JPS61206285A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61206285A
JPS61206285A JP60047024A JP4702485A JPS61206285A JP S61206285 A JPS61206285 A JP S61206285A JP 60047024 A JP60047024 A JP 60047024A JP 4702485 A JP4702485 A JP 4702485A JP S61206285 A JPS61206285 A JP S61206285A
Authority
JP
Japan
Prior art keywords
beams
layer
semiconductor laser
active layers
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047024A
Other languages
Japanese (ja)
Inventor
Keisuke Kojima
啓介 小島
Kazuo Hisama
和生 久間
Toshio Aranishi
新西 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60047024A priority Critical patent/JPS61206285A/en
Publication of JPS61206285A publication Critical patent/JPS61206285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Abstract

PURPOSE:To modulate beams having a plurality of wavelengths by separate currents while coupling all beams to one optical fiber by the same lens by connecting discrete electrode to each of active layers having a plurality of compositions interposed between confinement layers in a wavelength multiple distributed feedback semiconductor laser. CONSTITUTION:When the periods of diffraction gratings 2a-2c are made mutually to differ, electrons injected from electrodes 5a-5c recombine with holes injected from an electrode 5d near the interfaces in Zn diffusion regions 4 of active layers 1a-1c and beams are generated, but the wavelengths of these beams mutually differ, and several oscillating wavelength is stabilized. When the band gaps of the confinement layers 3a-3c are increased previously, the active layers 1a-1c are separated electrically, thus modulating beams by respective current, then extracting beams having each wavelength. A plurality of the active layers are laminated in the vertical direction and several light- emitting section is formed to a vertical type, the intervals of the beam spots of outgoing beams are reduced, and beams are collimated by the same lens and can be projected to the same optical fiber, thus lowering the cost of the system, then miniaturizing the system.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体レーザ装置に関し、特に複数の波長の
光を独立した電流注入により発生する波長多重分布帰還
(DFB)半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device, and more particularly to a wavelength division distributed feedback (DFB) semiconductor laser that generates light of a plurality of wavelengths by independent current injection.

[従来の技術] 第4図(a)、(b)は例えば文献l(電子通信学会、
光電子エレクトロニクス研究会資料OQE 84−78
 (1984年9月))に示された従来の波長多重OF
B半導体レーザの構成図を示し、図において、(1)は
GaIr+AsPでなる活性層、(2)は第4図(b)
に示す如く互いに5種類の回折格子(2a)〜(2e)
のピッチ1臨を異ならせて周期を変化させることにより
発信波侵入a、入す、入C1入d、及び入eを制御でき
るようになされた回折格子、(3)はn−Ga1nAs
Pの光導波層、(5)は電極を示す。
[Prior art] Figures 4 (a) and (b) are shown in, for example, Document 1 (IEICE, Institute of Electronics and Communication Engineers,
Optoelectronics Research Group Material OQE 84-78
(September 1984))
B shows a configuration diagram of a semiconductor laser, in which (1) shows an active layer made of GaIr+AsP, and (2) shows the active layer shown in FIG. 4(b).
As shown in the figure, five types of diffraction gratings (2a) to (2e) are used.
(3) is an n-Ga1nAs diffraction grating that can control the outgoing wave entry a, entry, entry C1 entry d, and entry e by changing the period by changing the pitch 1 of the diffraction grating.
P optical waveguide layer, (5) indicates an electrode.

図示構成のように、素子内部に回折格子(2)を有する
叶B半導体レーザは、特定の波長の光のみを選択的に反
射させるので、その波長でのレーザ発振が可能である。
As shown in the illustrated configuration, the Ko-B semiconductor laser having a diffraction grating (2) inside the element selectively reflects only light of a specific wavelength, and therefore can perform laser oscillation at that wavelength.

そして、回折格子(2a)〜(2e)は互いに周期が異
なるため、別々の波長で発振が可能であり、さらに、活
性層(1)の′屯流注入用電極(5)が1いに空間的に
離隔しているため独立して変調可能な5波長集積DFB
レーザを構成する。
Since the diffraction gratings (2a) to (2e) have different periods, they can oscillate at different wavelengths, and furthermore, the active layer (1)'s flow injection electrode (5) can be arranged in a single space. 5-wavelength integrated DFB that can be modulated independently due to the distance between the wavelengths
Configure the laser.

