JPS61205611A - Mesocarbon microbead, production thereof, and adsorbent - Google Patents
Mesocarbon microbead, production thereof, and adsorbentInfo
- Publication number
- JPS61205611A JPS61205611A JP60045267A JP4526785A JPS61205611A JP S61205611 A JPS61205611 A JP S61205611A JP 60045267 A JP60045267 A JP 60045267A JP 4526785 A JP4526785 A JP 4526785A JP S61205611 A JPS61205611 A JP S61205611A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- plasma treatment
- oxygen
- microbeads
- mesocarbon microbeads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は9表面に酸性基を有し、水に対するぬれ性が改
善されたメソカーボンマイクロビーズ。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides mesocarbon microbeads having acidic groups on their surface and having improved water wettability.
その製造法及び吸着剤に関する。The present invention relates to its production method and adsorbent.
(従来の技術)
メソカーボンマイクロビーズは、ピッチ類を350〜4
50℃の・温度範囲で熱処理し、熱分解。(Conventional technology) Mesocarbon microbeads contain pitches of 350 to 4
Heat treated and thermally decomposed in the temperature range of 50℃.
熱重合反応によシ高分子化した芳香族化合物の平面分子
が一定方向に配向してラメラ構造を形成し。Planar molecules of an aromatic compound polymerized through a thermal polymerization reaction are oriented in a certain direction to form a lamellar structure.
これが積層したもので、中間層(メソフェイズ)の1〜
数十μmの球状ビーズである(石油学会誌16巻392
号36〜42頁、1973年)。This is a laminated layer, with intermediate layers (mesophase) 1 to 1.
They are spherical beads of several tens of micrometers (Journal of the Japan Petroleum Institute, Vol. 16, 392)
No. 36-42, 1973).
(発明が解決しようとする問題点)
従来、メンカーボンマイクロビーズは、そのための有用
な用途が未開発である。これは、従来。(Problems to be Solved by the Invention) Conventionally, useful uses for mencarbon microbeads have not been developed. This is conventional.
知られているメンカーボンマイクロビーズが、その表面
酸性基の量が50μeq/g以下であり、極性が小さく
、水に対するぬれ性が劣ることが一つの大きな原因とな
っている。One of the major reasons for this is that the known Mencarbon microbeads have an amount of acidic groups on the surface of 50 μeq/g or less, have low polarity, and have poor wettability with water.
従って、水溶液中での吸着剤、水又は水溶液を溶離液と
する液体クロマトグラフィーの充填剤に使用するような
ことは考えられなかった。Therefore, it has not been possible to use it as an adsorbent in an aqueous solution or as a packing material for liquid chromatography using water or an aqueous solution as an eluent.
(問題点を解決するための手段)
第1の発明は2表面酸性基の量が70μeq/g〜20
0μeq/gでめるメソカーボンマイクロピ−ズである
。(Means for solving the problem) The first invention has an amount of acidic groups on two surfaces of 70 μeq/g to 20 μeq/g.
These are mesocarbon micropeas that can be produced at 0 μeq/g.
ここで2表面酸性基とは、フェノール性水酸基及びカル
ボキシル基(ラクトン形で存在するものを含む)である
。The two surface acidic groups herein are phenolic hydroxyl groups and carboxyl groups (including those present in the lactone form).
表面酸性基の量は、上記の範囲である。70μeq、、
’g未満では、水に対するぬれ性の改善が不充分となり
、200μeq/gを越えると製造中に灰化しやすぐな
るため製造が困難となる。The amount of surface acidic groups is within the range described above. 70μeq,,
If it is less than 200 μeq/g, the improvement in water wettability will be insufficient, and if it exceeds 200 μeq/g, it will easily ash during production, making production difficult.
メンカーボンマイクロビーズの表面酸性基量は。What is the amount of acidic groups on the surface of Mencarbon microbeads?
中和滴定2例えば、過剰アルカリ水溶液中にメソカーボ
ンマイクロビーズをよく分散させた後、酸による逆滴定
により、求めることができる。Neutralization titration 2 For example, it can be determined by back titration with an acid after well dispersing mesocarbon microbeads in an excess alkaline aqueous solution.
また、メンカーボンマイクロビーズであること自体は、
偏光顕微鏡によりラメラ構造を確認することによプ容易
に同定することができる。In addition, the fact that they are men carbon microbeads itself is
It can be easily identified by confirming the lamellar structure using a polarizing microscope.
