JPS61206126A - Buffer type gas breaker - Google Patents

Buffer type gas breaker

Info

Publication number
JPS61206126A
JPS61206126A JP4484885A JP4484885A JPS61206126A JP S61206126 A JPS61206126 A JP S61206126A JP 4484885 A JP4484885 A JP 4484885A JP 4484885 A JP4484885 A JP 4484885A JP S61206126 A JPS61206126 A JP S61206126A
Authority
JP
Japan
Prior art keywords
nozzle
bypass hole
fixed electrode
downstream
puffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4484885A
Other languages
Japanese (ja)
Inventor
中川 由岐夫
平沢 邦夫
正範 筑紫
橋本 斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4484885A priority Critical patent/JPS61206126A/en
Publication of JPS61206126A publication Critical patent/JPS61206126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • H01H33/703Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle having special gas flow directing elements, e.g. grooves, extensions

Landscapes

  • Circuit Breakers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はバッファ形ガス遮断器に係り、特に、遮断性能
の向上に好適なガス遮断器のノズル形状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a buffer type gas circuit breaker, and particularly to a nozzle shape of a gas circuit breaker suitable for improving circuit breaker performance.

〔発明の背景〕[Background of the invention]

従来のバッファ形ガス遮断器のノズル形状は、特開昭5
1−81974号公報に記載のように、ノズルの上流部
から下流部に通じるガス通路を設け、このガス通路に設
定圧力以上で開口する弁機構を具備することが開示され
ている。
The nozzle shape of the conventional buffer type gas circuit breaker is
As described in Japanese Patent No. 1-81974, it is disclosed that a gas passage is provided that communicates from the upstream part to the downstream part of the nozzle, and that this gas passage is provided with a valve mechanism that opens at a pressure equal to or higher than a set pressure.

その発明では、電流遮断時のノズル上流部の過大な圧力
上昇を抑える効果があるが、弁機構を設けるため、構造
が複雑となり、信頼性が低下するという問題がある。ま
た、実開昭56−130246号公報にもノズル上流部
と下流部を連通ずるガス通路ゝを設け、ガス通路部絶縁
物が弾性体により動作する例が開示されている。ここで
も消弧性ガスをノズル下流部へ吹き出し、消弧能力を高
める効果はあるが、弾性体で動作させる方式のため、構
造が複雑になり、信頼性が低下する。また、ガス通路が
軸方向に複数個設けられ、ガス通路の総断面積が広くな
り、ガス通路を経てのガスの排気が大となり、バッファ
室の圧力が十分高くならず、ノズルスロートを通しての
ガスのアークへの吹付けが十分行えないという問題があ
る。ノズル上流部と下流部を連通ずるガス通路を設ける
ことは公知である。最近の研究の結果、ガス通路の形状
、そのノズル上流部から下流部への角度等が極めて重要
なことが分かつてきたが、前述の公報では、何らそのこ
とには配慮されていなかった。
Although this invention has the effect of suppressing an excessive pressure rise in the upstream portion of the nozzle when the current is cut off, the provision of a valve mechanism complicates the structure and reduces reliability. Further, Japanese Utility Model Application Publication No. 56-130246 discloses an example in which a gas passage communicating between the upstream and downstream parts of the nozzle is provided and the gas passage insulator is operated by an elastic body. Although this also has the effect of blowing out arc-extinguishing gas to the downstream part of the nozzle and increasing the arc-extinguishing ability, since it is operated using an elastic body, the structure becomes complicated and reliability decreases. In addition, multiple gas passages are provided in the axial direction, which increases the total cross-sectional area of the gas passages, which increases the amount of gas exhausted through the gas passages. There is a problem in that it is not possible to spray the arc sufficiently. It is known to provide a gas passage communicating the upstream and downstream parts of the nozzle. As a result of recent research, it has been found that the shape of the gas passage, its angle from the upstream part to the downstream part of the nozzle, etc., are extremely important, but the above-mentioned publication did not give any consideration to these matters.

〔発明の目的〕[Purpose of the invention]

本発明の目的はバッファ形ガス遮断器の大電流遮断直後
の電極間の絶縁回復の勝れたノズルを設けたバッファ形
ガス遮断器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a buffer type gas circuit breaker equipped with a nozzle that can recover insulation between electrodes immediately after interruption of a large current.