また、第5図は文献2 (W、T、Tsang、App
l、Phys。
In addition, Figure 5 is from Document 2 (W, T, Tsang, App
l, Phys.

Lett、 、36(6)、P441.1980)に示
された従来の波長多重半導体レーザを示し、図において
、(1a)〜(ld)は互いに組成の異なるn型の活性
層、(3a)〜(3e)はn型の閉じ込め層、(4)は
Znを拡散したP型領域、(5a) 、 (5b)は電
極、(6)基板、(8)は絶縁層を示す。
Lett, , 36(6), P441.1980), in which (1a) to (ld) are n-type active layers having mutually different compositions, (3a) to (3e) is an n-type confinement layer, (4) is a P-type region in which Zn is diffused, (5a) and (5b) are electrodes, (6) is a substrate, and (8) is an insulating layer.

該構成において、電極(5a)からは正孔が、電極(5
b)からは電子がそれぞれP型領域のZn拡散層(4)
 、  n型の閉じ込め層(3a)〜(3e)へ注入さ
れ、注入されたキャリアは活性層(1a)〜(1d)に
分かれて注入され、再結合してそれぞれ異なる波長の光
子を発生するようになっている。
In this configuration, holes are emitted from the electrode (5a) and holes are emitted from the electrode (5a).
From b), electrons pass through the Zn diffusion layer (4) in the P-type region.
, the injected carriers are injected into the n-type confinement layers (3a) to (3e), and the injected carriers are separated and injected into the active layers (1a) to (1d), and are recombined to generate photons with different wavelengths. It has become.

[発明が解決しようとする問題点] しかるに、第4図(a) 、 (b)構成による従来の
波長多重DFB半導体レーザにおいては、各活性層(1
〕は互いに通常100 gmに離れており、従って同一
 チップから複数の波長の光を出すことができるが、光
ファイバのコアの半径は数10pmであるために、これ
らのレーザ光を1本の光ファイ/へに集光するためには
複数な光学系が必要である。
[Problems to be Solved by the Invention] However, in the conventional wavelength-multiplexed DFB semiconductor laser having the configurations shown in FIGS. 4(a) and 4(b), each active layer (1
] are usually separated from each other by 100 gm, so it is possible to emit light of multiple wavelengths from the same chip, but since the radius of the core of an optical fiber is several tens of pm, these laser beams can be combined into one beam. Multiple optical systems are required to focus the light onto the phi/he.

他方、第5図構成による従来の波長多重半導体レーザに
おいては、第4図(a)、(b)構成のものに比して別
々の電流で各波、長の光を変調することは不可能であっ
た。
On the other hand, in the conventional wavelength multiplexed semiconductor laser with the configuration shown in Figure 5, it is impossible to modulate each wavelength and length of light with separate currents compared to the configurations shown in Figures 4(a) and (b). Met.

そこで、この発明は上記のような従来のものの問題点を
解決するためになされたもので、別々の電流で複数の波
長の光を変調できるとともに、すべての光を同じレンズ
で1本の光ファイバに結合させることが可能な波長多重
半導体レーザ装置を得ることを目的とする。
Therefore, this invention was made to solve the above-mentioned problems with the conventional ones. It is possible to modulate light of multiple wavelengths with separate currents, and to transmit all the light through one optical fiber using the same lens. The object of the present invention is to obtain a wavelength multiplexing semiconductor laser device that can be coupled to a wavelength multiplexed semiconductor laser device.

[問題点を解決するための手段] この発明に係る半導体レーザ装置は、閉じ込め層間に間
種される複数の組成の異なる活性層のそれぞれに個別電
極を接続したものである。
[Means for Solving the Problems] A semiconductor laser device according to the present invention has an individual electrode connected to each of a plurality of active layers having different compositions, which are interposed between confinement layers.

