JPS6120683B2 - - Google Patents

Info

Publication number
JPS6120683B2
JPS6120683B2 JP5631379A JP5631379A JPS6120683B2 JP S6120683 B2 JPS6120683 B2 JP S6120683B2 JP 5631379 A JP5631379 A JP 5631379A JP 5631379 A JP5631379 A JP 5631379A JP S6120683 B2 JPS6120683 B2 JP S6120683B2
Authority
JP
Japan
Prior art keywords
change
rate
rotational speed
value
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5631379A
Other languages
Japanese (ja)
Other versions
JPS55148904A (en
Inventor
Kanji Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5631379A priority Critical patent/JPS55148904A/en
Publication of JPS55148904A publication Critical patent/JPS55148904A/en
Publication of JPS6120683B2 publication Critical patent/JPS6120683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は火力発電所の蒸気タービンを停止状態
あるいは、ある回転速度から定格回転速度まで自
動的に昇速させるいわゆるタービン自動起動装置
に関する。 第1図にタービン自動起動装置によるタービン
自動制御の概念図を表わす。1が蒸気タービンで
あり、2は蒸気タービンに流入する蒸気量を調整
する為の調整弁である。3は回転速度指令値設定
器である。4は3の設定値をある変化率に添つて
変化させる為の変化率作成部である。5は加算器
(減算器)である。6は入力の極性と大きさに応
じて調整弁2を開閉するための調整弁駆動部であ
る。7は蒸気タービン1の回転速度の実値を検出
する為の回転速度検出器である。8は調整弁2の
実開度を検出する開度検出器である。9は微分器
であり、10は加算器である。 この様な制御系の動作を簡単に述べると、回転
速度指令値設定器3で設定された回転速度設定値
は、変化率作成部4によつてある変化率で徐々に
変化し、最終的には回転速度設定値に到達するよ
うな信号となり、加算器(減算器)により、回転
速度の実値と減算されその差が正極性であれば調
整弁駆動部6によつて調整弁2を開方向に又、負
極性であれば閉方向に駆動する。従つて蒸気ター
ビン1に流れ込む蒸気量が増減され蒸気タービン
は変化率作成部で作られる変化率にそうように自
動制御されつつ回転上昇をする事になる。しかし
ながら、ここで考えなければならないのが制御系
の遅れであり特に問題となるのが蒸気タービン1
自体の応答の遅れであり、事業用火力の場合で大
きいもので5〜10秒以上の応答遅れをもつてい
る。この応答の遅れを補正する手段として調整弁
2の動きから回転速度の変化を予測する方法を用
いる事が多い。 この具体例が第1図に示す調整弁2の開度検出
器8とこの開度の変化量を捕える為の微分器9で
ある。この微分器9の出力、即ち調整弁2の開度
変化量から予測した回転速度の変化量を回転速度
の実値に加算する事により、回転速度変化指令値
との加算点(減算点)では回転速度が見かけ上速
かに応答したように見られる。この為制御系の応
答の遅れはほとんどなくなり制御は良好となるの
である。この様に制御系に著しく応答遅れがある
場合に、即応性のある動作点から被制御系の応答
の遅れを補正する方法を一般に乱調防止回路と呼
んでいる。 又、実回転速度と調整弁開度の微分値の加算さ
れた出力は昇速開始となる前は変化率作成部4の
初期値合わせに用いられる。これは途中回転速度
から自動制御を開始するか又はラブチエツクやラ
ンダウン後の再昇速する場合にかかせないもので
あり、この初期値合わせ回路を一般に指令値トラ
ツキング回路と呼んでいる。そして自動昇速中以
外は常時指令値トラツキング回路を活かしている
為、変化率作成部4の出力は常に実回転速度(調
整弁の開度微分値が加算された値)と同一の値と
なる。 変化率作成部4では設定値をある変化率で変化
させるとともに変化率作成部から出力される回転
速度指令信号VRが回転速度指令値設定器3で設
定された設定値VSに近ずくと変化率が徐々に少
なくなるような機能を有している。これは蒸気タ
ービンの回転数が目標値を行き過ぎないよう、い
わゆるオーバシユートしないようにしたものであ
る。この変化率作成部4の代表例を第2図により
説明する。第2図におて41は増幅器であり数十
倍〜百倍程のゲインを有している。42はリミツ
タであり出力を一定値以上にならないよう制限す
るものである。43は前述の如く自動昇速と指令
値トラツキング回路の切換を行う接点であり、自
動昇速時はリミツタ42の出力側に接続される。
44は積分器であり、この出力が回転速度指令V
Rとなる。この積分器44の積分時定数は自動昇
速の時は長く又、指令値トラツキングの時は極端
に短い時定数となつている。又、45,46は加
算器(減算器)である。 ここで指令値トラツキング即ち、積分器入力が
加算器46と接続されている場合、積分器44入
力は、VO−VRでありVO>VRの場合積分器は正
方向に積分しVO=VR即ちVO−VR=0となつた
ところで積分をやめる。又、VO<VRの場合には
負方向に積分しやはりVO=VRとなつたところで
積分をやめる。これは極めて短い時間で行なわれ
る為常にVR=VOと考えてよい。即ち、積分器出
力VRは常にVOとなる。又、自動昇速の時、即ち
積分器入力がリミツタ42と接続されている場合
には次のようになる。 積分器入力は最大でもリミツタ42で設定され
た値となる。例えば積分器44の積分時定数が1
分で、リミツタの設定値がVLとすると、リミツ
タ42の入力がVLより大きい時には、リミツタ
出力は入力の大小にかかわらず常にVLであるか
ら、積分器44の出力はVL/分の変化率で変化
する。又リミツタ入力がVLより小さくなると積
分器はその時その時の入力に応じた変化率とな
る。今、VR=0の状態でVS=3000rpmの設定に
したとすると加算器45の出力は3000rpmとなり
増幅器41にて増幅され増幅器41の出力はK41
×3000rpmとなる。(K41は増幅器41のゲイ
ン)、ここでリミツタ42の設定値VL=100rpm
とするとK41×3000rpmはあきらかにVLより大き
い為リミツタ出力は100rpmとなりこれが積分器
入力となり積分器は100rpm/分の変化率で上昇
する事になる。 このまま動作を継続させると積分器出力が次第
に増加しVRはVSに近ずいて行く。従つて加算器
45の出力は次第に0に近ずく。そしてやがてリ
ミツタ42の入力はVL設定値100rpmより小さく
なり始める。このようにして次第0に近ずきなが
ら積分動作する為、積分器出力VRの変化率は次
第に減少して行く。このような回路の動作はいわ
ゆる一次遅れであり、伝達関数で示すと
