JPS61205831A - Matrix tactile sensation sensor - Google Patents

Matrix tactile sensation sensor

Info

Publication number
JPS61205831A
JPS61205831A JP4594985A JP4594985A JPS61205831A JP S61205831 A JPS61205831 A JP S61205831A JP 4594985 A JP4594985 A JP 4594985A JP 4594985 A JP4594985 A JP 4594985A JP S61205831 A JPS61205831 A JP S61205831A
Authority
JP
Japan
Prior art keywords
transparent plate
elastomers
optical fibers
receiving element
detect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4594985A
Other languages
Japanese (ja)
Other versions
JPH0521417B2 (en
Inventor
Hirofumi Kimura
木村 廣文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4594985A priority Critical patent/JPS61205831A/en
Publication of JPS61205831A publication Critical patent/JPS61205831A/en
Publication of JPH0521417B2 publication Critical patent/JPH0521417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To make it possible to accurately detect the pressure distribution of a two-dimensional plane, by a sensor having high strength and a simple and inexpensive structure constituted so as to detect a brightness state in such a state that a plurality of semispherical elastomers are contacted with a transparent plate. CONSTITUTION:An elastomer film 1, semispherical elastomers 2, optical fibers 4, a camera or two-dimensional light receiving element 6 and a calculation circuit 7 are provided. When matter is grasped and load is acted on the elastic film 1 in the direction shown by an arrow 8, the elastomers 2 are pressed to a transparent plate 3 with the deformation of the elastic film 1. When the transparent plate 3 is looked from below at this time, only the parts contacted with the elastomers 2 look dark. An area is calculated from the area ratio of bright parts and dark parts, detected by the element, by the circuit 7. Further, the circuit 7 calculates an inertia secondary moment from the distribution positions of dark parts to detect the offset of load. Therefore, the strength of the sensor is high and the pressure distribution of a two-dimensional plane can be accurately detected.

Description

【発明の詳細な説明】 r産業上の利用分野〕 本発明は2次元平面上忙加見られる圧力の分布状況等を
検知する丸めに使用されるマトリックス触覚センサく関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a matrix tactile sensor used for rounding to detect the distribution of pressure observed on a two-dimensional plane.

〔従来の技術] 従来この種の装置としては、導電性ゴム、電歪素子、ス
トレンゲージ等を用いて接触変形量を測定する亀の、シ
リコンゴム基板上に発光素子と受光素子をベアでマトリ
ックス状に配電し、シリコンンゴムの変位を光量変化に
して検知する構造のもの等が提供されて論る。
[Prior Art] Conventionally, this type of device measures the amount of contact deformation using conductive rubber, electrostrictive elements, strain gauges, etc., and has a bare matrix of light-emitting elements and light-receiving elements on a silicone rubber substrate. A structure is proposed in which the displacement of silicone rubber is detected as a change in the amount of light.

