, by using an apparatus for separating 1-butene from 2-butene and an isomerization apparatus to convert 2-butene to 1-butene as pretreatment steps, and oxidizing 1-butene in the presence of a catalyst liquid containing an oxygen complex. CONSTITUTION:The raw material 1 is treated first by a butadiene-removal apparatus 2 and then by an isobutene-separation apparatus 4. The obtained mixture of 1-butene and 2-butene is introduced into the 2-butene separation column 7, and only the 1-butene is introduced through the line 8 into the oxidation reaction column 14. The 2-butene is introduced into the dehydration column 21 and then into the isomerization reaction column 23 to convert a part of the 2-butene to 1-butene. After removing the heavy components, the product is returned to the upstream side of the 2-butene separation column 7 to increase the yield of 1-butene. EFFECT:The MEK yield can be improved to >=95% based on n-butene. The utility cost and the apparatus cost can be reduced compared with the process having the isomerization apparatus after the oxidation reaction column.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、メチルエチルケトン碓製造装置に係り、特に
メチルエチルケトンを収率よく、しかも低コストにて製
造できるメチルエチルケトン製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a methyl ethyl ketone production apparatus, and more particularly to a methyl ethyl ketone production apparatus capable of producing methyl ethyl ketone in good yield and at low cost.

(従来の技術) 従来、工業的に実施されているメチルエチルケトン(以
下、MEKと記す)の合成法は、スペントC4n−B留
分からブタジェンおよび1so−ブテンを除いたn−ブ
テン(1−ブテンおよび2−ブテン)を濃硫酸の存在下
で水和反応により5ec−ブチルアルコールを合成し、
この5ec−ブチルアルコールを触媒の存在下で脱水素
化し、MEKを製造する、いわゆる硫酸法が主流をなし
ている。この方法は、n−ブテン(1−ブテン、cis
−’l−ブテンおよびtrans−2−ブテンの混合物
)の全ての成分が反応する特長を有する反面、反応工程
が複雑であり、反応副生成物、重合物が多く生成するこ
と、また濃硫酸を使用するため高級な耐腐食材料を使用
する等、コストアンプにつながる要因を持つ欠点を有し
ている。
(Prior Art) Conventionally, the synthesis method of methyl ethyl ketone (hereinafter referred to as MEK) that has been carried out industrially consists of n-butene (1-butene and 2 -butene) in the presence of concentrated sulfuric acid to synthesize 5ec-butyl alcohol,
The mainstream is the so-called sulfuric acid method, in which MEK is produced by dehydrogenating this 5ec-butyl alcohol in the presence of a catalyst. This method uses n-butene (1-butene, cis
-'L-Butene and trans-2-butene mixture) has the advantage of reacting with all the components, but the reaction process is complicated, and many reaction by-products and polymers are produced, and concentrated sulfuric acid is It has drawbacks such as the use of high-grade corrosion-resistant materials, which can lead to increased costs.

これに対し、本出願人は先に、MEK合成法に関して、
酸素分子が金属イオンに配位結合して酸素錯体を形成し
得る遷移金属鏡体を少なくとも触媒成分の1つとし、ブ
テンを配位結合し、ブテン錯体を形成し得る遷移金属錯
体とからなる複合触媒を用い、水の存在下、錯体生成に
よって活性化された1−ブテンを酸化し、温和な条件下
でMEKを効率よく合成する方法を提案した(特願昭5
9−122600号)。該金属錯体触媒は、酸素を配位
することにより酸素錯体を形成し得る錯体(MmX n
−L l>と、前記ブテンと配位結合しブテン錯体を形
成し得る錯体触媒(M’m’Xn’・L I l l 
)を含む複合錯体からなる(ここでMは周期律第■族、
第■〜■族または第1族の鉄族 □に属する遷移金属、
XはCll−1Br−1■−等のハロゲン、またはBF
4−1PFc −、CH3COO−1S042−等の陰
イオン、Lは有機リン化合物、Moは周期律第■族の白
金族に属する遷移金属、Loはニトリル類、有機フン素
化合物または有機リン化合物、m、m’、n、n“は前
記遷移金属および陰イオンの原子価により定まる数、g
、z’は配位数を示す)。
On the other hand, the applicant has previously reported on the MEK synthesis method.
A complex consisting of at least one catalyst component of a transition metal mirror capable of binding oxygen molecules to metal ions to form an oxygen complex, and a transition metal complex capable of binding butene to form a butene complex. We proposed a method for efficiently synthesizing MEK under mild conditions by oxidizing 1-butene activated by complex formation in the presence of water using a catalyst (Japanese Patent Application No. 1983).
9-122600). The metal complex catalyst is a complex capable of forming an oxygen complex by coordinating oxygen (MmX n
-L l> and a complex catalyst (M'm'Xn'・L I l l
) (where M is from group II of the periodic law,
Transition metals belonging to groups ■ to ■ or iron group □ of group 1,
X is a halogen such as Cll-1Br-1-, or BF
Anion such as 4-1PFc -, CH3COO-1S042-, L is an organic phosphorus compound, Mo is a transition metal belonging to the platinum group of group Ⅰ of the periodic table, Lo is a nitrile, an organic fluorine compound or an organic phosphorus compound, m , m', n, n" are numbers determined by the valence of the transition metal and anion, g
, z' indicates the coordination number).

