JPS61206256A - Color solid-state image pickup device - Google Patents

Color solid-state image pickup device

Info

Publication number
JPS61206256A
JPS61206256A JP60046016A JP4601685A JPS61206256A JP S61206256 A JPS61206256 A JP S61206256A JP 60046016 A JP60046016 A JP 60046016A JP 4601685 A JP4601685 A JP 4601685A JP S61206256 A JPS61206256 A JP S61206256A
Authority
JP
Japan
Prior art keywords
color
pixel
color filter
spectral
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60046016A
Other languages
Japanese (ja)
Inventor
Takahiro Yamaguchi
山口 敬博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60046016A priority Critical patent/JPS61206256A/en
Publication of JPS61206256A publication Critical patent/JPS61206256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To optimize the spectral-response characteristics of a luminance signal by forming a color filter for a single plate color solid-state image pickup element by a dyed layer by two complementary colors such as Ye and Cy. CONSTITUTION:Patterns for a color filter are repeated while using eight picture elements in total of patterns Cy1, Cy2, Ye1, Ye2, G1-G4 for the color filter as a minimum unit. The title device is divided into green filter sections 41 coating the whole surface, photosensitive sections 42 for Cy picture elements, openings 43 for Ye dyed layers, openings 44 for Cy dyed layers, openings 45 for Ye dyed layers, etc. Odd lines in Odd fields form the repeated signal rows of (Cy1+Ye1), (G1+G2), (Cy1+Ye1), (G1+G2)..., and even lines shape the repeated signal rows of (Cy2+G4), (G3+Ye2), (Cy2+G4), (G3+Ye2).... These signal rows are employed as luminance signals by band-limiting signal rows made to be contained in one lines to reading frequency or less. The same applies to both lines in even numbered fields.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はカラー固体撮像装置に係わシ、特に単板カラー
カメラに使用されるものの色分離フィルタの部分の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a color solid-state imaging device, and particularly to improvements in the color separation filter portion of a device used in a single-chip color camera.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に固体撮像素子は、・各画素の感度を均一化するた
め、半導体基板中の感光部分へ入射する光量を、基板上
面を被うht (アルミニウム)等の光シールrの一定
開口によシ制限してaる。
In general, solid-state image sensors: - In order to equalize the sensitivity of each pixel, the amount of light incident on the photosensitive portion of the semiconductor substrate is limited by a fixed aperture of an optical seal r made of aluminum or the like that covers the top surface of the substrate. Do a.

その断面図を第13図に示す。図中11は半導体基板、
12はAt層、13は紅によるチー9−チヤである。
A sectional view thereof is shown in FIG. 11 in the figure is a semiconductor substrate;
12 is an At layer, and 13 is a 9th layer made of red.

単板カラー固体撮像素子は、通常水平方向に1異なる2
色以上の分光透過率特性をもつ色フィルタが繰)返えし
形成される。ここで従来型の単板固体撮像素子は、半導
体基板中の1つの感光画素に対して、1色の色フィルタ
を形成している。具体例として、Y・(黄色) 、’ 
Cy(シアン)の2つの補色フィルタをm−て、Ye 
* Cy # G(緑)の3色の色フィルタ層を形成し
た単板色多重方式のカラーデバイスの断面構造kl/E
14図KyF、す。図中21はC7染色層、22はY・
染色層、23はすe感光画素、24はG感光画素、25
はC7感光画素である。
A single-plate color solid-state image sensor usually has two
Color filters with spectral transmittance characteristics that exceed color are repeatedly formed. Here, in a conventional single-plate solid-state image sensor, a single color filter is formed for one photosensitive pixel in a semiconductor substrate. As a specific example, Y・(yellow),'
Two complementary color filters of Cy (cyan) are m- and Ye
* Cross-sectional structure kl/E of a color device using a single-plate color multiplexing method in which three color filter layers of Cy #G (green) are formed
Figure 14 KyF. In the figure, 21 is the C7 staining layer, 22 is the Y/
Staining layer, 23 E photosensitive pixel, 24 G photosensitive pixel, 25
is a C7 photosensitive pixel.