〔発明が解決しようとする問題点] ところで、導電性ゴムを用いた場合、0N−OFFの接
触状!lを検知するだけなら簡単な構造となるが、2次
元平面の圧力分布を検知しようとすると電極構造が複雑
になるだけでなく、均一な特性の導電性が得られ表いた
め、実用性に乏しいものとなる。また、電歪素子を用い
た場合、ぜい性破壊を生じないような構造上の制約があ
り、柔軟性を要求されるロボットの指に組み込むKは適
していない。さら(、ストレンゲージを用いた場合、2
次元Ffi&C高密度配列するは相互の干渉(よル難し
く、かつ、511:接触時の0点補償は外乱の影響を受
けて難しtn、 tた、シリコンゴム基板上に発光素子
と受光素子をペアでマトリックス状(配蓋し、シリコン
ゴムの変位を光量変化にして検知する構造のセンサの場
合、発光部の発熱による受光特性の変動、ゴミや露によ
る反射率変化等によりq#性が変化するとともに、任意
曲面上に設置することが難しく1 しかも高価なセンナ
となる。
[Problems to be solved by the invention] By the way, when conductive rubber is used, the contact state is ON-OFF! It is a simple structure if only to detect l, but if you try to detect the pressure distribution on a two-dimensional plane, not only will the electrode structure become complicated, but it will be difficult to obtain conductivity with uniform characteristics, making it impractical. Become something. Further, when an electrostrictive element is used, there are structural restrictions to prevent brittle destruction, and K is not suitable for incorporating into robot fingers that require flexibility. Further (, when using a strain gauge, 2
Dimensional Ffi&C high-density array is difficult to avoid mutual interference (511: 0 point compensation at the time of contact is difficult due to the influence of external disturbances), and a light emitting element and a light receiving element are paired on a silicone rubber substrate. In the case of a sensor with a structure that detects the displacement of silicone rubber as a change in light intensity, the q# characteristic changes due to changes in the light reception characteristics due to heat generation in the light emitting part, changes in reflectance due to dust and dew, etc. In addition, it is difficult to install the senna on an arbitrary curved surface, and it becomes an expensive senna.

本発明は、上記従来装置の欠点を除去したセンナを如何
に実現するかを問題としている。
The problem of the present invention is how to realize a senna that eliminates the drawbacks of the conventional devices.

c問題点を解決するための手段] 本発明のマトリックス触覚センサは、負荷圧が加えられ
る弾性体膜と、この弾性体膜に沿って配置され念透明板
体と、平坦部が上記弾性体膜の一方の面に接触または固
定され、球面部が上記透明板体の一方の闇に接触された
複数の半球状弾性体と、よ記透明板体の他方の面に一端
がvi着された複数本の光ファイバと、これら複数本の
光ファイバのうち一部を通して上記透明板体側に光を照
射する光源と、上記複数本の光ファイバのうち他の一部
を通して上記透明板体側な観察するカメラまたは2次元
受光素子と、これらカメラまたは2次元受光素子で観察
され九明暗部分の分布形状および直猜を算出する算出回
路とを具備してなることを特徴とするものである。
c. Means for Solving Problems] The matrix tactile sensor of the present invention includes an elastic film to which a load pressure is applied, a transparent plate disposed along the elastic film, and a flat portion formed by the elastic film. a plurality of hemispherical elastic bodies that are in contact with or fixed to one surface of the transparent plate, and whose spherical portions are in contact with one side of the transparent plate; A book optical fiber, a light source that irradiates light to the transparent plate side through a part of the plurality of optical fibers, and a camera that observes the transparent plate side through another part of the plurality of optical fibers. Alternatively, it is characterized by comprising a two-dimensional light-receiving element and a calculation circuit that calculates the distribution shape and straightness of the nine bright and dark areas observed by the camera or the two-dimensional light-receiving element.

〔作用〕[Effect]

本発明では、弾性体膜に負荷圧が加えられると、負荷圧
が加えられた部分に位置する半球状弾性体が変形し、透
明板上Kかける明暗部分が変化し、この状態がカメラま
たは2次元受光素子で観察される。ここで算出回路によ
)、上記の観察結果に基づいて、明渠部分の分布形状、
面積が算出される。
In the present invention, when a load pressure is applied to the elastic membrane, the hemispherical elastic body located in the area where the load pressure is applied is deformed, and the bright and dark areas on the transparent plate change. Observed with a dimensional photodetector. Here, based on the above observation results, the distribution shape of the clear culvert part,
The area is calculated.

C!!!梅例コ IEI!!Iないし第3図はこの発明の一実施例を示す
図でちる。ここで説明する実施例は、この発明を知能ロ
ボットの物体を把持する把持部に適用した場合の実施例
である。
C! ! ! Plum example IEI! ! FIGS. 1 to 3 are diagrams showing one embodiment of the present invention. The embodiment described here is an embodiment in which the present invention is applied to a gripping section of an intelligent robot that grips an object.

