JPS61205767A - Method of controlling temperature of cold-insulating warehouse - Google Patents

Method of controlling temperature of cold-insulating warehouse

Info

Publication number
JPS61205767A
JPS61205767A JP4869585A JP4869585A JPS61205767A JP S61205767 A JPS61205767 A JP S61205767A JP 4869585 A JP4869585 A JP 4869585A JP 4869585 A JP4869585 A JP 4869585A JP S61205767 A JPS61205767 A JP S61205767A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
blower
control
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4869585A
Other languages
Japanese (ja)
Other versions
JPH0623637B2 (en
Inventor
堀部 昭夫
英克 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Reinetsu Jiyuusetsu KK
Original Assignee
Hitachi Reinetsu Jiyuusetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Reinetsu Jiyuusetsu KK filed Critical Hitachi Reinetsu Jiyuusetsu KK
Priority to JP60048695A priority Critical patent/JPH0623637B2/en
Publication of JPS61205767A publication Critical patent/JPS61205767A/en
Publication of JPH0623637B2 publication Critical patent/JPH0623637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は生鮮食品を鮮度、味を損なうことなく長期に亘
って保存できるようになした保冷庫の温度制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for controlling the temperature of a cold storage box, which allows fresh foods to be stored for a long period of time without impairing their freshness or taste.

従来の技術とその問題点 生鮮食品を保冷又は冷蔵する場合、その鮮度を保ち、か
つ味を損なうことがないようにするためには、特に活魚
等に於ては被冷却物を凍結直前の温度に保って冷蔵する
とその鮮廖を長期間に亘って保つことが周知となってい
る5IIJ]ち被冷却物の入庫温ばから冷蔵温度まで短
時間に冷却し、その後凍結点の直前温度例えば魚類では
一4’Cで凍結するためその直前の温度−8±0.5℃
で保持することが望ま1−5い、この条件を満たすため
、従来の冷却方法では吸込側冷風温度と吐出側冷風温守
の差8〜4℃で運転される。このため凍結点(鮮魚の場
合一般に一4′C)の直@(−s ’C程度)に保つた
めには吐出側が(−4’C)十(’l’c)−一7℃と
なる。
Conventional technology and its problems When keeping fresh food cold or refrigerated, in order to maintain its freshness and not lose its taste, it is necessary to keep the temperature of the object to be cooled, especially for live fish, at the temperature just before freezing. It is well known that if the product is kept at a temperature and refrigerated, its freshness will be maintained for a long period of time. Then, since it freezes at -4'C, the temperature just before that is -8±0.5°C.
In order to satisfy this condition, conventional cooling methods operate at a difference of 8 to 4 degrees Celsius between the temperature of the cold air on the suction side and the temperature of the cold air on the discharge side. Therefore, in order to maintain the temperature directly below the freezing point (generally -4'C for fresh fish), the temperature on the discharge side must be (-4'C) -17°C. .

従って鮮魚等の被冷却物の外表面に凍結点以下の冷1虱
(−7’C〜−8′C)があたり、被冷却物の表面を凍
結させ品質の低下を起す欠点がある。
Therefore, the outside surface of the object to be cooled, such as fresh fish, is exposed to cold temperatures below the freezing point (-7'C to -8'C), which has the drawback of freezing the surface of the object and deteriorating its quality.

上述の欠点を改善するため冷却負荷が減少する貯蔵温度
付近では下記の如き方法が提案されている。
In order to improve the above-mentioned drawbacks, the following method has been proposed near the storage temperature where the cooling load is reduced.

Oプライン流量を制御するプライン法 ■ アンローダを用いる合着制御方法 ■ 加熱器と冷却器併用する方法 ■ ホットガスバイパス方式 ■ 複数台の同容量の冷凍機を用い、その組み合せで運
転する方法 しかし之等の方法では一長一短がある1例えばOの方法
ではプラインの温度を一定に保ち、プラインの流量を制
御して冷却空気温度を一定に保つ方法だが、プライン温
度制御と流量制御の複雑な制御が必要でしかもプライン
の濃麿管理、冷媒とプライン配管、又プラインタンク等
が必要で構造が複雑となり、価格高となり、又1体形ユ
ニットに数種め省力化を図る事等むつかしい。
Pline method to control the O-line flow rate ■ Coalescence control method using an unloader ■ Method of using a heater and cooler together ■ Hot gas bypass method ■ Method of using multiple refrigerators of the same capacity and operating them in combination However, There are advantages and disadvantages in methods such as 1. For example, in method O, the temperature of the pline is kept constant and the flow rate of the pline is controlled to keep the cooling air temperature constant, but it requires complicated control of the pline temperature control and flow rate control. Moreover, the structure is complicated because it requires high concentration management of the prine, refrigerant and prine piping, and a prine tank, which increases the price, and it is difficult to save labor in several types in one unit.