[作用] この発明における活性層は別々の電流により駆動され、
互いに異なる波長の光を発生する。
[Function] The active layer in this invention is driven by separate currents,
Generate light of different wavelengths.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図において、(1a)〜(IC)は基板(6)上に縦方
向に積層した活性層、 (2a)〜(2C)は回折格子
、(3a)〜(3C)は各活性層間を分離するバンドギ
ャップのより大きな閉じ込め層、(4)の斜線部はZn
を拡散したP型層、(5a)〜(5C)はそれぞれ活性
Ji#(la)〜(IC)に接続され横方向電流注入を
行う電極、(5d)はP型層(4)に接続された電極で
ある。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, (1a) to (IC) are active layers laminated vertically on the substrate (6), (2a) to (2C) are diffraction gratings, and (3a) to (3C) are separations between each active layer. Confinement layer with larger bandgap, shaded area in (4) is Zn
(5a) to (5C) are electrodes connected to the active Ji#(la) to (IC) for lateral current injection, and (5d) is connected to the P-type layer (4). This is an electrode.

上記構成においては、回折格子(2a)〜(2C)の周
期を互いに異ならせると、電極(5a)〜(5C)から
注入された電子が、電極(5d)から注入された正孔と
活性層(Ia)〜(1c)のZn拡散領域(4)の界面
付近で書結合し光を発生するが、それらの波長は互いに
異なり、また各発振波長は安定することになる。
In the above configuration, when the periods of the diffraction gratings (2a) to (2C) are made different from each other, the electrons injected from the electrodes (5a) to (5C) are combined with the holes injected from the electrode (5d) into the active layer. Although write coupling occurs near the interface of the Zn diffusion regions (4) of (Ia) to (1c) and light is generated, their wavelengths are different from each other, and each oscillation wavelength is stable.

そして、閉じ込め層(3a)〜(3C)のバンドギャッ
プを大きくしておくと電気的に活性層(1a)〜(IC
)は分離されるので、別々の電流で変調可能で、別々の
波長の光を出することができる。
If the band gap of the confinement layers (3a) to (3C) is increased, electrically active layers (1a) to (IC)
) are separated so that they can be modulated with separate currents and emit light at different wavelengths.

しかして、複数の活性層を縦方向に積層して各発光部を
縦型にし、出射光のビームスポットの間隔をたとえば2
〜4gm程度と小さくすることにより、同一のレンズで
光をコリメートさせて同一の光ファイバに入射させるこ
とが可能で、光ファイバと結合できシステムが安価で小
型になる。
Therefore, a plurality of active layers are stacked vertically to make each light emitting part vertical, and the interval between the beam spots of the emitted light is set to 2, for example.
By making it as small as ~4 gm, it is possible to collimate the light with the same lens and input it into the same optical fiber, which allows the system to be coupled with the optical fiber and become inexpensive and compact.

なお、上記実施例では回折格子(2a)〜(2C)は活
性層(1a)〜(Ic)上に直接作っているがS2図に
示されるように活性層(1a)〜(lc)の上に、バン
ドギャップ(屈折率)が活性層と閉じ込め層の中間であ
るガイド層(7)を設け、その上に回折格子(2)を作
ってもよい。
In the above example, the diffraction gratings (2a) to (2C) are formed directly on the active layers (1a) to (Ic), but as shown in Figure S2, the diffraction gratings (2a) to (2C) are formed directly on the active layers (1a) to (lc). In addition, a guide layer (7) having a band gap (refractive index) between that of the active layer and the confinement layer may be provided, and the diffraction grating (2) may be formed on the guide layer (7).

また、上記実施例では回折格子(2a)〜(2c)の周
期を変えているが、活性層、ガイド層、閉じ込め層のう
ちの1つ以上の屈折率(バンドギャップ)を変えて発振
波長を変えてもよい。
In addition, although the period of the diffraction gratings (2a) to (2c) is changed in the above embodiment, the oscillation wavelength can be changed by changing the refractive index (band gap) of one or more of the active layer, guide layer, and confinement layer. You can change it.