第1包にシいで、符号lは弾性体膜、2は半球状弾性体
、3扛透明板体1,4は光ファイバ、5は光源、6はカ
メラまたは2次元受光素子、7社算出回路でちる。8は
負荷作用方向である。
In the first package, l is an elastic film, 2 is a hemispherical elastic body, 3 transparent plates 1 and 4 are optical fibers, 5 is a light source, 6 is a camera or two-dimensional light receiving element, and 7 company calculation circuits. Dechiru. 8 is the direction of load action.

弾性体[1の上面には物体を把持したときに矢印8方向
に圧力が加えられる。この弾性体膜lの下方には、この
!111体性I I K沿って透明板体3が配置されて
いる。弾性体!!&1と透明板体3との間IIC拡複数
の半球状弾性体3 、3−・・が配置されている。半球
状弾性体3は、ttgz図に示すように、その平坦部2
aが弾性体膜1の下面に固定され、球面部2bが透明板
体3の上面に轟接されている。
Pressure is applied to the upper surface of the elastic body [1 in the direction of arrow 8 when an object is gripped. Below this elastic membrane l, this! A transparent plate body 3 is arranged along the 111 body IIK. Elastic body! ! A plurality of hemispherical elastic bodies 3, 3, . . . are arranged between the &1 and the transparent plate body 3. As shown in the ttgz diagram, the hemispherical elastic body 3 has a flat portion 2
a is fixed to the lower surface of the elastic membrane 1, and the spherical portion 2b is brought into contact with the upper surface of the transparent plate 3.

透明板体3の下面には複数本の光ファイバ4の各一端部
が密着同定されている。光ファイバ4.4・・・の他端
部は、その−、Sが光源5に接続され、他の一部がカメ
ラまたは2次元受光素子6に接続されている。光源5は
、光ファイバ4を通して透明板体3flIを照射するも
のである。カメラtたは2次元受光素子6は、透明板体
3@のり暗の状態を観察するものである。算出回路7は
、カメラまたは2次元受光素子6の出力に基づいて透明
板体3側の明暗部分の分布形状および面積を算出するも
のである。
One end of each of the plurality of optical fibers 4 is closely identified on the lower surface of the transparent plate 3. The other ends of the optical fibers 4, 4, . The light source 5 irradiates the transparent plate 3flI through the optical fiber 4. The camera t or the two-dimensional light receiving element 6 is used to observe the dark state of the transparent plate 3. The calculation circuit 7 calculates the distribution shape and area of the bright and dark portions on the transparent plate 3 side based on the output of the camera or the two-dimensional light receiving element 6.

上記の構成において、物体を把持して綽性体[1に矢印
8方向の負荷が作用すると、弾性体膜lの変形にともな
って、半球状弾性体2が透明板体3に押り付けられる。
In the above configuration, when an object is gripped and a load is applied to the curved body [1 in the direction of arrow 8], the hemispherical elastic body 2 is pressed against the transparent plate body 3 as the elastic body film l is deformed. .

透明板体3f下方から見た場合、半球状弾性体2が接触
している部分のみ暗く見える。第3図には、円柱を押し
付けた場合に見えるパターンを示す#図の破線の小さい
円9が半球状弾性体2の位置、一点鎖線の大きな円10
が円柱の輪郭を示す。それらが接触した部分は、暗い部
分11として観察される。接触パターンを鮮明に観察す
るため和、透明板体3に密接した光ファイバ4.4・・
・の一部に光源5を接続し、接触面全体に一様に照明す
る。その他の光ファイバ4.4・・・くよ)、接触面の
明暗パターン像を、カメラあるいは2次元受光素子(例
えばCOD 素子)6上に結像させる。その信号を算出
回路7に供給して、接触部11の面積及びその分布状!
Iを算出する、この情報を、例示しないが、知能ロボッ
トのメインコントローラに伝達し、知能ロボットのハン
ドリング動作の制御信号として利用する。
When the transparent plate body 3f is viewed from below, only the portion where the hemispherical elastic body 2 is in contact appears dark. In Fig. 3, the small circle 9 indicated by the broken line in the figure #, which shows the pattern that appears when the cylinder is pressed, is the position of the hemispherical elastic body 2, and the large circle 10 indicated by the dashed-dotted line.
indicates the outline of the cylinder. The area where they touched is observed as a dark area 11. In order to clearly observe the contact pattern, an optical fiber 4.4 is placed in close contact with the transparent plate 3.
- A light source 5 is connected to a part of the contact surface to uniformly illuminate the entire contact surface. Other optical fibers 4.4, . The signal is supplied to the calculation circuit 7 to determine the area of the contact portion 11 and its distribution.
Although not illustrated, this information for calculating I is transmitted to the main controller of the intelligent robot and used as a control signal for the handling operation of the intelligent robot.