■の方法では複数気筒数を存する冷凍機を用いその作動
気筒数を変化(制御)して容量制御を行なっている。例
えば4気筒のものでは作動数と容量比は 4気筒作動 アンロードなし  100幅容量8  t
t        1気筒   752  tt   
     2気筒   501  tt       
 B気筒   25となり容置制御可能であるが、この
様な構造を有する冷凍機は大型(一般には数lO馬力)
となり小型設備には向かない、(構造複雑なため小型に
は向かない)一般の冷凍(却)設備の吸込口と吹出口空
気温度の差は8〜4 ’C±06゛C以内の制御には4
気筒及び8気筒以上制御が必要となり1〜2気等の小型
設備及びアンローダ−機構を組込めない小型機には不能
となる。
In the method (2), a refrigerator having multiple cylinders is used and the number of operating cylinders is varied (controlled) to control the capacity. For example, for a 4-cylinder model, the operating number and capacity ratio are 4 cylinders operating without unloading, 100 width capacity 8 tons
t 1 cylinder 752 tt
2 cylinder 501 tt
The B cylinder is 25 and the capacity can be controlled, but refrigerators with this type of structure are large (generally several liters of horsepower).
Therefore, it is not suitable for small-sized equipment (it is not suitable for small-sized equipment due to its complicated structure).The difference between the air temperature at the inlet and outlet of general refrigeration equipment can be controlled within 8 to 4'C ± 06°C. is 4
It is necessary to control cylinders and eight or more cylinders, making it impossible for small machines such as 1- or 2-gas machines and small machines that cannot incorporate an unloader mechanism.

■出方法では冷却しながら加温器のON −0FFによ
り温度制御を行う方法で装置としては簡単だがエネルギ
ー消費が無駄で実用に適さない。
(2) The output method is to control the temperature by turning the warmer on and off while cooling, which is a simple device, but wastes energy and is not suitable for practical use.

[有]のホットガスバイパスによるものでは冷却装置の
吐出側により、吸込側にホットガスをバイパスさせ容量
制御を行なうものでは、温度(庫内温度)に併せてホッ
トガス量を制御せねばならず、しかも運転状況でガス温
度が変動するため精密な制御には適さない。
In the case of hot gas bypass, the capacity is controlled by bypassing the hot gas from the discharge side of the cooling device to the suction side, and the amount of hot gas must be controlled in accordance with the temperature (temperature inside the refrigerator). Moreover, the gas temperature fluctuates depending on the operating conditions, making it unsuitable for precise control.

さらに■の方式即ち複数台の冷凍機の組合せによる容量
制御では上記欠点を補うため小〜中型設備では複数台の
冷凍機を組合せ使用し、その台数制御で負荷に具あう容
量制御を行っている。しかし本装置も容量制御の巾が制
限される。例えば20<の制御であれば容量比20:8
0の組合せとなり入庫物(冷却物)や収納庫の大きさ、
構造などでその都変組合せを変えてやらねばならない等
の不便がある。
Furthermore, in order to compensate for the above-mentioned drawbacks of method (■), i.e., capacity control by combining multiple refrigerators, in small to medium-sized facilities, multiple refrigerators are used in combination, and the capacity is controlled to match the load by controlling the number of refrigerators. . However, this device also has a limited range of capacity control. For example, if the control is 20<, the capacity ratio is 20:8
It is a combination of 0 and the size of the incoming material (chilled material) and storage,
There are inconveniences such as the need to change the combination of capital changes due to structure, etc.

問題点の解決手段 本発明では構造が簡単で小〜中型装置にも適するよう1
こなすもので、生鮮品を保冷貯蔵する場合、一般には吸
込空気温度で感知して制御を行っているが、吸込温度は
所定温度であっても吹出温度が凍結点以下になると冷風
が当る表面部は凍結を起し、品質の低下を来たす、これ
を防止するため本発明に於ては吸込温度制御装置(例え
ばサーモスタンド等)と連動する吹出温度制御装置を設
は制御する。
Means for Solving Problems The present invention has a structure that is simple and suitable for small to medium-sized equipment.
When storing perishables in cold storage, control is generally performed by sensing the temperature of the suction air. In order to prevent this, the present invention installs and controls a blowout temperature control device that works in conjunction with a suction temperature control device (for example, a thermostand, etc.).