また他の従来例として、色差順次方式の色フィルタ配列
では、実際に1画素内′に色フィルタを2色にぬ部分は
虎ものがある。その目的は、色差信号を水平方向の信号
ラインにおける変調成分として取シ出す際に、色成分が
あると変調分が色差信号としてl水平期間毎にあられれ
るが、均一光が入射した際にどんな色であれ、輝度成分
が1水平期間毎に等しくなるようにしたものである。
As another conventional example, in the color filter array of the color difference sequential method, there are actually many parts in which two color filters are not provided within one pixel. The purpose of this is that when extracting a color difference signal as a modulation component in a horizontal signal line, if there is a color component, the modulation component is generated as a color difference signal every horizontal period, but Regardless of the color, the luminance component is made equal for each horizontal period.

ここで上記従来技術には、下記の(−11〜しうの問題
点がある。叩固体撮儂素子の感光画素の有効感光面上に
1層だけの染色層を形成することは、固体撮像素子の感
光画素の固有の分光特性に対して、固有の分光透過率特
性の色フィルタを形成することになシ、各色画素のトー
タル分光感度特性は、各染色層の特性によシー意に決定
される。それらの色画素のトータル分光感度特性を制御
する方法は、染色層の分光透過率特性もしくは固体撮像
素子の感光画素の分光感度特性を制御しなければならな
り。
Here, the above-mentioned conventional technology has the following problems (-11 to 2). It is necessary to form a color filter with unique spectral transmittance characteristics for the unique spectral characteristics of the photosensitive pixels of the element, and the total spectral sensitivity characteristics of each color pixel are determined arbitrarily by the characteristics of each dyeing layer. The method for controlling the total spectral sensitivity characteristics of these color pixels requires controlling the spectral transmittance characteristics of the dyed layer or the spectral sensitivity characteristics of the light-sensitive pixels of the solid-state image sensor.

f口) 単板カラーカメラの輝度信号は、偽信号等の発
生を抑圧する目的では、固体撮像素子の全感光画素から
取るのが理想である。固体撮像素子の感光画素の表面は
、多重用の色フィルタに〈シかえし被われてhる。色フ
ィルタの分光特性を含めて、全画素信号を輝度信号とし
て用いるためには、色の多重周波数以下の帯域に水平読
み出し信号の帯域を制限すればよhが、輝度信号として
適切な分光感度特性を得るためには、視感度補正用フィ
ルタを用いて、入射光の分布を補正する。またその処理
で不充分な場合は、輝度信号に赤信号、青信号の成分を
電気的に演算するのが一般的に行なわれ、信号のS/N
比が低下する結果となる。
For the purpose of suppressing the occurrence of false signals, the brightness signal of a single-chip color camera is ideally taken from all the light-sensitive pixels of the solid-state image sensor. The surface of the photosensitive pixel of the solid-state image sensor is covered with a multiplexing color filter. In order to use all pixel signals as a luminance signal, including the spectral characteristics of the color filter, it is necessary to limit the band of the horizontal readout signal to a band below the color multiplex frequency, but the spectral sensitivity characteristics appropriate for a luminance signal In order to obtain this, a visibility correction filter is used to correct the distribution of incident light. If that processing is insufficient, it is common to electrically calculate the red and blue signal components of the luminance signal, and the S/N of the signal is
This results in a decrease in the ratio.