さらに本出願人は、上記MEK合成法において、原料B
−B留分からブタジェンおよびイソブチンを除去された
正ブテン(1−ブテンおよび2−ブテン)からなる原料
のうち、MEK生成反応にはほとんど寄与しない2−ブ
テンを1−ブテンに異性化することにより、原料正ブテ
ンに対するMEKの収率を向上させることを目的とした
プロセスを提案した(特願昭56−164787号)。
Furthermore, in the above MEK synthesis method, the applicant has proposed that the raw material B
- Among the raw materials consisting of normal butene (1-butene and 2-butene) from which butadiene and isobutyne have been removed from the B fraction, 2-butene, which hardly contributes to the MEK production reaction, is isomerized to 1-butene. We proposed a process aimed at improving the yield of MEK based on the raw material normal butene (Japanese Patent Application No. 164787/1987).

(発明が解決しようとする問題点) しかし、上記プロセスにおいては、異性化装置における
2−ブテンの1−ブテンへの平衡転化率が10〜20%
と低く、酸化反応塔、触媒分離塔、ブテン分離塔を循環
するブテンリサイクル量は非常に多く、また塔の容量お
よびリボイラ、凝縮器での必要熱量も大きくなり、この
ため、ユーティリティコスト、設備コストも高くなり、
充分な利点を発揮するまでには到らないことが判明した
(Problems to be Solved by the Invention) However, in the above process, the equilibrium conversion rate of 2-butene to 1-butene in the isomerization device is 10 to 20%.
However, the amount of butene recycled through the oxidation reaction tower, catalyst separation tower, and butene separation tower is extremely large, and the capacity of the tower and the amount of heat required in the reboiler and condenser are also large, resulting in lower utility costs and equipment costs. also becomes expensive,
It turned out that it was not possible to achieve sufficient benefits.

本発明の目的は、上記した先願技術の欠点をなくし、高
収率でなおかつ低製造コストのメチルエチルケトン製造
装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a methyl ethyl ketone production apparatus that achieves high yield and low manufacturing cost.

(問題点を解決するための手段) 要するに本発明は、原料前処理工程を、ブタジェン除去
装置、1so−ブテン分離装置、2−ブテン分離装置お
よび2−ブテン異性化装置から構成し、酸化反応工程に
入る原料をほぼ100%の1−ブテンとし、一方、分離
した2−ブテンは前処理工程内の異性化装置内で1−ブ
テンに転化し、これをリサイクル、することに、より、
酸化反応工程における装置費およびユーティリティの低
減を行なったものである。
(Means for Solving the Problems) In short, the present invention comprises a raw material pretreatment step consisting of a butadiene removal device, a 1so-butene separation device, a 2-butene separation device, and a 2-butene isomerization device, and the oxidation reaction step The input raw material is almost 100% 1-butene, while the separated 2-butene is converted to 1-butene in an isomerization device in the pretreatment process and recycled.
This reduces equipment costs and utilities in the oxidation reaction process.

(実施例) 第1図は、本発明の一実施例を示すMEKil造装置の
プロセスフローを示す図である。
(Example) FIG. 1 is a diagram showing a process flow of a MEKil manufacturing apparatus showing an example of the present invention.