そしてその温度差は。And what is the temperature difference?

で示す通りなので精密な制御を行うには吸込温度制御装
置と連動する吹出温度制御装置と連動する送風機回転数
を制御し風量を増加させるかあるいは冷凍機の回転数を
制御する。
Therefore, to perform precise control, increase the air volume by controlling the rotation speed of the blower, which is linked to the blowout temperature control device, which is linked to the suction temperature control device, or control the rotation speed of the refrigerator.

また入庫時より設定温度まで降下する時間が数時間(S
〜4hr)の場合その間の冷凍負荷と保冷載設定温度に
達した後の負荷の比は10:1〜2となり、送風機、冷
凍機の極端な回転数の低下は送風機では機内外の静圧不
足で通風しなかったり、又冷凍機では潤滑油の温源不足
等を来たす危険がある。この防止のため2台の冷凍機を
組合せしかもその容量比を1〜1以上とし入庫から設定
温度に達する時間では2台の冷凍機を運転し、設定基準
高目の温度で容量の大きい方1台を停止し。
Also, it takes several hours (S
~4hr), the ratio of the refrigeration load during that time to the load after the cold storage set temperature is reached is 10:1 to 2, and the extreme drop in rotational speed of the blower and refrigerator is due to insufficient static pressure inside and outside the machine in the blower. There is a risk that there will be no ventilation in the refrigerator, or that there will be a lack of lubricating oil heat source in the refrigerator. In order to prevent this, two refrigerators are combined and their capacity ratio is set to 1 to 1 or more, and during the time from storage until the set temperature is reached, two refrigerators are operated, and the one with the larger capacity is operated at a temperature higher than the set standard. Stop the table.

次に容量の小さい冷凍機を運転するそして夫々の冷凍機
を吸込温度制御装置と連動する吹出温度制御装置に連@
【5.また容量の小さい冷凍機を送風機回転数に連動し
ておく。これ番こより一般に使用される送風機で50<
程閲の風量増減は可能で、又冷凍機に於ても問題なく運
転出来る。
Next, operate the smaller capacity refrigerators, and connect each refrigerator to the outlet temperature control device, which is linked to the suction temperature control device.
[5. Also, the small capacity refrigerator is linked to the fan rotation speed. This number is 50< for a commonly used blower.
It is possible to increase or decrease the air volume during the process, and the refrigerator can be operated without any problems.

実施例1 冷凍機を2台使用し送風機の回転数を制御する場合の操
作回路を第2図に示す。
Embodiment 1 FIG. 2 shows an operating circuit when two refrigerators are used and the rotational speed of the blower is controlled.

図に於て1zc1.52cs+は冷凍機で、同容凝とす
るかあるいは異なる容量のものを用い望ましくは異なる
容Iとする。R2FEは送風機で、この送風機sgFE
t2は積分演算回路PID及び周波波変損器INVが接
続され−2に3は温宴制副回路でこの回路21Iには冷
凍機(冷却器)の吸込側に設けた温度制御器THM 1
と、吹出側番こ設けた温度制御器THM2とが接続され
ると共に該回路211の吹出温度変換出力0(出力電流
mA又は出力電圧V)を前記積分演算回路PIDに印加
せしめる。そして冷却器の吸込側及び吹出側に設置され
それぞれの温電を検知する温変制御吸THM I TH
M2はサーモスタット等のセンサーとしTHMlには同
接点Y$!、THM11には2つの同接点Y2.Y8を
有し、吸込側温麿吹出側温変を夫々設定[、この没定温
廖にて各接点が作動するようになす。
In the figure, 1zc1.52cs+ is a refrigerating machine, which may have the same volume or different capacities, preferably different capacities. R2FE is a blower, and this blower sgFE
t2 is connected to an integral operation circuit PID and a frequency wave transformer INV, and -2 and 3 are temperature control subcircuits, and this circuit 21I is connected to a temperature controller THM1 provided on the suction side of the refrigerator (cooler).
and a temperature controller THM2 provided on the outlet side are connected, and the outlet temperature conversion output 0 (output current mA or output voltage V) of the circuit 211 is applied to the integral calculation circuit PID. Temperature control suction THM I TH is installed on the suction side and outlet side of the cooler and detects the respective hot electricity.
M2 is a sensor such as a thermostat, and THMl has the same contact point Y$! , THM11 has two same contacts Y2. Y8, the temperature on the suction side and the temperature on the outlet side are respectively set so that each contact operates at this cooling temperature.