(3前記色差順次方式の色フィルタでは、Ye +Vh
 、 Cy 、 G(D 4色の組み合わせと、Re 
G + Cy*Gの4色の組み合わせにより色フィルタ
を形成する恵め、特定の2色即ち2層の染色層のみで色
フィルタを形成できない、よって2層の重ね合わせ等で
色フィルタを形成してゆくのは難しく、結局3色以上の
フィルタを必要とし、製造上の技術的困難さが伴なう。
(3) In the color filter of the color difference sequential method, Ye +Vh
, Cy, G (D 4 color combination and Re
The advantage of forming a color filter by combining the four colors of G + Cy * G is that it is not possible to form a color filter with only two specific colors, that is, two dyed layers, so it is possible to form a color filter by overlapping two layers, etc. However, it is difficult to develop such a method, and in the end, filters of three or more colors are required, which is accompanied by technical difficulties in manufacturing.

〔発明の目的〕[Purpose of the invention]

キャリア周波数によ)色変調され北固体撮像素子におり
ては、1水平期間の信号を帯域制限して、輝度信号の主
たる部分を得るものがほとんどである。輝度信号の分光
感度特性は、色フィルタを形成する前の固体撮像素子の
分光感度特性と、その1水平ラインに存在する金色フィ
ルタの平均透過率特性の積となる。その輝度信号の分光
感度特性を制御するには、上記の如く光路中に補正フィ
ルタを設けるか、上記方法で得られた輝度信号に、色分
離後の赤信号及び青信号を加減算するか、色フィルタの
分光透過率特性を直接コントロールすることになる。
In most solid-state image sensing devices that are color-modulated (by carrier frequency), the main portion of the luminance signal is obtained by band-limiting the signal for one horizontal period. The spectral sensitivity characteristic of the luminance signal is the product of the spectral sensitivity characteristic of the solid-state image sensor before forming the color filter and the average transmittance characteristic of the gold filter present in one horizontal line. To control the spectral sensitivity characteristics of the luminance signal, you can either install a correction filter in the optical path as described above, add or subtract the red and blue signals after color separation to the luminance signal obtained by the above method, or filter the luminance signal using a color filter. This allows direct control of the spectral transmittance characteristics.

そこで本発明は、上記信号の加減算及び色フィルタの分
光透過特性のコントロール及び光路中の視感度補正フィ
ルタ等の使用を最小限にとどめ、輝度信号の分光感度特
性を最適化することを目的とする。
Therefore, the present invention aims to optimize the spectral sensitivity characteristics of luminance signals by minimizing the addition and subtraction of the signals, controlling the spectral transmission characteristics of color filters, and minimizing the use of visibility correction filters in the optical path. .

〔発明の概要〕[Summary of the invention]

本発明にて実現した単板カラー固体撮像素子の色フィル
タは、例えばYeとcyの2つ補色の染色層忙より形成
される。Y・及びay染色層が単層で感光画素を被う場
合、固体撮像素子の分光特性が平坦であるとすると、そ
の画素の分光感度は、txtxその染色層の分光透過率
特性を反映する。Ye及びcyの両層が同一感光画素上
を被った場合、その画素はGの分光感度特性をもっこと
になる。実際感光画素は、半導体基板表面に分離して湛
び、Y・及びayの分光感度を有する画素は、CyeY
*2層の染色層に設けられた開口でつくられる。即ちY
e感度特性を有する画素の上にはay層がなく、Cy感
度特性を有する画素の上にはYe層がなくなるようにつ
くられる。ここで水平1ラインの平均分光感度が輝度信
号の分光特性となる。実際この発明におりて設けられた
色フイルタ画素の個数比は、Y・: C,: G〒1:
1:2である。
The color filter of the single-plate color solid-state imaging device realized by the present invention is formed from dyed layers of two complementary colors, for example, Ye and Cy. When a single Y and ay dye layer covers a photosensitive pixel, assuming that the spectral characteristics of the solid-state image sensor are flat, the spectral sensitivity of the pixel reflects the spectral transmittance characteristics of the dye layer. When both Ye and cy layers overlap on the same photosensitive pixel, that pixel will have more of the spectral sensitivity characteristic of G. In fact, photosensitive pixels are separated on the surface of the semiconductor substrate, and pixels with spectral sensitivities of Y and ay are CyeY
*Made with openings in two dyed layers. That is, Y
They are formed so that there is no Ay layer above the pixel having the E sensitivity characteristic, and there is no Ye layer above the pixel having the Cy sensitivity characteristic. Here, the average spectral sensitivity of one horizontal line becomes the spectral characteristic of the luminance signal. In fact, the number ratio of color filter pixels provided in this invention is Y: C,: G〒1:
The ratio is 1:2.