図において、原料となるC4留分lは、本プロセスにお
いてMEKの直接の原料である1−ブテン以外に、主と
して2−ブテン(trans−2−ブテンおよびc i
 5−2−ブテン)イソブチンおよびブタジェンを含む
In the figure, the C4 fraction l, which is a raw material, mainly contains 2-butene (trans-2-butene and c i
5-2-butene) includes isobutyne and butadiene.

原料1は、まずブタジェン除去装置2に導入され、ここ
でモレキュラシーブ法または酢酸銅アンモニア法等によ
りブタジェンが分離されるか、または水添により1−ブ
テンに転化され、はぼ完全に除去される0次に、原料は
イソブチン分離装置4に導入され、ここで約65%の硫
酸に吸収される性質を利用し、イソブチン5がn−ブテ
ン(l−ブテンおよび2−ブテン)から分離される。
The raw material 1 is first introduced into a butadiene removal device 2, where butadiene is separated by a molecular sieve method or a cuprammonium acetate method, or converted to 1-butene by hydrogenation, and almost completely removed. Next, the raw material is introduced into an isobutyne separation device 4, where isobutyne 5 is separated from n-butene (l-butene and 2-butene) by taking advantage of its ability to be absorbed by about 65% sulfuric acid.

上記までの工程は従来法と同一であり、ここで得られた
n−ブテン中の1−ブテンの濃度は通常20〜60%で
ある。従って一過方式(Oncethrough)、の
場合、酸素錯体を用いるMEK合成法では・、2−ブテ
ンがほとんど反応しないため、n−ブテンに対するME
Kの収率は60%以上にはならない。
The steps up to the above are the same as the conventional method, and the concentration of 1-butene in the n-butene obtained here is usually 20 to 60%. Therefore, in the case of the MEK synthesis method using an oxygen complex in the case of the once-through method, since 2-butene hardly reacts, the MEK synthesis method for n-butene is
The yield of K does not exceed 60%.

このため、本発明においては、上記工程によって得られ
る1−ブテンと2−ブテンの混合物を分離するために、
2−ブテン分離塔7を設置し、分離された1−ブテンの
みをライン8を経て酸化反応塔14に導くのであるが、
この際、除去された2−ブテンをライン9から脱水塔2
1、加熱鼎22を経て異性化反応塔23に導き、その一
部を1−ブテンに転化させ、これから重質分分離塔24
で重質分25を分離した後、ライン6を経て前記2−ブ
テン分離装置7の前流に戻すことにより、1−ブテンの
量を増加させ、原料C4留分中のn−ブテン量とほぼ同
量の1−ブテンとして前記酸素吸収塔10以下の酸化反
応工程に導くようにしたものである。これによりn−ブ
テン当りのMEK収率は95%以上とすることができる
Therefore, in the present invention, in order to separate the mixture of 1-butene and 2-butene obtained by the above steps,
A 2-butene separation column 7 is installed, and only the separated 1-butene is led to the oxidation reaction column 14 via a line 8.
At this time, the removed 2-butene is transferred from line 9 to dehydration tower 2.
1. It is led to an isomerization reaction tower 23 through a heating tank 22, a part of which is converted into 1-butene, and then a heavy fraction separation tower 24
After separating the heavy fraction 25, the amount of 1-butene is increased by returning it to the upstream of the 2-butene separator 7 through line 6, and the amount of n-butene in the raw material C4 fraction is increased. The same amount of 1-butene is introduced into the oxidation reaction step of 10 or less of the oxygen absorption towers. Thereby, the MEK yield per n-butene can be 95% or more.

2−ブテン分離装置7としては、■−ブテンと2−ブテ
ンの沸点差を利用した蒸留塔が用いられる。操作温度は
70℃以下、圧力は5 kg / cta g 以下で
蒸留分離が行なわれる。異性化反応塔23では2−ブテ
ンの10〜20%が1−ブテンに転化される。異性化反
応は、シリカ−アルミナ系の触媒を用い、反応温度20
0〜350℃、圧力5〜lQatmの条件下で行なわれ
る。
As the 2-butene separation device 7, a distillation column that utilizes the boiling point difference between -butene and 2-butene is used. Distillation separation is carried out at an operating temperature of 70° C. or less and a pressure of 5 kg/ctag or less. In the isomerization reaction column 23, 10 to 20% of 2-butene is converted to 1-butene. The isomerization reaction uses a silica-alumina catalyst at a reaction temperature of 20
It is carried out under conditions of 0 to 350°C and a pressure of 5 to 1 Qatm.