本発明に係るメンカーボンマイクロビーズは。Men carbon microbeads according to the present invention.
従来公知の方法で1石炭、コールタールピッチ。1 coal and coal tar pitch using a conventionally known method.
石油重質油などのピッチを原料として得られたメソカー
ボンマイクロビーズ(表面酸性基の量が50μeq/g
以下)をフリーデルクラフン反応等を利用し之誘導体化
、プラズマ処理化等の方法により得ることができるが2
次に示す第2の発明に係る方法が特に好ましい。Mesocarbon microbeads obtained from pitch such as heavy petroleum oil (the amount of surface acidic groups is 50 μeq/g)
The following) can be obtained by methods such as derivatization and plasma treatment using the Friedel-Krafhn reaction, etc.
The method according to the second invention described below is particularly preferred.
すなわち、第2の発明は、メンカーボンマイクロビーズ
を酸素の存在下に低温プラズマ処理することを特徴とす
る表面酸性基の量が70μeq/g〜200μeq/g
でらるメソカーボンマイクロビーズの製造法に関する。That is, the second invention is characterized in that Mencarbon microbeads are subjected to low-temperature plasma treatment in the presence of oxygen, and the amount of surface acidic groups is 70 μeq/g to 200 μeq/g.
This article relates to a method for producing mesocarbon microbeads.
第2の発明の原料となるメンカーボンマイクロビーズは
、従来公知の方法で製造された表面酸性基の量が50μ
eq/gであるメソカーボンマイクロビーズ及びこのメ
ンカーボンマイクロビーズを第2の発明により1回以上
処理したものを使用することができる。Mencarbon microbeads, which are the raw material for the second invention, have a surface acidic group content of 50μ, which is produced by a conventionally known method.
eq/g mesocarbon microbeads and mesocarbon microbeads treated one or more times according to the second invention can be used.
上記のプラズマ処理は1次のようにして行なわれる。The above plasma treatment is performed in a first order manner.
すなわち、メンカーボンマイクロビーズを反応容器内に
入れ2反応容器内を脱気し、排気した後一定流量の酸素
ガス又は酸素含有ガスを流し、高周波をかけてプラズマ
状態を維持して酸化処理することである。In other words, Mencarbon microbeads are placed in a reaction container, the interior of the reaction container is degassed, and then a constant flow of oxygen gas or oxygen-containing gas is passed through the reaction container, and high frequency is applied to maintain a plasma state for oxidation treatment. It is.
この際2反応容器内の真空度は、高すぎると酸素の量が
少なすぎて酸化させることができない。At this time, if the degree of vacuum in the two reaction vessels is too high, the amount of oxygen will be too small to oxidize.
また、低すぎると、プラズマが不安定になり好ましくな
い。したがって反応容器内の真空度としては、1rrm
Hg〜10 rrmHgが好ましい。On the other hand, if it is too low, the plasma becomes unstable, which is not preferable. Therefore, the degree of vacuum inside the reaction vessel is 1 rrm.
Hg to 10 rrmHg is preferred.
プラズマ処理の際の高周波出力は、低すぎるとプラズマ
状態が維持できず、高すぎるとメソカーボンマイクロビ
ーズ自体の灰化等が起こるので1w−ioowが好まし
い。また処理時間は上記した同じ理由で30分〜10時
間が好ましい。The high frequency output during plasma treatment is preferably 1w-ioow because if it is too low, the plasma state cannot be maintained, and if it is too high, the mesocarbon microbeads themselves will be incinerated. Further, the treatment time is preferably 30 minutes to 10 hours for the same reason as described above.
上記した周波数は107〜10’Hzのラジオ波でも1
09〜10”Hzのマイクロ波でもよく、特に制限はな
い。The above frequency is 1 even for radio waves of 107 to 10'Hz.
Microwaves of 09 to 10''Hz may be used, and there is no particular limitation.
また、Wl素ガスとしては、酸素そのものを単独で使用
しても、酸素源として空気tl−使用しても。Further, as the Wl elementary gas, oxygen itself may be used alone, or air may be used as the oxygen source.