弾性体膜:11の、厚さは、数10μmから数驕とし、
その材質は、ゴムでもプラスチックでも良い。半球状弾
性体2は一弾性体膜lと一体モールド加工で作るのが望
ましいが、弾性体膜lと別体構成と ・してその平坦部
2a11r偽性体膜1の下面に接触させるよう(しても
よ込。半球状弾性体2の半径は数100μmから数Uの
範囲とし、光ファイバ4゜4・・・φ、メラ又は2次元
受光素子6の分解能、並びに、把持物体の重さ、把持部
の変形などに依存して選定できる。
Elastic membrane: 11, the thickness is from several tens of μm to several tens of micrometers,
The material may be rubber or plastic. It is preferable that the hemispherical elastic body 2 be made by integral molding with the elastic body membrane 1, but it should be constructed separately from the elastic body membrane 1 so that its flat part 2a11r is brought into contact with the lower surface of the pseudo-elastic body membrane 1 ( The radius of the hemispherical elastic body 2 is in the range of several 100 μm to several U, and the radius of the hemispherical elastic body 2 is in the range of several 100 μm to several U. , can be selected depending on the deformation of the gripping part, etc.

負荷荷!IP%半球状弾性体の半径R1全接触面積Sと
すると、ヘルツ理論に基づく実験によシ、3oc’p+
・ R【α:定数)の関係式で表現できる。カメラ又は
2次元受光素子6で検知された明るい部分と暗い部分と
の面積比よシ箕出回路7で直積を算出する。また算出回
路7は、暗い部分の分布位置などから慣性二次モーメン
トを算出して、負荷の片寄シ等を検知する。
Load load! If the radius R1 of the hemispherical elastic body is IP% and the total contact area S, then according to an experiment based on Hertzian theory, 3oc'p+
- It can be expressed by the relational expression R [α: constant]. The Minode circuit 7 calculates a direct product based on the area ratio of the bright and dark areas detected by the camera or the two-dimensional light receiving element 6. Further, the calculation circuit 7 calculates the second moment of inertia from the distribution position of the dark part, and detects the bias of the load.

この発明で拡、逃切板体3を球面ちるいは任意曲面にし
、光ファイバ4を該曲面に沿って密着させ、該i31%
体、30曲面上く半球状弾性体2の付設された一fir
性体膜1で覆うことも容易に実現できる。
In this invention, the expansion and relief cutting plate 3 is made into a spherical or arbitrarily curved surface, and the optical fiber 4 is closely attached along the curved surface, and the i31%
body, one fir with a hemispherical elastic body 2 attached on a 30 curved surface
Covering with the body membrane 1 can also be easily realized.