酸化反応塔(MEK合成塔)14の内部には、塩化パラ
ジウム(PdC12)、塩化第1銅(CuC4) 、ヘ
キサメチルホスホルアミド(HMPA)、ベンゾニトリ
ル(PHCN)に通1の水ヲ加えた触媒液に、酸素吸収
塔10にて空気(酸素)11を吸収させて酸素錯体とし
た触媒II&12が供給され、この酸素錯体により1−
ブテンがほぼ100%、2−ブテンは数%反応してME
Kとなる。この反応は比較的低温(40〜80℃)、低
圧(常圧〜30気圧)で行なわれ、液相反応で発熱反応
であるため、通常、攪拌器と冷却装置を備えている。な
お、図示された反応器は一段であるが、多段反応器を採
用してもよい。反応生成物のMEKを含む触媒液は触媒
分離塔15に導かれ、塔頂から粗MEK、塔底から触媒
液が取り出される。塔底からの触媒液はライン12を経
て吸収塔lOに再循環される。一方、塔頂からの粗ME
Kは、ブテン分離塔16に導入され、ここで基2−ブテ
ンおよび他のブタン等のC4留分が塔頂から、およびM
EKと水分が塔底からそれ取り出される。
Inside the oxidation reaction tower (MEK synthesis tower) 14, a portion of water was added to palladium chloride (PdC12), cuprous chloride (CuC4), hexamethylphosphoramide (HMPA), and benzonitrile (PHCN). Catalysts II & 12 are supplied to the catalyst liquid in an oxygen absorption tower 10 that absorbs air (oxygen) 11 to form an oxygen complex.
Almost 100% butene and a few % 2-butene reacted to ME
It becomes K. This reaction is carried out at a relatively low temperature (40 to 80° C.) and low pressure (normal pressure to 30 atmospheres), and since it is a liquid phase reaction and an exothermic reaction, it is usually equipped with a stirrer and a cooling device. Note that although the illustrated reactor is one stage, a multistage reactor may be employed. The catalyst liquid containing MEK as a reaction product is led to the catalyst separation column 15, where crude MEK is taken out from the top of the tower and catalyst liquid is taken out from the bottom of the tower. The catalyst liquid from the bottom of the column is recycled via line 12 to the absorption column IO. On the other hand, crude ME from the top of the tower
K is introduced into a butene separation column 16 where C4 fractions such as radical 2-butenes and other butanes are removed from the top and M
EK and water are removed from the bottom of the column.

塔底からのMEK含有水は、ライン17を経てMEK楕
製装置18にて水分を除去され、塔頂からブチルアルデ
ヒドおよび水分(ライン19)が除去され、塔底からラ
イン20を経て製品MEKが得られる。一方、ブテン分
離塔16の塔頂からの基C4留分はライン8.12を経
て酸素吸収塔10に戻される。
The MEK-containing water from the bottom of the column passes through line 17 to remove moisture in the MEK ellipse device 18, butyraldehyde and moisture (line 19) are removed from the top of the column, and the MEK product passes from the bottom to line 20. can get. On the other hand, the group C4 fraction from the top of the butene separation column 16 is returned to the oxygen absorption column 10 via line 8.12.

本発明によるプロセスおよび比較として反応系後流に異
性化装置を設置したプロセスの物質収支を第2図および
第3図に示す。比較を容易にするため、原料中のn〜ブ
テンを100 (内訳は1−ブテン40%、2−ブテン
60%)とし、異性化平衡1−ブテン濃度を13%、微
量成分はOとして示す。
The material balance of the process according to the present invention and a comparative process in which an isomerization device is installed downstream of the reaction system are shown in FIGS. 2 and 3. For ease of comparison, n~butene in the raw material is shown as 100 (breakdown: 1-butene 40%, 2-butene 60%), isomerization equilibrium 1-butene concentration is 13%, and trace components are shown as O.