本発明においては、例えばY・画素を形成する際K C
7染色層に設ける開口を実際の感光画素サイズより小さ
くシ、Y・画素はあたかもGの画素に囲まれた形状とな
るようにした。これKよシ輝度の分光感度は、赤の帯域
が低下する。即ち民生用ビデオカメラでは、標単設定に
用いる光源が3100〜5000にと赤色成分が多いた
め、輝度分光特性及び色信号蓋の適正比率化する理由で
用いるシアン色の視感度補正フィルタを、厚みの薄いも
の即ち効果の弱すものでよいことになる。
In the present invention, for example, when forming Y pixels, K C
The aperture provided in the seventh dyeing layer was made smaller than the actual photosensitive pixel size, so that the Y pixel had a shape as if it were surrounded by G pixels. The spectral sensitivity of K and higher luminance decreases in the red band. In other words, in consumer video cameras, the light source used for standard setting is 3100 to 5000, which has a large red component. This means that it is sufficient to use a thinner one, that is, one that has a weaker effect.

〔発明の実施例〕[Embodiments of the invention]

本発明を実現するに当たシ、固体撮像素子にはイメーノ
サイズがAフォーマ、トのインタライン転送型CODを
用いた。第1図にその撮像面の概略図を示す。図中31
は感光画素、32は電荷転送垂直CCD、33は電荷転
送水”FCCD、34は半導体基板である。
In realizing the present invention, an interline transfer type COD with an image size of A-former or T was used as a solid-state image sensor. FIG. 1 shows a schematic diagram of the imaging plane. 31 in the diagram
3 is a photosensitive pixel, 32 is a charge transfer vertical CCD, 33 is a charge transfer water "FCCD", and 34 is a semiconductor substrate.

CCD撮像素子は、上下2画素の信号を加算して読み出
すフィールP蓄積モードにて駆動した。
The CCD image sensor was driven in a field P accumulation mode in which the signals of the upper and lower two pixels were added and read out.

第2図にその駆動方法を示した。第2図(alは奇数フ
ィールドの読み出し時の電荷移動の概念図、第2図(b
)は偶数フィールドの読み出し時の電荷移動の概念図で
ある。即ち撮像面におい【、上下加算する画素の組み合
わせを、奇数フィールドと偶数フィールドにてlビ、ト
ずらせることによ)、各フィールド毎のインタレース読
み出しを行なう・ 本発明にて検討した色フィルタ配列の本発明に実施する
前の撮像面形状を第3図に示す。図示される如く色フィ
ルタの/譬ターンCyl −Cy2 *Yel 、 Y
・2.G1−G4の計8画素を最小単位として繰シ返さ
れる0図中41は全面を被う緑色フィルタ部分、42は
cy画素の感光部分、43はYe染色層の開口、44は
cy染色層の開口、45はYe染色層の開口である。第
3図に示すように読み出された場合、奇数フィールドの
奇数ラインは、(Cyl+Y・1 ) 、 (Gl +
G2 ) 、 (Cyl+Y・1)。
Figure 2 shows the driving method. Figure 2 (al is a conceptual diagram of charge movement during odd field readout, Figure 2 (b)
) is a conceptual diagram of charge movement during even field readout. That is, on the imaging surface, interlaced readout is performed for each field by shifting the combination of pixels to be added up and down by 1 bi between odd and even fields.The color filter considered in the present invention FIG. 3 shows the shape of the imaging surface of the array before implementing the present invention. As shown in the figure, the color filter /translation Cyl −Cy2 *Yel, Y
・2. In the figure, 41 is the green filter part covering the entire surface, 42 is the photosensitive part of the cy pixel, 43 is the opening of the Ye dyeing layer, and 44 is the opening of the cy dyeing layer. The opening 45 is an opening in the Ye dyeing layer. When read out as shown in FIG. 3, the odd lines of the odd field are (Cyl+Y・1), (Gl+
G2), (Cyl+Y・1).