第1図では冷却装置で被冷却物を冷却する場合の時間と
温度との関係を示してセリ【1は入庫時の温rt、zは
凍結温1.[tgより若干高めの温度即ち凍結直前の温
変七した設定基準温度を示し、この役定基準温tzの前
後±toを設定保持温度幅とするものでこの場合でもt
 2十t O>t 8となるように設定される。そして
上記サーモスタットTHM l は【2+σの時ON、
t2+toのときOFFとなるようにしサーモスタツ)
THM*の接点Y2はtz+tOのときON、tz−t
oのときOFF、接点Y8はtzのときON%tBO)
ときOFFとなるようにそれぞれ設定しておくと共に積
分演算回路PIDの作動は第8図に示す如く温1ft2
−toでは最小値に12 t。
FIG. 1 shows the relationship between time and temperature when an object to be cooled is cooled by a cooling device. [It indicates a temperature slightly higher than tg, that is, a set standard temperature that has changed just before freezing, and the set holding temperature range is ±to before and after this official standard temperature tz, and even in this case, t
20t O>t 8. And the above thermostat THM l is ON when [2+σ,
The thermostat turns off when t2+to.)
Contact Y2 of THM* is ON when tz+tO, tz-t
OFF when o, contact Y8 ON when tz%tBO)
The integral operation circuit PID is set to turn off when the temperature is 1ft2 as shown in Figure 8.
-to has a minimum value of 12 t.

では最大値に送風機が回動するように定めておくもので
ある。
In this case, the blower is set to rotate to the maximum value.

従って上述の如く構成される回路1こ於てその動作は下
図の様になる。
Therefore, the operation of the circuit 1 constructed as described above is as shown in the figure below.

この図に於て冷却器の吸込温度がtz【0以上の場合、
吹出温if t 2+t o以上及び吹出温1電t2+
to〜−tでは第1.第2双冷凍機が運転され、吹出温
度t2+to2+tとき送風機が予め定められた一定回
転数で駆t11″:Sれる。
In this figure, if the suction temperature of the cooler is tz (0 or more),
Outlet temperature if t2+t o or more and outlet temperature 1 t2+
In to~-t, the first. The second twin refrigerator is operated, and when the blowout temperature is t2+to2+t, the blower is driven at a predetermined constant rotation speed t11'':S.

そして吹出温it2+to〜−1のとき送風機回転数が
櫓下して八Tを小さくするものである。
When the blowout temperature is between it2+to and -1, the number of revolutions of the blower is lowered to make 8T smaller.

また送風機の回転数が増加してΔTを小さくする番ども
かかわらず吸込温度が低下すると第1の冷凍機52 C
tを停止させると共に送風機回転数が自動的に変化し△
Tを尚小なくして適温を保つ、そしてさらに負荷が小さ
くて吸込コがt2+to以下で吹出口温度がt8以下に
なる様な場合は第2の冷凍機も停止する。
Also, if the rotation speed of the blower increases and the suction temperature decreases regardless of the number of times to reduce ΔT, the first refrigerator 52C
t is stopped and the fan rotation speed changes automatically.
The temperature is maintained at an appropriate temperature by reducing T, and if the load is small and the suction temperature is below t2+to and the outlet temperature is below t8, the second refrigerator is also stopped.

この場合送風機は運転し12−toを保つものである。In this case, the blower is operated and maintained at 12-to.

実施例2 これは第8図に示す如く送風機、冷凍機ともにその回転
数を変化させる方式でいずれか一方例えば第2の冷凍機
52C2に送I@機52FEと同様に積分演算回路PI
D、周波数変換器INVを接続1−他は第2図の実施例
と同じ回路となる。この第2実施例と動作は下表の如き
である。
Embodiment 2 As shown in FIG. 8, this is a system in which the rotational speeds of both the blower and the refrigerator are changed, and one of them, for example, the second refrigerator 52C2 is connected to the integral calculation circuit PI in the same manner as the blower I@machine 52FE.
D. Connection of frequency converter INV 1 - The other circuits are the same as the embodiment shown in FIG. This second embodiment and its operation are as shown in the table below.