図から明らかなように、本発明プロセスは、第3図のプ
ロセスと比較して、(1)酸化反応塔14、触媒分離塔
15およびブテン分離塔16に導入されるブテン量が大
幅に低減されるため(例えば酸化反応塔では560から
100、触媒分離塔およびブテン分離塔では550から
10)、設備が小容量化でき、さらにスチーム量が約3
0%、電力量が約40%低減される。(2)酸化反応に
必要となる1−ブテン分圧を得るのに必要な酸化反応塔
14の圧力を約115に低減でき、酸化反応塔が軽量化
できる。(3)(2)に関連して、圧力低減に伴い、ア
ルデヒド類や塩化物等の副生成物の生成、また原料ブテ
ンの重合物の生成を抑えることができ、MEK生成の選
択性向上、すなわちMEK収率を向上することができる
。したがって、同量のMEKを得るのに必要な原・料供
給量を低減できる。
As is clear from the figure, in the process of the present invention, compared to the process shown in FIG. (for example, 560 to 100 for oxidation reaction towers, 550 to 10 for catalyst separation towers and butene separation towers), the capacity of the equipment can be reduced, and the amount of steam can be reduced to about 3
0%, and power consumption is reduced by approximately 40%. (2) The pressure in the oxidation reaction tower 14 required to obtain the 1-butene partial pressure required for the oxidation reaction can be reduced to about 115, and the weight of the oxidation reaction tower can be reduced. (3) In relation to (2), with pressure reduction, the production of by-products such as aldehydes and chlorides, as well as the production of polymers of raw material butene, can be suppressed, improving the selectivity of MEK production, That is, the MEK yield can be improved. Therefore, the amount of raw materials supplied required to obtain the same amount of MEK can be reduced.

次に第2図および第3図のプロセスにおけるユーティリ
ティの具体的な比較結果の一例を第1表に示す。本発明
プロセスでは原料前処理工程に2−ブテン分離塔7を設
置しているにもかかわらず、比較プロセスに比べて、ユ
ーティリティの大きな低減効果が得られる。
Next, Table 1 shows an example of specific comparison results of utilities in the processes shown in FIGS. 2 and 3. In the process of the present invention, although the 2-butene separation column 7 is installed in the raw material pretreatment step, a large utility reduction effect can be obtained compared to the comparative process.

第  1  表 上記実施例において、2−ブテン分離塔7は蒸留塔とし
て示したが、他の分離方法を用いたものでもよく、例え
ば2−ブテンが1−ブテンに比べ約85%の硫酸に非常
に溶解しやすい性質を利用して分離する硫@楓収法も有
効であり、同様の効果が得られる。
Table 1 In the above examples, the 2-butene separation column 7 was shown as a distillation column, but other separation methods may also be used. The sulfur @ maple collection method, which separates sulfur by taking advantage of its tendency to dissolve in water, is also effective, and similar effects can be obtained.

(発明の効果) 本発明を実施することにより、次の効果が得られる。(Effect of the invention) By implementing the present invention, the following effects can be obtained.

(1)n−ブテンベースのMEK収率を例えば95%以
上にまで向上することができ、このため原イリティコス
トを例えば約30%、設備コストを約5%低減すること
ができる。
(1) The yield of n-butene-based MEK can be improved to, for example, 95% or more, and therefore the raw energy cost can be reduced by about 30% and the equipment cost by about 5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すMEKti造装置の
プロセスフローを示す図、第2図は、本発装置の物質収
支を説明する図である。 1・・・原料C4留分、2・・・ブタジェン分離装置、
3・・・ブテンライン、4・・・イソブチン分離装置、
5・・・イソブチンライン、6・・・n−ブテンライン
、7・・・2−ブテン分離塔、8・・・1−ブテンライ
ン、9・・・2−ブテンライン、10・・・酸素吸収塔
、11・・・空気ライン、12・・・酸化触媒液ライン
、13・・・排気ライン、14・・・酸化反応塔、15
・・・触媒分離塔、16・・・ブテン分離塔、17・・
・粗MEKライン、18・・・MEKii製装置、19
・・・ブチルアルデヒドライン、20・・・製品MEK
ライン、21・・・脱水塔、22・・・加熱器、23・
・・異性化反応塔、24・・・重質分分離塔、25・・
・重質分ライン。
FIG. 1 is a diagram showing a process flow of a MEKti manufacturing apparatus showing an embodiment of the present invention, and FIG. 2 is a diagram illustrating the material balance of the present apparatus. 1... Raw material C4 fraction, 2... Butadiene separation device,
3... Butene line, 4... Isobutyne separation device,
5... Isobutyne line, 6... N-butene line, 7... 2-butene separation column, 8... 1-butene line, 9... 2-butene line, 10... Oxygen Absorption tower, 11... Air line, 12... Oxidation catalyst liquid line, 13... Exhaust line, 14... Oxidation reaction tower, 15
... Catalyst separation column, 16... Butene separation column, 17...
・Rough MEK line, 18...MEKii equipment, 19
...Butyraldehyde line, 20...Product MEK
Line, 21... Dehydration tower, 22... Heater, 23.
... Isomerization reaction column, 24... Heavy fraction separation column, 25...
・Heavy line.