(Gl +G2 ) 、・・・・・・のく)返えし信号
列となシ、奇数フィールドの偶数ラインは、(Cy2 
+ G4 ) e(G3+Ye2 ) 、 (Cy2+
G4 ) 、 (G3+Y*2 ) = ”・の〈シか
えしとなる。lライン中に含まれる信号列を、読み出し
周波数以下に帯域制限することによシ、これらの信号列
は輝度信号として用いることができる。同様忙偶数フィ
ールPの両う  ゛インにおいても行なう、Y・画素、
Cy画素、G画素の分光感度特性をそれぞれY・(λ)
ecy(λ)、G(λ)とすると、輝度の分光感度特性
Y(λ)は、Y(λ)= (Ys (λ)+ Cy (
J)+ 2 G (λ))/2となる。
(Gl +G2) ,...) return signal string, the even line of the odd field is (Cy2
+ G4) e(G3+Ye2), (Cy2+
G4), (G3+Y*2) = ''. By band-limiting the signal strings included in the l line to below the readout frequency, these signal strings can be used as luminance signals. The same process can be performed on both sides of the busy-even field P, Y, pixel,
Spectral sensitivity characteristics of Cy pixel and G pixel are respectively Y・(λ)
ecy (λ) and G (λ), the spectral sensitivity characteristic Y (λ) of luminance is Y (λ) = (Ys (λ) + Cy (
J)+2G(λ))/2.

第3図と同様の色フィルタ配列を用いて、本発明にて実
現した色フィルタの撮像面の平面構造を第4図(a)に
、断面構造を第4図(bJK、示す。
Using the same color filter array as shown in FIG. 3, FIG. 4(a) shows the planar structure of the imaging surface of the color filter realized by the present invention, and FIG. 4(bJK) shows the cross-sectional structure.

これは従来の第14図に対応させた場合の例である。第
4図において51はY・染色層の開口、52はC7染色
層の開口、53はY・染色層の開口、54はYe画素の
感光部分、55はG画素の感光部分、56はcy画素の
感光部分である。この構成の特徴は、図示される如< 
Cy染色層に、有効感光部分よシ小さい開口を設けてつ
くられる。
This is an example of a case corresponding to the conventional FIG. 14. In FIG. 4, 51 is an opening in the Y dyeing layer, 52 is an opening in the C7 dyeing layer, 53 is an opening in the Y dyeing layer, 54 is the photosensitive area of the Ye pixel, 55 is the photosensitive area of the G pixel, and 56 is the cy pixel. This is the photosensitive part of the The features of this configuration are as shown in the figure.
It is made by providing a Cy-dyed layer with an aperture smaller than the effective photosensitive area.

即ちYa画素は、Y@の分光透過率特性のフィルタが形
成された部分aと、Gの分光透過率特性のフィルタが形
成された部分すとに区分される。
That is, the Ya pixel is divided into a portion a where a filter with a Y@ spectral transmittance characteristic is formed and a portion a where a filter with a G spectral transmittance characteristic is formed.