また、上記実施例では閉じ込め層(3a)〜(3c)は
一様な組成であるが。第3図に示されるように屈折率を
連続的に変化させることにより(GRIN−SCHと呼
ばれる)光の閉じ込めを強くして、各ビームスポットの
間隔を小さく(2ルω以下)することも可能で、1つの
レンズで同じファイバに集光できる。
Further, in the above embodiment, the confinement layers (3a) to (3c) have a uniform composition. As shown in Figure 3, by continuously changing the refractive index (referred to as GRIN-SCH), it is possible to strengthen the light confinement and reduce the distance between each beam spot (less than 2 ω). This allows light to be focused onto the same fiber using a single lens.

[発明の効果] 以上のように、この発明によれば、各活性層に個別電極
を備えて横方向電流を注入することによりそれぞれ複数
の波長の光を変調でき、複数の発光部を縦型に構成した
ので、1つのレンズで同一ファイバに集光でき、システ
ムの小型、軽量化が可能であり、安価になり、また軸合
せが−ケ所だけですむ。
[Effects of the Invention] As described above, according to the present invention, light of a plurality of wavelengths can be modulated by providing individual electrodes in each active layer and injecting a lateral current, and a plurality of light emitting parts can be arranged vertically. Because of this structure, the light can be focused on the same fiber with one lens, making the system smaller and lighter, less expensive, and only requires alignment at one location.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による波長多重DFB半導
体レーザを示す構成図、第2図はこの発明の他の実施例
で、活性層と回折格子の間にガイド層を設けたちの模式
図、第3図はこの発明の他体レーザの模式図、第5図は
従来の横方向電流注入波長多重半導体レーザの模式図で
ある。 図において、 (1) 、(la)〜(1c)は活性層。 (2)、(2a)〜(2C)は回折格子、(3) 、 
(3a)〜(3c)は閉じ込め層、(5) 、(5a)
〜(5C)は電極、(8)は基板、 (7)はガイド層である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing a wavelength multiplexed DFB semiconductor laser according to one embodiment of the present invention, and FIG. 2 is a schematic diagram showing another embodiment of the present invention in which a guide layer is provided between the active layer and the diffraction grating. , FIG. 3 is a schematic diagram of the other-body laser of the present invention, and FIG. 5 is a schematic diagram of a conventional lateral current injection wavelength multiplexed semiconductor laser. In the figure, (1), (la) to (1c) are active layers. (2), (2a) to (2C) are diffraction gratings, (3),
(3a) to (3c) are confinement layers, (5) and (5a)
- (5C) are electrodes, (8) are substrates, and (7) are guide layers. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に縦方向に積層される複数の活性層と、各
活性層に近接する回折格子と、各活性層間を分離するバ
ンドギャップのより大きな閉じ込め層と、各活性層にそ
れぞれ接続されて異なる横方向電流注入を行なう複数の
電極を備えたことを特徴とする半導体レーザ装置。
(1) Multiple active layers stacked vertically on a substrate, a diffraction grating close to each active layer, a confinement layer with a larger band gap separating each active layer, and a confinement layer connected to each active layer. 1. A semiconductor laser device comprising a plurality of electrodes for injecting different lateral currents.
(2)上記各活性層上に、バンドギャップが活性層と閉
じ込め層の中間であるガイド層を設け、各ガイド層上に
上記回折格子を設けたことを特徴とする特許請求の範囲
第1項記載の半導体レーザ装置。
(2) A guide layer having a band gap intermediate between the active layer and the confinement layer is provided on each of the active layers, and the diffraction grating is provided on each guide layer. The semiconductor laser device described.
(3)上記各回折格子の周期を変えることにより異なる
波長の光を発生させることを特徴とする特許請求の範囲
第1項または第2項記載の半導体レーザ装置。
(3) The semiconductor laser device according to claim 1 or 2, wherein light of different wavelengths is generated by changing the period of each of the diffraction gratings.
(4)上記活性層、ガイド層、及び閉じ込め層の少なく
とも1つ以上の組成を変えることにより異なる波長の光
を発生させることを特徴とする特許請求の範囲第1項ま
たは第2項記載の半導体レーザ装置。
(4) The semiconductor according to claim 1 or 2, wherein light of different wavelengths is generated by changing the composition of at least one of the active layer, the guide layer, and the confinement layer. laser equipment.
(5)上記閉じ込め層の組成を連続的に変化させたこと
を特徴とする特許請求の範囲第4項記載の半導体レーザ
装置。
(5) The semiconductor laser device according to claim 4, wherein the composition of the confinement layer is continuously changed.
JP60047024A 1985-03-08 1985-03-08 Semiconductor laser device Pending JPS61206285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047024A JPS61206285A (en) 1985-03-08 1985-03-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047024A JPS61206285A (en) 1985-03-08 1985-03-08 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61206285A true JPS61206285A (en) 1986-09-12