The present invention relates to a so-called automatic turbine startup device for automatically speeding up a steam turbine of a thermal power plant from a stopped state or from a certain rotational speed to a rated rotational speed. FIG. 1 shows a conceptual diagram of automatic turbine control by an automatic turbine starting device. 1 is a steam turbine, and 2 is a regulating valve for adjusting the amount of steam flowing into the steam turbine. 3 is a rotational speed command value setting device. 4 is a change rate creation unit for changing the set value of 3 according to a certain change rate. 5 is an adder (subtractor). Reference numeral 6 denotes a regulating valve drive unit for opening and closing the regulating valve 2 according to the polarity and magnitude of input. 7 is a rotation speed detector for detecting the actual value of the rotation speed of the steam turbine 1. Reference numeral 8 denotes an opening degree detector that detects the actual opening degree of the regulating valve 2. 9 is a differentiator, and 10 is an adder. To briefly describe the operation of such a control system, the rotational speed setting value set by the rotational speed command value setting device 3 is gradually changed at a certain rate of change by the rate of change generator 4, and finally becomes a signal that reaches the rotation speed set value, and is subtracted from the actual rotation speed by an adder (subtractor). If the difference is positive, the adjustment valve drive unit 6 opens the adjustment valve 2. If the polarity is negative, it is driven in the closing direction. Therefore, the amount of steam flowing into the steam turbine 1 is increased or decreased, and the rotation of the steam turbine increases while being automatically controlled according to the rate of change created by the rate of change generator. However, what we need to consider here is the delay in the control system, and the one that is particularly problematic is the steam turbine 1.
This is a delay in the response itself, and in the case of commercial thermal power plants, the response delay is 5 to 10 seconds or more. As a means of correcting this delay in response, a method of predicting changes in rotational speed from the movement of the regulating valve 2 is often used. A specific example of this is the opening detector 8 of the regulating valve 2 shown in FIG. 1 and the differentiator 9 for detecting the amount of change in the opening. By adding the output of the differentiator 9, that is, the amount of change in rotational speed predicted from the amount of change in the opening degree of the regulating valve 2, to the actual value of the rotational speed, the addition point (subtraction point) with the rotational speed change command value is It appears that the rotational speed responded to the apparent speed. As a result, there is almost no delay in the response of the control system, resulting in better control. When there is a significant response delay in the control system as described above, a method of correcting the response delay of the controlled system from a responsive operating point is generally called a disturbance prevention circuit. Further, the output obtained by adding the differential value of the actual rotational speed and the adjustment valve opening degree is used for adjusting the initial value of the rate of change creation section 4 before the start of speed increase. This is indispensable when starting automatic control from an intermediate rotational speed or when increasing the speed again after a love check or rundown, and this initial value adjustment circuit is generally called a command value tracking circuit. Since the command value tracking circuit is always utilized except during automatic speed increase, the output of the rate of change generator 4 is always the same value as