急の部分とbの部分の面積比をA:Bとすると、本発明
によ)考見られたカラー撮像素子における輝度信号の分
光感度特性Y1λ)は、rltλ)=[”C7(λ)+
TFM” ’λ)+訊G(λ)+2G(λ]〕/4・・
・・・・(11 となる、この(11式の赤成分を含む第2項つまシム・
Y・(λ)/(A+8)の項で、Bの値をムに比べて大
きくすることKよシ、輝度信号の分光感度特性Y’(J
)は、徐々に赤成分の感度が少なくなってくるものであ
る。
Assuming that the area ratio of the steep part and the part b is A:B, the spectral sensitivity characteristic Y1λ) of the luminance signal in the color image sensor considered according to the present invention is rltλ)=["C7(λ)+
TFM” 'λ)+G(λ)+2G(λ]]/4...
...(11) This second term or shim containing the red component of equation (11)
In the term Y・(λ)/(A+8), the spectral sensitivity characteristic Y'(J
), the sensitivity to the red component gradually decreases.

従来法のフィルタ構造にて各色の感光画素を形成した場
合に、1水平期間に読み出される信号の帯域制限を行な
い、輝度信号を得たとすると、輝度信号の分光特性Y(
λ)は各色画素出力の平均となシ、下式となる。
When photosensitive pixels of each color are formed using a conventional filter structure, if a luminance signal is obtained by band-limiting the signal read out in one horizontal period, the spectral characteristic of the luminance signal Y (
λ) is the average of the pixel outputs of each color, and is expressed by the following formula.

Y(λ)= CYs (λ)+CF(λ)+2G(λ)
〕/4各色画各色一般的な等エネルギー分光感度特性を
第5図〜第7図とすると、この色フイルタ構造のデバイ
スの輝度分光特性Y(λ)は第8図となる。
Y(λ)=CYs(λ)+CF(λ)+2G(λ)
]/4 Each color image If the general equal-energy spectral sensitivity characteristics of each color are shown in FIGS. 5 to 7, the luminance spectral characteristics Y(λ) of the device with this color filter structure are shown in FIG. 8.

実際にカラーカメラに使用される場合は、色温度300
0に程度の白色光源が用いられることが多く、実際は赤
の帯域の光量が非常に多す、赤帯域と前帯域の信号エネ
ルギーのアン/4ランスを解消子るため、01色の視感
度補正フィルタを光路中に設け、赤帯域の実質光量を減
らす操作を行なう。一方、本発明によシ実現したcy染
色層の開口を感光画素の、大きさよ)小さくし、Ye色
画素を形成したデバイスのYe0画素分光感度特性は、
笛9図のように制御することができる。
When actually used in a color camera, the color temperature is 300.
In many cases, a white light source of about 0.0 is used, and in reality the amount of light in the red band is very large.In order to eliminate the imbalance between the signal energy of the red band and the front band, 01 color visibility correction is performed. A filter is installed in the optical path to reduce the actual amount of light in the red band. On the other hand, the Ye0 pixel spectral sensitivity characteristics of a device in which the aperture of the cy dye layer realized by the present invention is made smaller than the size of the photosensitive pixel to form a Ye color pixel are as follows:
The whistle can be controlled as shown in Figure 9.

ay染色層の開口が感光画素の大きさよシも大きい場合
は第6図のとうシであるが、感光画素の大きさよシも小
さくなるに従がい、Ye0画素赤の感度は下がってぐる
。cy染色層の大きさを、仮に感光画素の凭としたとき
のYe0画素分光感度は第9図のとうシとなる。
If the aperture of the ay dye layer is larger than the size of the photosensitive pixel, the situation is as shown in FIG. 6, but as the size of the photosensitive pixel becomes smaller, the sensitivity of the Ye0 pixel red decreases. If the size of the cy dye layer is used as the size of the photosensitive pixel, the Ye0 pixel spectral sensitivity will be as shown in FIG.