或いは酸素と窒素、不活性ガスなどとの混合ガスを使用
することも可能であるが、真空度と酸素量の関係を考慮
すると酸素そのものが好ましい。Alternatively, it is also possible to use a mixed gas of oxygen, nitrogen, an inert gas, etc., but in consideration of the relationship between the degree of vacuum and the amount of oxygen, oxygen itself is preferable.
ビーズを均一にプラズマ処理するためにはビーズをかく
はんしてプラズマ処理することが好ましい。In order to uniformly plasma-treat the beads, it is preferable to stir the beads before plasma-treating them.
このような1本発明のメンカーボンマイクロビーズは、
水溶液中での吸着剤、水又は水溶液を溶離液とする液体
クロマトグラフィーの充填剤などの水へのぬれを必要と
する用途に有用であるが。One such men carbon microbead of the present invention is
It is useful for applications that require wetting with water, such as adsorbents in aqueous solutions and packing materials for liquid chromatography using water or aqueous solutions as eluents.
吸着剤として特に有用である。Particularly useful as an adsorbent.
すなわち、第3の発明は1表面酸性基の量が70 μe
Q/g 〜200 μeq/gであるメソカーボンマイ
クロビーズからなる吸着剤に関する。That is, in the third invention, the amount of acidic groups on one surface is 70 μe.
The present invention relates to an adsorbent consisting of mesocarbon microbeads with Q/g to 200 μeq/g.
コノ吸着剤は、特に、r−グロブリン、アルブミン、チ
トクロームC等の蛋白質の吸着に有用であり、これらの
蛋白質の水溶液中で優れた吸着性を示し、その効果は、
従来公知の、メソカーボンマイクロビーズに比し顕著で
ある。Kono adsorbent is particularly useful for adsorbing proteins such as r-globulin, albumin, and cytochrome C, and exhibits excellent adsorption properties in aqueous solutions of these proteins.
This is remarkable compared to conventionally known mesocarbon microbeads.
(実施例) 次に1本発明の実施例を示す。(Example) Next, an example of the present invention will be shown.
実施例1
酸素の導入口及び排出口を付し、高周波を出力するだめ
の電極をまきつけた500rneのフラスコに、比表面
積Z 1 m” / g + キノリンネ溶物92.3
チ、ベンゼン不溶分97.0%、揮発性分17.3%。Example 1 A 500 rne flask equipped with an oxygen inlet and an outlet and covered with a high-frequency output electrode was charged with a specific surface area Z 1 m"/g + quinoline solution of 92.3
H, benzene insoluble content: 97.0%, volatile content: 17.3%.
炭素含量/水素含量=239粒径2〜15μm。Carbon content/hydrogen content = 239 particle size 2-15 μm.
偏光顕微鏡で観察するとラメラ構造であることがわかる
メソカーボンマイクロビーズ5gをとり。Take 5 g of mesocarbon microbeads, which can be seen to have a lamellar structure when observed with a polarizing microscope.
反応容器内を2 rnrnHgで工時間脱気したのち排
気しなから100 rrLe/minの流量で酸素ガス
を流し。After degassing the inside of the reaction vessel at 2 rnrnHg for a working time, oxygen gas was flowed at a flow rate of 100 rrLe/min after exhausting the air.
スターラーを作動させ、高周波(出力50W、 13.
56MHz)をかけ、プラズマ状態を維持して、3時間
処理を行なった。この時の真空度は3 rrLm)(g
であった。Activate the stirrer and use high frequency (output 50W, 13.
56 MHz), the plasma state was maintained, and the treatment was performed for 3 hours. The degree of vacuum at this time is 3 rrLm) (g
Met.
この改質メンカーボンマイクロピーズの比表面積は1.
5 m”/ g 、 pH4,9酸性基の量150 μ
eq/gであった。The specific surface area of this modified men carbon micropeas is 1.
5 m”/g, pH 4,9 Amount of acidic groups 150 μ
eq/g.
なお、比表面積は窒素吸着法により測定し、pHはメン
カーボンマイクロビーズ0.1gをイオン交換水50m
/中に加えて、15分間煮沸し、48時間放置後サスペ
ンションのpHをpHメーターにて測定し、酸性基の量
は中和滴定により測定し友。The specific surface area was measured by the nitrogen adsorption method, and the pH was determined by adding 0.1 g of men carbon microbeads to 50 ml of ion-exchanged water.
After boiling for 15 minutes and standing for 48 hours, the pH of the suspension was measured using a pH meter, and the amount of acidic groups was measured by neutralization titration.