〔発明の概要〕[Summary of the invention]

バッファ形ガス遮断器の大電流遮断直後の電極間の絶縁
回復を早める方法として、(1)電極間周辺の高温ガス
の早急な除去、(2)固定電極先端部周辺のガス密度を
高めること、(3)固定電極がノズルスロート部を相対
的に抜は出たある位置以降で、(2)の作用が開始する
ようにすることをあげることが出来る。このうち(1)
は当然のこととして受けとめられているが、(2)。
As a method to hasten the insulation recovery between the electrodes immediately after interrupting a large current in a buffer-type gas circuit breaker, there are two methods: (1) prompt removal of high-temperature gas around the electrodes, (2) increasing the gas density around the tip of the fixed electrode. (3) The effect of (2) can be started after a certain position where the fixed electrode is relatively removed from the nozzle throat portion. Of these (1)
(2) is taken for granted.

(3)が絶縁回復の向上に大きな効果を及ぼすことが実
験の結果1分かり、その効果を出す具体的なノズル構造
として、ノズル上流部と下流部を連通するバイパス孔を
設け、バイパス孔の断面積が、ノズル上流部で小さく、
下流部で大きくなるように1例えば1円錐形状で構成し
たものである。
As a result of experiments, it was found that (3) has a large effect on improving insulation recovery, and as a specific nozzle structure that produces this effect, a bypass hole is provided that communicates the upstream and downstream parts of the nozzle, and the bypass hole is disconnected. The area is small at the upstream part of the nozzle,
It is constructed in the shape of, for example, a cone so that it becomes larger in the downstream portion.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図により説明する。第1
図はバッファ形ガス遮断器の遮断途中を示し、遮断器の
投入状態では固定電極1が図で下方に位置し、可動電極
2と接触し、通電可能な状態にある。遮断動作はパッフ
ァシリンダ3と、パッファシリンダ3に固定された可動
電極2.絶縁ノズル4.ノズル押え5、電極カバー6等
が一体となって図示してない操作機構によって図で下方
に駆動されることで行われる。固定電極1と可動電極2
の開離によって、アーク7が両電極間あるいは固定電極
1と可動電極2の周辺通電部に図示のように発生し、遮
断器にはSF、ガスのような消弧性ガスが封入されてお
り、パッファシリンダ3が図で下方に移動する時、固定
ピストン8との空間で形成されるバッファ室空間主の容
積が縮小することで、この空間のガスは1図中矢印で示
すように、アークに吹き付けられ、アークは冷却され、
電流の零点で消弧に至る。アークに触れた消弧性ガスは
解離、電離し導電性となり、電流遮断後、温度の急速な
低下で、絶縁性ガスへと回復するものの、ガスはアーク
熱でかなりの温度となっているため、電流遮断後のガス
は、アークが発生しない時は比較すれば絶縁耐圧の低下
した状態になっている。アーク消滅後固定電極1と可動
電極2の間に生じる電源電圧はその回復電圧に向かって
上昇してゆくが、遮断器極間の絶縁回復が遅れると極間
で絶縁破壊を生じる。第1図に示す実施例では、絶縁ノ
ズル4にバイパス孔10があけられており、このバイパ
ス孔は、例えば1円錐形状でノズル上流部で狭く、ノズ
ル下流部で広くなっている。バイパス孔は、第2図に示
すように、ノズルの中心に対して複数個放射状にあけら
れており、その数は、例えば、四個ないし、八個ある。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows the buffer type gas circuit breaker in the middle of shutting off, and when the circuit breaker is in the closed state, the fixed electrode 1 is located at the bottom in the figure, is in contact with the movable electrode 2, and is in a state where it can be energized. The interrupting operation is performed by the puffer cylinder 3 and the movable electrode 2 fixed to the puffer cylinder 3. Insulated nozzle 4. This is done by driving the nozzle holder 5, electrode cover 6, etc., together, downward in the figure by an operation mechanism (not shown). Fixed electrode 1 and movable electrode 2
When the circuit breaker opens, an arc 7 is generated between the two electrodes or in the energized parts around the fixed electrode 1 and the movable electrode 2 as shown in the figure. , when the puffer cylinder 3 moves downward in the figure, the main volume of the buffer chamber space formed by the space with the fixed piston 8 is reduced, and the gas in this space is arced as shown by the arrow in Figure 1. The arc is cooled,
The arc is extinguished at the zero point of the current. The arc-extinguishing gas that comes into contact with the arc dissociates and ionizes and becomes conductive, and after the current is cut off, the temperature rapidly drops and the gas recovers to an insulating gas, but the gas is still at a considerable temperature due to the arc heat. After the current is cut off, the gas has a lower dielectric strength than when no arc occurs. After the arc is extinguished, the power supply voltage generated between the fixed electrode 1 and the movable electrode 2 increases toward its recovery voltage, but if the insulation recovery between the circuit breaker poles is delayed, dielectric breakdown occurs between the poles. In the embodiment shown in FIG. 1, the insulating nozzle 4 is provided with a bypass hole 10, which has a one-conical shape, for example, and is narrow at the upstream part of the nozzle and widen at the downstream part of the nozzle. As shown in FIG. 2, a plurality of bypass holes are formed radially from the center of the nozzle, and the number of bypass holes is, for example, four to eight.