また本発明による色フィルタの構造を採用すると、異な
る色画素間において他の色画素のフィルタによ多分光さ
れた光によシ、その感光画素が感光するという他色画素
間の偽色信号を少なくすることができる。第11図に、
従来デバイスのY・画素の色フィルタを通過したYe光
が、右どなルのG画素へもれ込む様子を示す。即ち本発
明のフィルタ構造によれば、Ye画素上のcy染色層の
開口は74%さく、右どなりのG画素へもれ込むY・光
は少くなる。つtb光のもれ込みが少くなった分だけ、
感光画素の開口を制約しているkl等のア/4−チャを
広げることができるものである。
Furthermore, when the structure of the color filter according to the present invention is adopted, false color signals between pixels of different colors, where the light-sensitive pixel is exposed to light multiplied by the filter of the other color pixel, are generated. It can be reduced. In Figure 11,
This figure shows how Ye light that has passed through the Y pixel color filter of a conventional device leaks into the G pixel on the right side. That is, according to the filter structure of the present invention, the aperture of the cy dye layer on the Ye pixel is 74% smaller, and less Y light leaks into the G pixel on the right. As much as the amount of light leaking is reduced,
It is possible to widen the aperture, such as kl, which restricts the aperture of a photosensitive pixel.

〔発明の効果〕 以上説明した如く本発明によれば、輝度信号の分光感度
特性を最適化できるため、従来の信号加減算、色フィル
タの分光透過率特性のコントロール及び光路中の視感度
補正フィルタの使用等を最少限にとどめ、また隣接画素
間の光のもれを少なくできる等の利点を有したカラー固
体撮儂装置が提供できるものである。
[Effects of the Invention] As explained above, according to the present invention, the spectral sensitivity characteristics of the luminance signal can be optimized, so that conventional signal addition/subtraction, control of the spectral transmittance characteristics of color filters, and control of the visibility correction filter in the optical path can be performed. A color solid-state photographic device can be provided which has advantages such as minimizing usage and reducing light leakage between adjacent pixels.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を説明する念めのもので、第1図
はインターライン型CODの撮像面の概略図、第2図(
s)はこのCCD固体撮儂装置をフィールド蓄積モーr
で駆動したときの奇数フィールド時の電荷移動状態を示
す概念図、第2図(blは同偶数フィールド時の電荷移
動状態を示す概念図、第3図は本発明にて検討した色フ
ィルタの配列で本発明を実施する前の撮像面の平面図、
第4図(a)は本発明の実施例の撮像面の平面図、第4
図(b)は同断面図、第5図はcy画素の分光感度特性
図、第6図はY・画素の分光感度特性図、第7図はG画
素の分光感度特性図、第8図は第5図から第6図の各分
光感度特性の画素の出力信号よシ輝度信号をつくった場
合の分光特性図、第9図はCy染色層の開口を小さくし
たY・画素の分光特性図、第10図はcy染色層の開口
を小さくしたカラー素子の輝度分光感度特性図、第11
図は従来法によシ色フィルタを形成し九場合の光もれの
概念図、第12図は本発明によ]色フィルタを形成した
場合の光もれの概念図、第13図はカラーフィルタ形成
前の白黒固体装備素子の断面図、第14図は従来のカラ
ー固体撮儂素子の断面図である。 11・・・半導体基板、21・・・cy染色層、22・
・・Y6染色層、54・・・ye画素の感光部、55・
・・G画素の感光部、56・・・C7画素の感光部。 出願人代理人  弁理士 鈴 江 武 彦第1図 第4図 (b) 1+ 棟 嬌枳〈づ φ枳4〈 第11図 第13図 第14図
The figures are for the purpose of explaining one embodiment of the present invention.
s) uses this CCD solid-state imaging device in a field storage mode.
Fig. 2 is a conceptual diagram showing the charge movement state in an odd field when driven with (BL is a conceptual diagram showing the charge movement state in an even field), and Fig. 3 is an arrangement of color filters considered in the present invention. A plan view of the imaging surface before implementing the present invention in
FIG. 4(a) is a plan view of the imaging surface of the embodiment of the present invention;
Figure (b) is the same cross-sectional view, Figure 5 is the spectral sensitivity characteristic diagram of the cy pixel, Figure 6 is the spectral sensitivity characteristic diagram of the Y pixel, Figure 7 is the spectral sensitivity characteristic diagram of the G pixel, and Figure 8 is the spectral sensitivity characteristic diagram of the G pixel. A spectral characteristic diagram when a luminance signal is created from the output signal of each pixel with the spectral sensitivity characteristics shown in Figures 5 to 6, and Figure 9 is a spectral characteristic diagram of a Y pixel with a small aperture of the Cy dye layer. Figure 10 is a luminance spectral sensitivity characteristic diagram of a color element with a small aperture in the cy dye layer;
The figure is a conceptual diagram of light leakage when a color filter is formed using the conventional method, Figure 12 is a conceptual diagram of light leakage when a color filter is formed according to the present invention, and Figure 13 is a conceptual diagram of light leakage when a color filter is formed using the present invention. FIG. 14 is a sectional view of a black-and-white solid-state device before forming a filter, and FIG. 14 is a sectional view of a conventional color solid-state device. 11... Semiconductor substrate, 21... cy dyed layer, 22...
...Y6 dyeing layer, 54...ye pixel photosensitive area, 55.
...Photosensitive part of G pixel, 56...Photosensitive part of C7 pixel. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 4 (b) 1+ Munekikaku〈zuφ枳4〈 Figure 11 Figure 13 Figure 14