the actual rotation speed (the value to which the differential value of the opening degree of the regulating valve is added). . The rate of change generator 4 changes the set value at a certain rate of change, and when the rotational speed command signal V R output from the rate of change generator approaches the set value V S set by the rotational speed command value setter 3. It has a function that gradually reduces the rate of change. This is to prevent the rotational speed of the steam turbine from exceeding the target value, so-called overshoot. A typical example of this rate of change creation section 4 will be explained with reference to FIG. In FIG. 2, 41 is an amplifier, which has a gain of several tens to a hundred times. A limiter 42 limits the output so that it does not exceed a certain value. As mentioned above, 43 is a contact point for switching between automatic speed increase and the command value tracking circuit, and is connected to the output side of limiter 42 during automatic speed increase.
44 is an integrator whose output is the rotational speed command V
It becomes R. The integration time constant of this integrator 44 is long during automatic speed increase, and is extremely short during command value tracking. Further, 45 and 46 are adders (subtractors). Here, when command value tracking is performed, that is, when the integrator input is connected to the adder 46, the integrator 44 input is V O -V R , and when V O > V R , the integrator integrates in the positive direction. Integration is stopped when O = V R , that is, V O -V R =0. Further, in the case of V O <V R , integration is performed in the negative direction, and the integration is stopped when V O =V R as well. Since this is done in an extremely short time, it can be considered that V R =V O at all times. That is, the integrator output V R is always V O . Furthermore, when the speed is automatically increased, that is, when the integrator input is connected to the limiter 42, the following occurs. The integrator input becomes the value set by the limiter 42 at most. For example, the integration time constant of the integrator 44 is 1
If the set value of the limiter is V L , then when the input to the limiter 42 is greater than V L , the limiter output is always V L regardless of the magnitude of the input, so the output of the integrator 44 is V L /min. changes at a rate of change. Also, when the limiter input becomes smaller than V L , the integrator changes at a rate corresponding to the input at that time. Now, if we set V S = 3000 rpm in the state of V R = 0, the output of the adder 45 will be 3000 rpm and will be amplified by the amplifier 41, and the output of the amplifier 41 will be K 41
×3000rpm. (K 41 is the gain of the amplifier 41), where the set value of the limiter 42 V L = 100 rpm
Then, K 41 × 3000 rpm is clearly larger than V L , so the limiter output becomes 100 rpm, which becomes the integrator input, and the integrator increases at a rate of change of 100 rpm/min. If the operation is continued as it is, the integrator output will gradually increase and V R will approach V S . Therefore, the output of adder 45 gradually approaches zero. Eventually, the input to the limiter 42 begins to become smaller than the V L setting value of 100 rpm. In this way, since the integration operation is performed while gradually approaching zero, the rate of change in the integrator output V R gradually decreases. The operation of such a circuit is so-called first-order lag, and when expressed as a transfer function,