Claims (1)

【特許請求の範囲】[Claims] (1)1−ブテンを酸素錯体の生成によって酸素を活性
化する金属錯体触媒液の存在下で酸化してメチルエチル
ケトンを合成する装置において、原料前処理工程として
1−ブテンと2−ブテンの分離装置と、2−ブテンを1
−ブテンに転化する異性化装置とを設けたことを特徴と
するメチルエチルケトン製造装置。
(1) In a device that synthesizes methyl ethyl ketone by oxidizing 1-butene in the presence of a metal complex catalyst solution that activates oxygen by generating an oxygen complex, a device for separating 1-butene and 2-butene as a raw material pretreatment step. and 2-butene to 1
- An isomerization device for converting into butene.
JP60047820A 1985-03-11 1985-03-11 Apparatus for producing methyl ethyl ketone Pending JPS61207356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047820A JPS61207356A (en) 1985-03-11 1985-03-11 Apparatus for producing methyl ethyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047820A JPS61207356A (en) 1985-03-11 1985-03-11 Apparatus for producing methyl ethyl ketone

Publications (1)

Publication Number Publication Date
JPS61207356A true JPS61207356A (en) 1986-09-13

Family

ID=12785990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047820A Pending JPS61207356A (en) 1985-03-11 1985-03-11 Apparatus for producing methyl ethyl ketone

Country Status (1)

Country Link
JP (1) JPS61207356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523741A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Conversion of acyclic symmetric olefins to high and low carbon olefin products.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523741A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Conversion of acyclic symmetric olefins to high and low carbon olefin products.

Similar Documents

Publication Publication Date Title
JPH04505327A (en) Production of ultra-high purity methyl acetate
JPH01146837A (en) Method for dehydrating cyclohexenone
RU2494092C2 (en) Improved method for combined production of acrylonitrile and hydrogen cyanide
JP4746254B2 (en) Hydroformylation product of propylene and process for producing acrylic acid and / or acrolein
CA2355669A1 (en) Method for preparing formic acid
JPS6019724A (en) Manufacture of 1-butene from 2-butene-containing c4 hydrocarbon mixture
JPS6051451B2 (en) Manufacturing method of tertiary butyl alcohol
JPS61207356A (en) Apparatus for producing methyl ethyl ketone
US3721708A (en) Process for the preparation of o-phthalic acid
CN113896652A (en) Preparation method of 3, 4-dichlorobenzonitrile
CN101168506B (en) Preparation method for sec-butyl acetate with product separating technique
JPS6039049B2 (en) Alcohol manufacturing method
US2672476A (en) Catalytic conversion of oxygenated organic compound mixtures
JPH0342250B2 (en)
JPS6143131A (en) Production of methyl ethyl ketone
JP3238894B2 (en) Method for producing methyl methacrylate
CN109704957B (en) Method for removing carbon dioxide from allyl acetate product gas
US4296257A (en) Process for producing dihydrocarvone geometric isomers
JP4483156B2 (en) Method for purifying gamma-butyrolactone
CN101384536B (en) Use of predehydration towers in an ethane oxidation to acetic acid/ethylene process
JP4960546B2 (en) Purification of crude pyrrolidine
CN87105641A (en) Produce Virahol and have the method for the tertiary alcohols of 4 to 5 carbon atoms
CN112778160B (en) Method for producing acrylonitrile by using 3-cyanopropionic acid as raw material
KR102283568B1 (en) Feedstock treatment method for manufacturing Methacrolein and Methacrylic acid
JPS6219554A (en) Purification of vinyl acetate reaction product