Family

ID=12763609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047024A Pending JPS61206285A (en) 1985-03-08 1985-03-08 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61206285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706091A1 (en) * 1993-06-04 1994-12-09 Thomson Csf Two-colour semiconductor laser
FR2725527A1 (en) * 1994-10-10 1996-04-12 Talneau Anne OPTICAL FILTER FOR MULTIPLE GUIDED WAVELENGTHS
WO2011113638A1 (en) * 2010-03-17 2011-09-22 Osram Opto Semiconductors Gmbh Laser diode assembly and method for producing a laser diode assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706091A1 (en) * 1993-06-04 1994-12-09 Thomson Csf Two-colour semiconductor laser
FR2725527A1 (en) * 1994-10-10 1996-04-12 Talneau Anne OPTICAL FILTER FOR MULTIPLE GUIDED WAVELENGTHS
WO1996011416A1 (en) * 1994-10-10 1996-04-18 France Telecom Optical filter for a plurality of guided wavelengths
WO2011113638A1 (en) * 2010-03-17 2011-09-22 Osram Opto Semiconductors Gmbh Laser diode assembly and method for producing a laser diode assembly
US9130353B2 (en) 2010-03-17 2015-09-08 Osram Opto Semiconductors Gmbh Laser diode assembly and method for producing a laser diode assembly
US9692210B2 (en) 2010-03-17 2017-06-27 Osram Opto Semiconductors Gmbh Laser diode assembly
US10020639B2 (en) 2010-03-17 2018-07-10 Osram Opto Semiconductors Gmbh Laser diode assembly

Similar Documents

Publication Publication Date Title
US6516017B1 (en) Multiwavelength semiconductor laser device with single modulator and drive method therefor
US5536085A (en) Multi-wavelength gain-coupled distributed feedback laser array with fine tunability
Lee et al. Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed
US10554013B2 (en) Semiconductor laser apparatus
US6081636A (en) Wavelength division multiplexing optical transmission device and wavelength division multiplexing optical transmission system
JPS61191093A (en) Semiconductor device
JPS61206285A (en) Semiconductor laser device
JP2891741B2 (en) Semiconductor integrated light source
JP6761392B2 (en) Semiconductor optical integrated device
JP2019079993A (en) Semiconductor optical element
JP3257185B2 (en) Semiconductor light source device and driving method thereof
CA2267018C (en) Optical wavelength converter with active waveguide
WO2019172089A1 (en) Semiconductor integrated optics element and production method therefor
JPS61255087A (en) Semiconductor laser oscillation device
JP2003168842A (en) Wavelength variable distribution feedback type laser element and wavelength variable distribution feedback type laser integrated device
JPS62124791A (en) Semiconductor laser
WO2023228346A1 (en) Semiconductor optical integrated element and method of production
JPH11174254A (en) Semiconductor optical function element and semiconductor optical function device
JP3409741B2 (en) Semiconductor laser optical module for WDM
JPH01101684A (en) Manufacture of wavelength multiplexed semiconductor laser
CN117859245A (en) Semiconductor emitter with integrated mPD
US20030012232A1 (en) Multi-wavelength switchable laser
JPS62109388A (en) Laser diode
JPH08320507A (en) Spatial type optical deflection element
JPS6123382A (en) Multi-wavelength semiconductor laser