中和滴定は、メンカーボンマイクロビーズ0.5を共栓
付三角フラスコにとり、これにそれぞれ0.05〜0.
1NK調整したNaHCOs 、 NaCO5。For neutralization titration, 0.5% of Mencarbon microbeads are placed in an Erlenmeyer flask with a stopper, and each amount of 0.05 to 0.0% is added to this.
1NK adjusted NaHCOs, NaCO5.
NaOH及びNa0Et水溶液50 meずつを加え。Add 50 me each of NaOH and Na0Et aqueous solutions.
25℃で24時間振とうしたのち、96時間放置し、つ
いで、遠心分離して得られた上置液20 mlを0.1
NHCJで滴定した。同時にメソカーボンマイクロピー
ズを使用せずに同様に滴定した。この両者の差から塩基
消費量を求め、酸性基の量を算出した。After shaking at 25°C for 24 hours, it was left to stand for 96 hours, and then centrifuged. 20 ml of the supernatant liquid was diluted with 0.1
Titrated with NHCJ. At the same time, titration was carried out in the same manner without using mesocarbon micropeas. The amount of base consumed was determined from the difference between the two, and the amount of acidic groups was calculated.
測定方法は、メンカーボンマイクロビーズ0.49をr
−グロブリンの水溶液20m1中に入れ(初濃度o、s
、1.0,1.5.zog/lり、25℃で3時間振と
う後、遠心分離して(10,00Orpm。The measurement method was to use men carbon microbeads 0.49
- in 20 ml of an aqueous solution of globulin (initial concentration o, s
, 1.0, 1.5. zog/l and shaken at 25°C for 3 hours, centrifuged (10,00 rpm).
10分間)上澄の2f3 Q nmにおける吸光度から
平衡濃度を求め、この平衡濃度からメンカーボンマイク
ロビーズ1g当りの吸着量を求めた。(10 minutes) The equilibrium concentration was determined from the absorbance of the supernatant at 2f3 Q nm, and from this equilibrium concentration, the amount of adsorption per 1 g of Mencarbon microbeads was determined.
比較例1
実施例1に用いた原料メンカーボンマイクロピーズ(プ
ラズマ処理をしてないもの)は、 pH5,1及び表面
酸性基の量30μer7gであった。またγ−グロブリ
ンに対する吸着等製線を第2図に示す。Comparative Example 1 The raw material carbon micropeas (not subjected to plasma treatment) used in Example 1 had a pH of 5.1 and an amount of surface acidic groups of 30 μer 7 g. Further, the adsorption contour line for γ-globulin is shown in FIG.
これらの測定は実施例1に準じて行なった。These measurements were performed according to Example 1.
実施例2〜8 は実施例1と同一条件下でプラズマ処理をした。Examples 2-8 was subjected to plasma treatment under the same conditions as in Example 1.
これらの比表面積、 pH及び酸性基の量を表1に示す
。これらの測定は実施例1に準じて行なった。The specific surface area, pH and amount of acidic groups are shown in Table 1. These measurements were performed according to Example 1.
表1特性 (発明の効果) 本発明に係るメゾカーボンマイクロピーズは。Table 1 Characteristics (Effect of the invention) Mesocarbon micropeas according to the present invention.
水に対するぬれ性が顕著に改善され、また、プラズマ処
理により効率的に製造することができ、特に吸着剤とし
て有用である。It has significantly improved wettability with water, can be efficiently produced by plasma treatment, and is particularly useful as an adsorbent.
第1図は実施例1における吸着等温線、第2図は比較例
−における吸着等温線を示す。FIG. 1 shows the adsorption isotherm in Example 1, and FIG. 2 shows the adsorption isotherm in Comparative Example.
Claims (1)
gであるメソカーボンマイクロビーズ。 2、メソカーボンマイクロビーズを酸素の存在下に低温
プラズマ処理することを特徴とする表面酸性基の量が7
0μeq/g〜200μeq/gであるメソカーボンマ
イクロビーズの製造法。 3、表面酸性基の量が70μeq/g〜200μeq/
gであるメソカーボンマイクロビーズからなる吸着剤。[Claims] 1. The amount of surface acidic groups is 70 μeq/g to 200 μeq/g.
Mesocarbon microbeads that are g. 2. Mesocarbon microbeads are treated with low-temperature plasma in the presence of oxygen.The amount of surface acidic groups is 7.