Claims (1)

【特許請求の範囲】[Claims]  第1の分光透過率特性を有する第1の染色層と、第2
の分光透過率特性を有する第2の染色層をそれぞれ感光
画素上に設け、一方の感光画素上にある第1の染色層上
の一部に、他方の感光画素上にある第2の染色層を重ね
て形成したことを特徴とするカラー固体撮像装置。
a first dyed layer having a first spectral transmittance characteristic;
A second dyed layer having a spectral transmittance characteristic of A color solid-state imaging device characterized by being formed by overlapping.
JP60046016A 1985-03-08 1985-03-08 Color solid-state image pickup device Pending JPS61206256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046016A JPS61206256A (en) 1985-03-08 1985-03-08 Color solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046016A JPS61206256A (en) 1985-03-08 1985-03-08 Color solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS61206256A true JPS61206256A (en) 1986-09-12

Family

ID=12735250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046016A Pending JPS61206256A (en) 1985-03-08 1985-03-08 Color solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS61206256A (en)

Similar Documents

Publication Publication Date Title
JPH03135184A (en) Color solid-state image pickup element
US5063439A (en) Solid state pickup system having improved color reproducibility
US4479143A (en) Color imaging array and color imaging device
US5028547A (en) Manufacture of a color image sensor
US5703641A (en) Solid-state color image pickup device for reproducing a color image
JPS6351436B2 (en)
EP0067629B1 (en) Solid-state color image pickup device
JPH1126737A (en) Solid-state image sensing device
JPS61206256A (en) Color solid-state image pickup device
JPH0378388A (en) Color solid state image pickup element
JPS62190993A (en) Solid-state image pickup device
JPS63135086A (en) Color separation filter
JPS6242449A (en) Color solid-state image pickup device
JP2519720B2 (en) Color solid-state imaging device and manufacturing method thereof
SU1206972A1 (en) Versions of multisignal matrix of charge-coupled devices with frame charge transfer
JPS63202196A (en) Color separation filter
JPS58182978A (en) Color solid-state image pickup device
JPS61101185A (en) Solid-state color camera
JPS5992564A (en) Color solid-state image pickup element
JPS60130705A (en) Color filter array for solid-state color camera
JPS63161793A (en) Color solid state pickup device
JPH05292513A (en) Solid-state image pickup element
JPS6070886A (en) Solid-state image pickup device
JPS61102888A (en) Solid-state image pick-up for color tv
Abe et al. 400 K pixel full frame reading out FIT-CCD color pick up system