バイパス孔はアーク発生中及び、アーク消滅後の両方で
、効果を及ぼす、即ち、大電流遮断時に発゛生したアー
クは、ノズルのスロート部11の中で広がり、電流の大
きさによってはアークがノズルスロート部一杯になり、
スロートを通してのガスの流出を防げるノズル閉塞現象
を生じる。この時、バッファ家主の圧力は、ガスの流出
の妨げ、ガスの高温化、ノズル4の材料蒸発等で急速に
高まり、高温ガスがノズル上流部へ停滞することになる
が、バイパス孔12を設けており、かつ、上流部から下
流部へ向かうに従ってバイパス孔の断面積が広がるため
、高温ガスはバイパス孔で高速となって第1図に矢印で
示すように排気されるため、高温ガスのノズル上流部へ
の停滞が少なくなり、これがアーク消滅後の絶縁回復を
早める。
The bypass hole has an effect both during arc generation and after arc extinguishment. In other words, the arc generated when a large current is interrupted will spread within the throat section 11 of the nozzle, and depending on the magnitude of the current, the arc will be The nozzle throat becomes full,
This creates a nozzle blockage phenomenon that prevents gas from escaping through the throat. At this time, the pressure in the buffer increases rapidly due to obstruction of gas outflow, high temperature of gas, evaporation of material in nozzle 4, etc., and high temperature gas stagnates upstream of the nozzle. In addition, the cross-sectional area of the bypass hole increases from the upstream part to the downstream part, so the high-temperature gas becomes high-speed in the bypass hole and is exhausted as shown by the arrow in Figure 1, so the high-temperature gas nozzle There is less stagnation upstream, which speeds up insulation recovery after arc extinction.

次に、アーク消滅後のバイパス孔の働きを説明する。絶
縁耐力がガス圧力をPとするとP′に比例する関係があ
り、ガス圧が高い程、即ち、ガス密度が高い程、絶縁耐
力が高い、電流遮断後、消弧性ガスはノズルスロートを
通して排気されるが、ガスが高速流であるため、固定電
極周辺のガス密度の低下が絶縁回復を低下させる要因と
なりうる。
Next, the function of the bypass hole after the arc is extinguished will be explained. The dielectric strength is proportional to P' when the gas pressure is P.The higher the gas pressure, that is, the higher the gas density, the higher the dielectric strength.After the current is cut off, the arc-extinguishing gas is exhausted through the nozzle throat. However, since the gas flows at high speed, a decrease in gas density around the fixed electrode may be a factor in decreasing insulation recovery.

しかし、第1図では、ノズル上流部が狭く、下流部で広
くなるバイパス孔10をもっているため。
However, in FIG. 1, the nozzle has a bypass hole 10 which is narrow at the upstream portion and widened at the downstream portion.

ガスが固定電極に向ってバイパス孔で加速されて吹き出
ることになり、固定電極周辺部のガス圧を高くすること
ができ、絶縁回復が極めてよくなる効果がある。第3図
、第4図は本発明によるバイパス孔の好ましい吹付は角
度を説明する図である。
The gas is accelerated through the bypass hole and blown out toward the fixed electrode, making it possible to increase the gas pressure around the fixed electrode, which has the effect of extremely improving insulation recovery. FIGS. 3 and 4 are diagrams illustrating preferred blowing angles of the bypass holes according to the present invention.