光ファイバ束を構成する光ファイバ4の数は、接触面積
を判別できる程度あれば良く、その材質はガラス系でも
プラスチック系でも良い。
The number of optical fibers 4 constituting the optical fiber bundle may be such that the contact area can be determined, and the material thereof may be glass or plastic.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数の半球状弾性体が透明板体に当接
し良状態での明暗の状況を検出する構成でちるから、セ
ンサの強度が高(、構造が簡単で安価であシ、2次元平
面の圧力分布等を的確に検出することができる。また、
接触力検知部分と光#’、j、・カメ゛うまた性2次元
受光素子とが光ファイバで接続されているので、光源と
力、メラまたは2次元受光素子とを任意の位IJiK設
置することができ、ロボットハンドの失明に任意曲面を
持つ九構造で採用できる利点がある6また1弾性体膜の
材質は任意に選択できるので、把掘の条件に適会した材
料、表面粗さ等で設計できる利点がある。
According to the present invention, since a plurality of hemispherical elastic bodies are in contact with a transparent plate body to detect brightness and darkness under good conditions, the sensor has high strength (and is simple and inexpensive). It is possible to accurately detect pressure distribution, etc. on a two-dimensional plane.
Since the contact force sensing part and the optical 2D light receiving element are connected by an optical fiber, the light source and the force, 2D light receiving element can be installed at any desired position. 6. Also, the material of the elastic membrane can be selected arbitrarily, so the material, surface roughness, etc., can be selected to suit the conditions of grasping and excavation. It has the advantage of being able to be designed with

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すものでちって、第4図は
本発明によるマトリックス触覚センサの概略簿成図、第
2因は同センナの要部の断面図、第3図は同センナに円
柱を押し付けた場合の半球状弾性体と透明板体との接触
状態を示す図である。 l・・・・・・弾性体膜、2・・・・・・半球状弾性体
、21L・・・・・・平坦部、2b・・・・・・球面部
、3・・・・・・透明板体、4・・・・・・光ファイバ
、5・・・・・・光源、6・・・・・・カメラまたは2
次元受光素子、7・・・・・・算出回路。 第1図
The drawings show one embodiment of the present invention, and FIG. 4 is a schematic diagram of the matrix tactile sensor according to the present invention, the second factor is a sectional view of the main part of the sensor, and FIG. It is a figure which shows the contact state of a hemispherical elastic body and a transparent plate body when a cylinder is pressed against it. 1... Elastic body membrane, 2... Hemispherical elastic body, 21L... Flat part, 2b... Spherical part, 3... Transparent plate body, 4... optical fiber, 5... light source, 6... camera or 2
Dimensional light receiving element, 7... Calculation circuit. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 負荷圧が加えられる弾性体膜と、この弾性体膜に沿つて
配置された透明板体と、平担部が上記弾性体膜の一方の
面に接触または固定され、球面部が上記透明板体の一方
の面に接触された複数の半球状弾性体と、上記透明板体
の他方の面に一端が密着された複数本の光ファイバと、
これら複数本の光ファイバのうち一部を通して上記透明
板体側に光を照射する光源と、上記複数本の光ファイバ
のうち他の一部を通して上記透明板体側を観察するカメ
ラまたは2次元受光素子と、これらカメラまたは2次元
受光素子で観察された明暗部分の分布形状および面積を
算出する算出回路とを具備してなることを特徴とするマ
トリックス触覚センサ。
an elastic membrane to which a load pressure is applied; a transparent plate disposed along the elastic membrane; a flat portion contacts or is fixed to one surface of the elastic membrane, and a spherical portion is attached to the transparent plate; a plurality of hemispherical elastic bodies in contact with one surface of the transparent plate, and a plurality of optical fibers with one end tightly attached to the other surface of the transparent plate;
A light source that irradiates light to the transparent plate side through some of the plurality of optical fibers, and a camera or two-dimensional light receiving element that observes the transparent plate side through another part of the plurality of optical fibers. , and a calculation circuit that calculates the distribution shape and area of bright and dark areas observed by the camera or the two-dimensional light-receiving element.
JP4594985A 1985-03-08 1985-03-08 Matrix tactile sensation sensor Granted JPS61205831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4594985A JPS61205831A (en) 1985-03-08 1985-03-08 Matrix tactile sensation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4594985A JPS61205831A (en) 1985-03-08 1985-03-08 Matrix tactile sensation sensor