上表に於て○は駆動×は停止を示し、第1実施例に比べ
装置は少しコスト高となるがより端間のよい制御が可能
となる。
In the above table, ◯ indicates drive and × indicates stop, and although the cost of the device is a little higher than in the first embodiment, better control from end to end is possible.

さらに小容量の場合は一台の冷凍機だけ即ち52CIを
省略してもよい。
Furthermore, in the case of a small capacity, only one refrigerator, that is, the 52CI may be omitted.

尚2台の冷凍機を使用する場合夫々の冷却器を同一冷却
器に交互−こ組合せておけば第2の冷凍機1i 2. 
CI!のみ運転の場合伝熱面積がより大きく利用出来る
ので、2台運転時より蒸発温度を高く収れ、より吸込口
と吹出口との温度差が小さくなり有利である。又零下以
下の運転のため冷却器フィン表面に着霜した場合でも一
段に行われるホットガスによる除霜も1台だけでよく効
率的である。
In addition, when using two refrigerators, if the respective coolers are alternately combined in the same cooler, the second refrigerator 1i2.
CI! In the case of single-unit operation, a larger heat transfer area can be used, so the evaporation temperature can be kept higher than in the case of two-unit operation, and the temperature difference between the suction port and the outlet is smaller, which is advantageous. In addition, even if frost forms on the surface of the cooler fins due to sub-zero operation, defrosting using hot gas is carried out in one step, which is efficient and requires only one unit.

発明の効果 本発明による時は冷却器の吸込口側と吹出口側とにそれ
ぞれ温度制御器を股は送風機回転数又は送風機及び冷凍
機の回転数を制御して容量制御を行なうようにしている
ため簡単に凍結点以上の吹出温度で運転でき食品の味を
崩うことなく保冷藏できる利点を有する。
Effects of the Invention According to the present invention, temperature controllers are installed on the suction port side and the blowout port side of the cooler to control the rotational speed of the blower or the rotational speeds of the blower and refrigerator to control the capacity. Therefore, it has the advantage of being able to easily operate at a blowing temperature above the freezing point and keeping food cold without spoiling its taste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度制御説明図、@2閑は操作回路図、第8図
は送風機の回転制御図、第4図は第2実施例の回路図で
ある。 Fis Ct ハ第1の冷凍機、 K2CIIは第2の
冷凍機、 52FEは送風機、  llI+は温度制御
器。 Tf(Mx 、THMzはサーモスタット。
Fig. 1 is an explanatory diagram of temperature control, @2 is an operating circuit diagram, Fig. 8 is a rotation control diagram of the blower, and Fig. 4 is a circuit diagram of the second embodiment. Fis Ct is the first refrigerator, K2CII is the second refrigerator, 52FE is the blower, and llI+ is the temperature controller. Tf (Mx, THMz is the thermostat.

Claims (2)

【特許請求の範囲】[Claims] (1)冷却器の吸込口側と吹出口側にそれぞれ配設した
る温度制御器にて、その吸込吹出両方の温度差を検出し
、これにより送風機もしくは冷凍機の回転数を制御し、
被冷蔵物を凍結点直前の温度で保冷するようになしたこ
とを特徴とする保冷庫の温度制御方法。
(1) Temperature controllers installed on the inlet and outlet sides of the cooler detect the temperature difference between the suction and outlet, and thereby control the rotation speed of the blower or refrigerator,
A temperature control method for a refrigerator, characterized in that items to be refrigerated are kept cold at a temperature just below the freezing point.
(2)冷凍機をその容量比を1:1以上とした複数台を
用いた特許請求の範囲第1項記載の保冷庫の温度制御方
法。
(2) A temperature control method for a cold storage box according to claim 1, which uses a plurality of refrigerators having a capacity ratio of 1:1 or more.
JP60048695A 1985-03-11 1985-03-11 Cooling room temperature control method Expired - Lifetime JPH0623637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048695A JPH0623637B2 (en) 1985-03-11 1985-03-11 Cooling room temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048695A JPH0623637B2 (en) 1985-03-11 1985-03-11 Cooling room temperature control method

Publications (2)

Publication Number Publication Date
JPS61205767A true JPS61205767A (en) 1986-09-11
JPH0623637B2 JPH0623637B2 (en) 1994-03-30

Family

ID=12810447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048695A Expired - Lifetime JPH0623637B2 (en) 1985-03-11 1985-03-11 Cooling room temperature control method

Country Status (1)