ノズル径方向を基準にみたバイパス孔の広がり角度でノ
ズルスロート部に近い方をθ、 (第3図)、遠い方を
02 (第4図)とする、第3図で、Slはノズルスロ
ート部の断面積、S2は固定電極とノズル下流側空間で
形成される下流側流路面積を示す6実験の結果、S2 
が81 より大きい位置に固定電極が相対的に移動した
後で、十分な絶縁回復が得られることが分かった。そこ
で、第3図に示すθ1は、S、:Siとなる位置に固定
電極が相対的に移動した時の固定電極先端の中心に向か
う角度を最小角度θ、とするならば、有効にガスが吹付
けられることになり、高い絶縁回復が得られることが分
かる。また、第4図の02は、遮断完了時固定電極が相
対的にフロストロークした時の固定電極先端の外周部に
向かう角度を最大角度θ、とすればよいことを示してい
る。θ1.θ2はθ2〉θ1なる関係を持つ範囲で、θ
1≧θ、。
The widening angle of the bypass hole with respect to the nozzle radial direction, where the side closer to the nozzle throat is θ (Fig. 3) and the far side is 02 (Fig. 4). In Fig. 3, Sl is the nozzle throat. As a result of 6 experiments, S2 is the cross-sectional area of , and S2 is the area of the downstream flow path formed by the fixed electrode and the downstream space of the nozzle.
It has been found that sufficient insulation recovery can be obtained after relative movement of the fixed electrode to a position where is greater than 81. Therefore, if θ1 shown in FIG. 3 is defined as the minimum angle θ toward the center of the tip of the fixed electrode when the fixed electrode moves relatively to the position S, :Si, then the gas can be effectively It can be seen that high insulation recovery can be obtained. Further, 02 in FIG. 4 indicates that the angle toward the outer periphery of the tip of the fixed electrode when the fixed electrode makes a relative flow stroke at the time of completion of interruption is the maximum angle θ. θ1. θ2 is a range with the relationship θ2>θ1, and θ
1≧θ,.

θ2≦θ、の範囲で多少の変動は許される。このように
することにより、遮断動作時に、固定電極がS、=S1
となる位置以降、全ストロークするまでの間の、はとん
どのストローク位置で、バイパス孔1oを通して、ガス
が固定電極に向かって高速で吹付けられ、固定電極先端
部周辺のガス密度を高めることができ、絶縁回復を高め
る効果がある0本実施例によれば、第一に、電流遮断時
にバイパス孔を通してノズル上流側の高温ガスが排気さ
れるため、高温ガスのノズル上流部への停滞が少なくな
り、アーク消滅後の絶縁回復を早めることを助ける効果
がある。第二に、アーク消滅後バイパス孔がノズル下流
部で広がることにより、固定電極が遮断動作で移動する
途中、遮断可能領域のほとんどすべてのストローク位置
にわたって。
Some variation is allowed within the range θ2≦θ. By doing this, during the cutoff operation, the fixed electrode is S,=S1
From the position until the full stroke, gas is blown at high speed toward the fixed electrode through the bypass hole 1o, increasing the gas density around the tip of the fixed electrode. According to this embodiment, firstly, when the current is cut off, high-temperature gas on the upstream side of the nozzle is exhausted through the bypass hole, which prevents stagnation of high-temperature gas on the upstream side of the nozzle. This has the effect of helping speed up insulation recovery after arc extinction. Second, after the arc extinguishes, the bypass hole widens in the downstream part of the nozzle, so that the fixed electrode covers almost all the stroke positions of the interruptable region during the movement of the interrupting operation.

バイパス孔を通しての固定電極先端周辺部にガスの吹付
けが行われるので、電流遮断後の極間絶縁回復のすぐれ
た遮断鼎を提供することが出来る。
Since the gas is sprayed around the tip of the fixed electrode through the bypass hole, it is possible to provide a break with excellent recovery of interelectrode insulation after current cutoff.

本発明の異なる実施例を第5図、第6図に示す。Different embodiments of the invention are shown in FIGS. 5 and 6.