【式】となる。このように変化率 作成部は2通りの動きをもつておりその変化のよ
うすを第3図に示す。このように積分器出力、即
ち回転速度指令値VRが回転速度設定値VSに近ず
いたら回転速度変化率をゆるやかにする目的とし
ては第1図に示す回転速度制御系において制御対
象である蒸気タービンの回転数が設定回転数をオ
ーバシユートしないようにする為である。このオ
ーバシユート量は変化率が大きくなるほど大きく
なり、又変化率が小さければ小さいほど小さくな
る。従つて回転速度指令VRが回転速度設定値VS
に近ずいたら回転速度指令値VRの変化率を連続
的に減少させる事によりオーバシユートを防止出
来る事になる。 以上が蒸気タービン自動起動装置の動作の概要
であるが、これまでに説明した内で実際の装置に
おいて変化率は数種類の設定が可能になつてい
る。これは蒸気タービンの熱応力をおさえる為に
適した回転速度変化率にする為である。ここで数
種類の変化率についてその動きを第4図に示す
が、第4図にて解る通り回転速度指令値VRが一
次遅れ動作を始める点が同一である為(変化率が
低くなると回転速度指令値VSに到達する時間が
異常に長くなつてくる事が解る。本来であれば決
められた変化率によつて回転速度設定値に到達し
ている時間をかなり過ぎなければ設定値に到達し
ない事になる。これは変化率設定値が低いほど顕
著に現われる。そこで、回転速度指令値VRが一
次遅れ動作を始める点をもつと上側にすればとい
う考え方も出来が、これでは変化率設定が大きい
場合にオーバシユートしてしまう事になる。従来
の蒸気タービン起動装置においては、この両者の
択一をするか、又は双方の中間をとるかして設定
されていた。即ちオーバーシユートさせるか不要
に長い時間かけて回転速度を目標値まで上げるか
という事にほかならない。これは最近の技術進歩
の上からも憂慮すべき事である。 本発明の目的は上記不具合を解消すべくなされ
たものである。本発明の要点としては、変化率設
定が大きい時には、回転速度指令の変化が一次遅
れ動作し始める点を大きくとり、又、変化率設定
が小さい時には一次遅れ動作し始める点を小さく
とるようにした事である。即ち回転速度指令VR
が一次遅れ動作に移行する点がV−V/K41であ
る事 に着目し、増幅器のゲインK41を変化率設定によ
り切換る事により実現出来るようにした事であ
る。尚VLはリミツタ42の設定値であり変化率
設定により切換えられる。具体的には第5図に示
す如く増幅器41のゲインを変化率設定により切
り換えるものである。 このようにする事により演算増幅器のゲイン
K41を切換る事が出来る。50は変変化率設定の
切換を行う切換スイツチであり、リミツタ42の
リミツト値を切換る分については従来から行なわ
れているものである。増幅器41のゲインを切換
るようにしたのが本発明によるものである。便宜
上増幅器41の変化率設定切換によるゲインをK
A、KB、KC……とするとKA=R/R、KB=R
R、KC =R/R、……でありKA>KB>KC……とした場 合、回転速度指令VRが一次遅れに移行する点
は、V−V/K<V−V/K<V−V
/K……となり、増 幅器41のゲインが大きいほど一次遅れに移する
点が回転速度設定値に近ずく事が解る。従つて変
化率が最小設定のとき増幅器41のゲインをKA
に選び変化率が大きい設定になるに従つてKB
Cとした場合、変化率の設定が大きくなるに従
つて、回転速度指令値VRの変化が一次遅れに移
行する点が下側に下がる。このようすを第6図に
示す。実線が変化率の最小設定のものであり一次
遅れに移行する点が最も上側となる。 このようにする事により切換えられた変化率
個々にオーバシユート防止が出来又、回転速度設
定値に到達する時間も最小限におさえる事が可能
となつた。以上本発明の一実施例として便宜上変
化率設定を階段上に切換る場合について説明した
がもちろん変化率設定が無段階連続設定の場合に
おいても同様に増幅器41のゲインを連続的に変
化させる事により可能である。(増幅器のゲイン
を連続的可変とする方法は既に一般的に知られて
いるので省略する。)
[Formula] becomes. In this way, the rate of change creation section has two types of movements, and the changes are shown in FIG. In this way, when the integrator output, that is, the rotational speed command value V R approaches the rotational speed set value V S , the purpose of slowing down the rotational speed change rate is to control the rotational speed control system shown in Figure 1. This is to prevent the rotation speed of the steam turbine from overshooting the set rotation speed. The amount of overshoot increases as the rate of change increases, and decreases as the rate of change decreases. Therefore, the rotation speed command V R is the rotation speed set value V S
If it approaches , overshoot can be prevented by continuously decreasing the rate of change of the rotational speed command value VR . The above is an overview of the operation of the steam turbine automatic starting device, and as explained above, it is possible to set the rate of change in several types in the actual device. This is to achieve a rate of change in rotational speed suitable for suppressing thermal stress in the steam turbine. Figure 4 shows the movements of several types of change rates.As can be seen in Figure 4, the rotation speed command value V It can be seen that the time it takes to reach the command value V S becomes abnormally long.The set value is reached only after a considerable amount of time has passed when the rotation speed would normally have been reached at the predetermined rate of change. This becomes more noticeable as the rate of change setting value is lower.Therefore, it is possible to consider setting the point above where the rotational speed command value V R starts the first-order lag operation, but in this case, the rate of change becomes If the setting is too large, overshoot will occur.In conventional steam turbine starter systems, settings are made to choose between the two, or to take an intermediate setting between the two.In other words, overshoot occurs. In other words, it takes an unnecessarily long time to increase the rotational speed to the target value.This is a matter of concern in view of recent technological advances.The purpose of the present invention is to solve the above-mentioned problems. The main point of the present invention is that when the rate of change setting is large, the point at which the change in the rotational speed command begins to operate with a first-order lag is set large, and when the rate of change setting is small, the point at which the change in the rotational speed command starts to operate with a first-order lag is set to a large value. This is to keep the rotational speed command V R small.