Publications (2)

Publication Number Publication Date
JPS61205831A true JPS61205831A (en) 1986-09-12
JPH0521417B2 JPH0521417B2 (en) 1993-03-24

Family

ID=12733527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4594985A Granted JPS61205831A (en) 1985-03-08 1985-03-08 Matrix tactile sensation sensor

Country Status (1)

Country Link
JP (1) JPS61205831A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018893A1 (en) * 2000-08-31 2002-03-07 Center For Advanced Science And Technology Incubation, Ltd. Optical tactile sensor
JP2005257343A (en) * 2004-03-09 2005-09-22 Nagoya Industrial Science Research Inst Optical tactile sensor, and sensing method and system, object operation force control method and device, object gripping force control device, and robot hand using optical tactile sensor
JP2007240267A (en) * 2006-03-07 2007-09-20 Minebea Co Ltd External force detection device
CN113012537A (en) * 2021-02-07 2021-06-22 丁文 Design method of multifunctional elastic membrane teaching aid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018893A1 (en) * 2000-08-31 2002-03-07 Center For Advanced Science And Technology Incubation, Ltd. Optical tactile sensor
US6909084B2 (en) 2000-08-31 2005-06-21 Toudai Tlo, Ltd Optical tactile sensor having a transparent elastic tactile portion
KR100846305B1 (en) * 2000-08-31 2008-07-16 가부시키가이샤 도쿄다이가쿠 티엘오 Optical tactile sensor
JP2005257343A (en) * 2004-03-09 2005-09-22 Nagoya Industrial Science Research Inst Optical tactile sensor, and sensing method and system, object operation force control method and device, object gripping force control device, and robot hand using optical tactile sensor
JP4621827B2 (en) * 2004-03-09 2011-01-26 財団法人名古屋産業科学研究所 Optical tactile sensor, sensing method using optical tactile sensor, sensing system, object operation force control method, object operation force control device, object gripping force control device, and robot hand
JP2007240267A (en) * 2006-03-07 2007-09-20 Minebea Co Ltd External force detection device
CN113012537A (en) * 2021-02-07 2021-06-22 丁文 Design method of multifunctional elastic membrane teaching aid

Also Published As

Publication number Publication date
JPH0521417B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
Begej Planar and finger-shaped optical tactile sensors for robotic applications
US4668861A (en) Tactile sensor employing a light conducting element and a resiliently deformable sheet
CN108161994B (en) Multi-modal touch sensing device
US6788295B1 (en) Touch pad using a non-electrical deformable pressure sensor
CA2353697A1 (en) Touch sensitive membrane
US7481120B2 (en) Tactile sensor element and sensor array
US7420155B2 (en) Optical tactile sensor and method of reconstructing force vector distribution using the sensor
US4503416A (en) Graphite fiber tactile sensor
US4405197A (en) Optical fiber tactile sensor
EP0256799A3 (en) Tactile sensor device
CN209841248U (en) Flexible array pressure sensor
CN109855776B (en) Pressure sensor, pressure detection system and wearable equipment
GB2584088A (en) Force sensor
CN104161529A (en) Plantar pressure distribution detection system and manufacturing method thereof
KR101972293B1 (en) Touch and pressure sensing systems with different upper layers
JPS61205831A (en) Matrix tactile sensation sensor
Schoenwald et al. A novel fiber optic tactile array sensor
Regtien Tactile imaging
US7042371B2 (en) Optical keyboard with geodesic optical elements
Begej Fingertip-shaped optical tactile sensor for robotic applications
JPH0663892B2 (en) Pressure recognition control device
KR101347180B1 (en) Touch panel based on pressing force
JPS62297735A (en) Piezoelectric pressure distribution sensor
Pan et al. Flexible full‐body tactile sensor of low cost and minimal output connections for service robot
JPH063404B2 (en) Touch / pressure sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term