第5図は、第1図から第4図に示すバイパス孔と、断面
積一定のバイパス孔12を組み合わせたノズル、第6図
は、第1図から第4図に示すバイパス孔と、ノズル下流
部に向うに従って断面積が僅かに広がるバイパス孔13
を組み合わせたノズルである。
Fig. 5 shows a nozzle that combines the bypass holes shown in Figs. 1 to 4 and a bypass hole 12 with a constant cross-sectional area, and Fig. 6 shows the bypass holes shown in Figs. 1 to 4 and a nozzle downstream of the nozzle. Bypass hole 13 whose cross-sectional area slightly increases toward the end
This is a nozzle that combines the following.

なお、これら新規に加えたバイパス孔の中心軸が固定電
極先端部と交わるところは、81〜Sユなる関係を満足
するところである。異なる実施例でも、第1図ないし第
4図で説明した効果が得られ、この場合、ストロークの
短い固定電極先端部に集中してガスが吹付けられるバイ
パス孔が加えられているので、特に、アーク時間の短い
場合の極間絶till@復を高めることが出来る。
Note that the locations where the central axes of these newly added bypass holes intersect with the tip of the fixed electrode satisfy the relationship 81 to S. Even in different embodiments, the effects described in FIGS. 1 to 4 can be obtained, and in this case, a bypass hole is added that allows gas to be sprayed concentratedly at the tip of the fixed electrode with a short stroke, so in particular, When the arc time is short, the polarity interruption can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、全領域にわたって電流遮断後の極間絶
縁回復のすぐれたバッファ形ガス遮断器を提供すること
が出来る。
According to the present invention, it is possible to provide a buffer-type gas circuit breaker with excellent inter-electrode insulation recovery after current interruption over the entire area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の遮断部の断面図、第2図、第3IjA
、第4図はノズルの断面図、第5図、第6図は異なる実
施例を示すノズルの断面図である。 1・・・固定電極、2・・・可動電極、3・・・パッフ
ァシリンダ、4・・・ノズル、10,12,13・・・
バイパス孔。
Fig. 1 is a cross-sectional view of the interrupting part of the present invention, Fig. 2, and Fig. 3 IjA.
, FIG. 4 is a sectional view of the nozzle, and FIGS. 5 and 6 are sectional views of the nozzle showing different embodiments. DESCRIPTION OF SYMBOLS 1... Fixed electrode, 2... Movable electrode, 3... Puffer cylinder, 4... Nozzle, 10, 12, 13...
Bypass hole.

Claims (1)

【特許請求の範囲】 1、開離可能な固定電極および可動電極と、パッファシ
リンダと、固定ピストンとでパッファ室を形成し、遮断
動作時に前記パッファ室内のガスを圧縮し、高圧となつ
た消弧性ガスをノズルにより案内して前記固定電極およ
び前記可動電極間のアークへ吹付け、前記ノズルの上流
部と下流部を連通するバイパス孔を設けたパッファ形ガ
ス遮断器において、 前記バイパス孔が、前記ノズルの上流部から下流部に向
かつて円錐形状のように広がるように構成したことを特
徴とするパッファ形ガス遮断器。 2、特許請求の範囲第1項において、 前記ノズルの径方向を基準にしてみた前記バイパス孔の
広がり角度のうち、ノズルスロートに近い方が、前記固
定電極の先端中心部と交わる位置で、前記固定電極と前
記ノズルの下流側空間で形成される下流側流路面積が前
記ノズルスロート部の断面積にほぼ等しい関係が成立す
る角度に等しいか、それ以上の角度となり、一方、前記
バイパス孔の広がり角度のうち前記ノズルスロートに遠
い方が、遮断動作でフルストロークした前記固定電極の
先端の外周部と交わる角度に等しいか、またはそれより
も小さいことを特徴とするパッファ形ガス遮断器。 3、特許請求の範囲第1項において、 前記バイパス孔の断面積が一定ないし、前記バイパス孔
のノズル上流部から下流部への広がりが僅かであるバイ
パス孔を加えその中心軸が前記下流側流路面積と前記ノ
ズルスロート部断面積にほぼ等しくなる固定電極先端の
中心部へ向かつていることを特徴とするバッファ形ガス
遮断器。
[Scope of Claims] 1. A puffer chamber is formed by a separable fixed electrode and a movable electrode, a puffer cylinder, and a fixed piston, and the gas in the puffer chamber is compressed during a shutoff operation to create a high-pressure extinguisher. A puffer-type gas circuit breaker in which arc gas is guided by a nozzle and sprayed onto the arc between the fixed electrode and the movable electrode, and is provided with a bypass hole that communicates an upstream part and a downstream part of the nozzle, wherein the bypass hole is . A puffer-type gas circuit breaker, characterized in that the nozzle is configured to widen in a conical shape from an upstream portion toward a downstream portion. 2. In claim 1, at a position where, among the widening angles of the bypass hole with respect to the radial direction of the nozzle, the one closer to the nozzle throat intersects with the center of the tip of the fixed electrode, The angle is equal to or greater than the angle at which the downstream flow path area formed by the fixed electrode and the downstream space of the nozzle is approximately equal to the cross-sectional area of the nozzle throat; A puffer-type gas circuit breaker characterized in that of the spread angles, the one farther from the nozzle throat is equal to or smaller than the angle that intersects with the outer periphery of the tip of the fixed electrode that is fully stroked in the breaking operation. 3. In claim 1, a bypass hole is provided in which the cross-sectional area of the bypass hole is constant and the width of the bypass hole is small from the upstream part of the nozzle to the downstream part, and the central axis of the bypass hole is aligned with the downstream flow. A buffer type gas circuit breaker, characterized in that the path area is directed toward the center of the tip of the fixed electrode where the cross-sectional area of the nozzle throat section is approximately equal to the cross-sectional area of the nozzle throat section.
JP4484885A 1985-03-08 1985-03-08 Buffer type gas breaker Pending JPS61206126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4484885A JPS61206126A (en) 1985-03-08 1985-03-08 Buffer type gas breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4484885A JPS61206126A (en) 1985-03-08 1985-03-08 Buffer type gas breaker