Focusing on the fact that the point at which the operation shifts to first-order lag operation is V R -V L /K 41 , this can be realized by switching the gain K 41 of the amplifier by setting the rate of change. Incidentally, V L is a set value of the limiter 42 and can be switched by setting the rate of change. Specifically, as shown in FIG. 5, the gain of the amplifier 41 is switched by setting the rate of change. By doing this, the gain of the operational amplifier is
K 41 can be switched. Reference numeral 50 denotes a changeover switch for changing the conversion rate setting, and the switch for changing the limit value of the limiter 42 has been conventionally used. According to the present invention, the gain of the amplifier 41 is switched. For convenience, the gain by changing the rate of change setting of the amplifier 41 is set to K.
A , K B , K C ..., then K A = R A /R, K B = R B /
R, K C = R C /R, ... and K A > K B > K C ..., the point at which the rotational speed command V R shifts to the first-order lag is V R - V L /K A <V R -V L /K B <V R -V L
/K C ..., and it can be seen that the larger the gain of the amplifier 41 is, the closer the point to the first-order lag is to the rotational speed set value. Therefore, when the rate of change is at the minimum setting, the gain of the amplifier 41 is K A
As the rate of change becomes larger, K B becomes larger.
In the case of K C , as the setting of the rate of change increases, the point at which the change in the rotational speed command value V R shifts to first-order lag moves downward. This situation is shown in FIG. The solid line is the minimum setting of the rate of change, and the point at which it shifts to first-order lag is the uppermost point. By doing this, overshoot can be prevented for each changed rate of change, and the time required to reach the rotational speed set value can also be minimized. As an embodiment of the present invention, the case where the rate of change setting is switched stepwise for convenience has been described above, but of course, even when the rate of change setting is a stepless continuous setting, the gain of the amplifier 41 can be changed continuously in the same way. It is possible. (The method of making the amplifier gain continuously variable is already generally known, so it will be omitted.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気タービン自動起動装置の制御概念
図、第2図は変化率作成部の内部の一例を示す
図、第3図は変化率作成部の動作を示す図、第4
図は数種類の変化率についての従来の変化率作成
部の動作を示す図、第5図は本発明による改良を
加えた一例を示す図、第6図は本発明による改良
を加えた結果の変化率の特性を示す図である。 1……蒸気タービン、2……(蒸気)調整弁、
3……回転速度指令値設定器、4……変化率作成
部、5……加算器(減算器)、6……調整弁駆動
部、7……回転速度検出部、8……(調整弁)開
度検出器、9……微分器、10……加算器、41
……増幅器、42……リミツタ、43……自動昇
速/指令値トラツキング切換接点、44……積分
器、45……加算器(減算器)、46……加算器
(減算器)、VS……回転速度指令値設定器3の設
定値、VO……制御系のフイールドバツク値(実
回転速度+調整弁開度微分値)、VR……回転速度
指令値(変化率作成部の出力)、VL……リミツタ
42の設定値、K41……増幅器41のゲイン、
R,RA,RB,RO……増幅器41の演算抵抗、
50……変化率設定切換スイツチ。
Fig. 1 is a conceptual diagram of the control of the steam turbine automatic starting device, Fig. 2 is a diagram showing an example of the inside of the rate-of-change creating unit, Fig. 3 is a diagram showing the operation of the rate-of-change creating unit, and Fig. 4 is a diagram showing the operation of the rate-of-change creating unit.
The figure shows the operation of the conventional rate of change creation unit for several types of rate of change, Figure 5 shows an example of the improvements made by the present invention, and Figure 6 shows the changes resulting from the improvements made by the present invention. It is a figure showing the characteristic of rate. 1...Steam turbine, 2...(steam) regulating valve,
3... Rotation speed command value setter, 4... Change rate creation section, 5... Adder (subtractor), 6... Adjustment valve drive section, 7... Rotation speed detection section, 8... (Adjustment valve ) Opening degree detector, 9... Differentiator, 10... Adder, 41
... Amplifier, 42 ... Limiter, 43 ... Automatic speed increase/command value tracking switching contact, 44 ... Integrator, 45 ... Adder (subtractor), 46 ... Adder (subtractor), V S ...Setting value of rotation speed command value setter 3, V O ...Control system fieldback value (actual rotation speed + adjustment valve opening degree differential value), V R ...Rotation speed command value (change rate creation part output), V L ...set value of limiter 42, K41 ...gain of amplifier 41,
R, R A , R B , R O ...... operational resistance of the amplifier 41,
50...Change rate setting switch.