A method for producing mesocarbon microbeads having a concentration of 0 μeq/g to 200 μeq/g. 3. The amount of surface acidic groups is 70 μeq/g to 200 μeq/
An adsorbent consisting of mesocarbon microbeads.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60045267A JPS61205611A (en) | 1985-03-07 | 1985-03-07 | Mesocarbon microbead, production thereof, and adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60045267A JPS61205611A (en) | 1985-03-07 | 1985-03-07 | Mesocarbon microbead, production thereof, and adsorbent |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61205611A true JPS61205611A (en) | 1986-09-11 |
Family
ID=12714522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60045267A Pending JPS61205611A (en) | 1985-03-07 | 1985-03-07 | Mesocarbon microbead, production thereof, and adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61205611A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5143889A (en) * | 1987-11-20 | 1992-09-01 | Osaka Gas Company Limited | Active carbon and processes for preparation of same |
-
1985
- 1985-03-07 JP JP60045267A patent/JPS61205611A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5143889A (en) * | 1987-11-20 | 1992-09-01 | Osaka Gas Company Limited | Active carbon and processes for preparation of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stickney et al. | Ordered ionic layers formed on platinum (111) from aqueous solutions | |
Hadi et al. | Fabrication of activated carbon from pomegranate husk by dual consecutive chemical activation for 4-chlorophenol adsorption | |
JPH01230414A (en) | Activated carbon and production thereof | |
Zhang et al. | Separation and enrichment of six indicator polychlorinated biphenyls from real waters using a novel magnetic multiwalled carbon nanotube composite absorbent | |
Liu et al. | Molecularly imprinted polymers on the surface of porous carbon microspheres for capturing dibenzothiophene | |
CN109499393A (en) | A kind of super hydrophilic PVDF water-oil separationg film and the preparation method and application thereof separating oily wastewater | |
CN111676213B (en) | laccase-nanoflower-gamma-Fe2O3Copper alginate gel bead and preparation method and application thereof | |
Akgöl et al. | Magnetic dye affinity beads for the adsorption of β‐casein | |
Chai et al. | Bead-type polystyrene/nano-CaCO 3 (PS/nCaCO 3) composite: a high-performance adsorbent for the removal of interleukin-6 | |
Medykowska et al. | Novel carbon-based composites enriched with Fe and Mn as effective and eco-friendly adsorbents of heavy metals in multicomponent solutions | |
JPS61205611A (en) | Mesocarbon microbead, production thereof, and adsorbent | |
Hickstein et al. | Characterization of protein capacity of nanocation exchanger particles as filling material for functional magnetic beads for bioseparation purposes | |
Xing et al. | The fabrication of dendrimeric phenylboronic acid-functionalized magnetic graphene oxide nanoparticles with excellent adsorption performance for the separation and purification of horseradish peroxidase | |
Qu et al. | Adsorptive removal of Ni (ii) ions from aqueous solution and the synthesis of a Ni-doped ceramic: an efficient enzyme carrier exhibiting enhanced activity of immobilized lipase | |
JPS62283808A (en) | Mesocarbon microbead, its production and adsorbent | |
da Silva et al. | New materials for green sample preparation: Recent advances and future trends | |
Gavara et al. | A minireview on covalent organic frameworks as stationary phases in chromatography | |
JPH04118047A (en) | Adsorbent and filler for separation and refining and manufacture thereof | |
Zhao et al. | Enantioselective adsorption of ibuprofen enantiomers using chiral‐active carbon nanoparticles induced S‐α‐methylbenzylamine | |
Luo et al. | Preparation of dendritic polymer‐based magnetic carrier for application of bromelain separation and purification | |
Ahmed et al. | Synthesis of core‐shell material rich in carboxyl groups and its application in the selective adsorption of cationic peptides | |
CN108554371A (en) | A method of preparing silicon magnesium-base nano water treatment agent | |
Hajiaghababaei et al. | Efficient removal of reactive Blue-19 from textile wastewater by adsorption on methyl Imidazolium modified LUS-1 and MCM-48 nanoporous | |
Murphy et al. | Heats and entropies of adsorption of sulfur dioxide on activated carbon and carbon black | |
Moghaddam et al. | SPE of gallic acid and ascorbic acid in fruits using polymerized deep eutectic solvent-modified substrate |