Publications (1)

Publication Number Publication Date
JPS61206126A true JPS61206126A (en) 1986-09-12

Family

ID=12702897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4484885A Pending JPS61206126A (en) 1985-03-08 1985-03-08 Buffer type gas breaker

Country Status (1)

Country Link
JP (1) JPS61206126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155312A (en) * 1990-03-13 1992-10-13 Hitachi, Ltd. Puffer type gas circuit interrupter
CN106710961A (en) * 2017-02-10 2017-05-24 平高集团有限公司 Circuit breaker as well as arc extinguishing chamber and nozzle thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155312A (en) * 1990-03-13 1992-10-13 Hitachi, Ltd. Puffer type gas circuit interrupter
CN106710961A (en) * 2017-02-10 2017-05-24 平高集团有限公司 Circuit breaker as well as arc extinguishing chamber and nozzle thereof
CN106710961B (en) * 2017-02-10 2019-04-26 平高集团有限公司 Breaker and its arc-chutes, spout

Similar Documents

Publication Publication Date Title
JPH08212885A (en) Puffer type gas-blast circuit breaker
JPS62237626A (en) Compressed dielectric gas blast high voltage breaker
US5159164A (en) Gas circuit breaker
JPS61206126A (en) Buffer type gas breaker
JPS61188825A (en) Buffer type gas breaker
US5153397A (en) Gas circuit breaker
US4181837A (en) Compressed-gas circuit interrupter having insulated contacts
JP2875671B2 (en) Patch type gas circuit breaker
JPS6293826A (en) Gas circuit breaker
JPH0636658A (en) Resistance breaking portion
JPH0340325A (en) Buffer type gas blast circuit breaker
JPH05166442A (en) Puffer type gas circuit breaker
JPH04315721A (en) Buffer type gas-blast circuit breaker
JPH01313827A (en) Buffer type gas-blast circuit-breaker
JPH03245431A (en) Buffer type gas-blast circuit breaker
JPH0644877A (en) Buffer type gas-blast circuit-breaker
JP2881841B2 (en) Gas circuit breaker
JPH0594740A (en) Resistance breaking part
KR100351879B1 (en) structure of noggle in gas-type circuit breaker
JPH1012104A (en) Gas-blast circuit breaker
JPS6269419A (en) Gas breaker
JPH0210618A (en) Gas breaker
JPH01231231A (en) Buffer type gas-blasted circuit breaker
JPH03254032A (en) Gas-blast circuit breaker
JPH1055737A (en) Buffer type gas-blast circuit-breaker