Claims (1)

【特許請求の範囲】[Claims] 1 発電所の蒸気タービンを目標値まで自動的に
昇速する過程で変化率を数種類選択出来るように
し、又、目標値に対する回転数のオーバーシユー
ト防止回路を備えた蒸気タービンの自動起動装置
において、オーバーシユート防止回路を複数個設
け、これを変化率設定の選択に応じて切換えるよ
うにした事を特徴とした蒸気タービン自動起動装
置。
1. In an automatic starting device for a steam turbine that allows selection of several types of rate of change in the process of automatically increasing the speed of a steam turbine in a power plant to a target value, and is equipped with a circuit to prevent overshoot of the rotation speed relative to the target value. An automatic steam turbine starting device characterized in that a plurality of overshoot prevention circuits are provided and the circuits are switched according to the selection of the rate of change setting.
JP5631379A 1979-05-10 1979-05-10 Automatic starter for turbine Granted JPS55148904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5631379A JPS55148904A (en) 1979-05-10 1979-05-10 Automatic starter for turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5631379A JPS55148904A (en) 1979-05-10 1979-05-10 Automatic starter for turbine

Publications (2)

Publication Number Publication Date
JPS55148904A JPS55148904A (en) 1980-11-19
JPS6120683B2 true JPS6120683B2 (en) 1986-05-23

Family

ID=13023656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5631379A Granted JPS55148904A (en) 1979-05-10 1979-05-10 Automatic starter for turbine

Country Status (1)

Country Link
JP (1) JPS55148904A (en)

Also Published As

Publication number Publication date
JPS55148904A (en) 1980-11-19

Similar Documents

Publication Publication Date Title
US4188781A (en) Non-linear dual mode regulator circuit
KR920005279B1 (en) Digital control system
US4901918A (en) Adaptive anticipator mechanism for limiting room temperature swings
JPS5812443B2 (en) Turbine Seigiyosouchi
JPS6120683B2 (en)
JP3540422B2 (en) Gas turbine controller
JP3772340B2 (en) Valve positioner
JP2000161194A (en) Speed governing control device for hydraulic turbine or reversible pump-turbine
JP2892427B2 (en) Steam turbine controller
JP3800694B2 (en) Water tank level adjustment device for inflow type hydroelectric power generation facilities
JPH08101716A (en) Rotating speed controller
JPH11153003A (en) Turbine control device
JP2511908B2 (en) Turbine controller
JP2668143B2 (en) Steam turbine control device and control method therefor
JPH0346161Y2 (en)
JPS623283B2 (en)
JP2960950B2 (en) Electric / hydraulic governor
JP3961647B2 (en) Drum boiler water supply control device
JPH07174066A (en) Speed governing controller for water turbine
JPS6323760B2 (en)
JP2642999B2 (en) Load control device for combined cycle plant
JPS6053762B2 (en) Turbine control method
JPS62157219A (en) Waste heat turbine pre-pressure controller
JPS6130155B2 (en)
JPH10127099A (en) Turbine control device