Country Link
JP (1) JPH0623637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243674A (en) * 1987-03-30 1988-10-11 三洋電機株式会社 Cooling system
WO2017086461A1 (en) * 2015-11-19 2017-05-26 ブランテック株式会社 Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
CN108471760A (en) * 2015-11-19 2018-08-31 布兰克特克株式会社 Ice, refrigerant, the manufacturing method of ice, the manufacturing method of cooled object, animals and plants or part thereof are frozen manufacturing method, thawed material or its machining object of fresh animals and plants or part thereof and the refrigerant of fresh animals and plants or part thereof by the refrigeration agent of the manufacturing method of refrigeration object, animals and plants or part thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127080A (en) * 1982-01-22 1983-07-28 ダイキン工業株式会社 Temperature controller of freezing and refrigerating unit for marine container
JPS58221349A (en) * 1982-06-17 1983-12-23 三菱電機株式会社 Refrigeration cycle device
JPS5969679A (en) * 1982-10-14 1984-04-19 ダイキン工業株式会社 Temperature controller for refrigerator
JPS6014074A (en) * 1983-07-05 1985-01-24 三菱重工業株式会社 Method of controlling temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127080A (en) * 1982-01-22 1983-07-28 ダイキン工業株式会社 Temperature controller of freezing and refrigerating unit for marine container
JPS58221349A (en) * 1982-06-17 1983-12-23 三菱電機株式会社 Refrigeration cycle device
JPS5969679A (en) * 1982-10-14 1984-04-19 ダイキン工業株式会社 Temperature controller for refrigerator
JPS6014074A (en) * 1983-07-05 1985-01-24 三菱重工業株式会社 Method of controlling temperature

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243674A (en) * 1987-03-30 1988-10-11 三洋電機株式会社 Cooling system
WO2017086461A1 (en) * 2015-11-19 2017-05-26 ブランテック株式会社 Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
CN108471760A (en) * 2015-11-19 2018-08-31 布兰克特克株式会社 Ice, refrigerant, the manufacturing method of ice, the manufacturing method of cooled object, animals and plants or part thereof are frozen manufacturing method, thawed material or its machining object of fresh animals and plants or part thereof and the refrigerant of fresh animals and plants or part thereof by the refrigeration agent of the manufacturing method of refrigeration object, animals and plants or part thereof
US10989458B2 (en) 2015-11-19 2021-04-27 Blanctec Co., Ltd. Cold storage unit, moving body, ice slurry supply system, cold storage article transport system, cold storage method for cold storage article, and transport method for cold storage article
RU2747729C2 (en) * 2015-11-19 2021-05-13 Бланктек Ко., Лтд. Ice, coolant, method of ice production, method of production of chilled product, method of production of chilled product from plant/animal or part thereof, cooling material for plant/animal or part thereof, method of production of frozen fresh plant/animal or part thereof, thawed product or processed product thereof and freezing material for a fresh plant/animal or part thereof
US11060780B2 (en) 2015-11-19 2021-07-13 Blanctec Co., Ltd. Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof

Also Published As

Publication number Publication date
JPH0623637B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
CN101910770B (en) Transport refrigeration system and method for operating
US4280335A (en) Icebank refrigerating and cooling systems for supermarkets
US10619902B2 (en) Controlling chilled state of a cargo
CN103717981B (en) Temperature control logic for refrigeration system
US20110209490A1 (en) Control of multiple zone refrigerant vapor compression systems
US3237415A (en) Zone controlled refrigeration system
CN103228470B (en) Current limited Control to transport refrigeration system
EP0845643B1 (en) A refrigeration system with variable forced ventilation
JPS61205767A (en) Method of controlling temperature of cold-insulating warehouse
US3834180A (en) Heat exchange unit
JPH0345306B2 (en)
JPH01189473A (en) Chill accumulating type cold storehouse
JP2000055529A (en) Freezing refrigerator for food
JPS63231174A (en) Constant-temperature cooling device
JPH1089827A (en) Deep freezing and cold storage open display case
JPH02135081A (en) Thawing-cool keeping method for frozen food and system therefor
JPH11108526A (en) Cooling unit
JPS6222979A (en) Refrigerator
JP2001280786A (en) Refrigerator
JPH01102269A (en) Cold accumulation type refrigerator truck
JPH0375454A (en) Cold-heat-storing storage apparatus
JPH09133415A (en) Cooling apparatus and cold retaining storeroom
JPH01219469A (en) Cold heat accumulating refrigerated chamber
JPH02122180A (en) Cold storage type insulated container
JPS62210377A (en) Freezing refrigerator