JPS61205003A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPS61205003A
JPS61205003A JP4593385A JP4593385A JPS61205003A JP S61205003 A JPS61205003 A JP S61205003A JP 4593385 A JP4593385 A JP 4593385A JP 4593385 A JP4593385 A JP 4593385A JP S61205003 A JPS61205003 A JP S61205003A
Authority
JP
Japan
Prior art keywords
antenna
ship
angle
rock
directed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4593385A
Other languages
Japanese (ja)
Other versions
JPH0156561B2 (en
Inventor
Mitsuo Taira
平 光夫
Takashi Ooshima
大島 ▲たかし▼
Tadao Tsuji
辻 忠雄
Shinichi Ito
信一 伊藤
Masamichi Yonekura
米倉 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, NEC Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP4593385A priority Critical patent/JPS61205003A/en
Publication of JPS61205003A publication Critical patent/JPS61205003A/en
Publication of JPH0156561B2 publication Critical patent/JPH0156561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

PURPOSE:To obtain a compact and lightweight antenna system which can correct the rock of a ship by controlling the radiated beams in the high-low direction with high-low revolutions of a reflecting plate while an antenna radiation system kept fixed to the ship. CONSTITUTION:The radio waves radiated from a primary radiation antenna 101 are reflected in the direction A by a flat reflecting plate 102 set at the position (1). The antenna beam direction is directed as if the line 101 were set at the position (a). Then a drive controller 205 calculates the sloping angle phiof the direction theta from the directed position theta of the line 101 and pitching and rolling angles P and R produced by the rock of a ship. Then the reflector 102 is turned via phi/2 from the position (1) and set at the position (2) by a rotation mechanism 104 for reflector 102 so that the sloping angle phi is corrected. Thus the antenna beam is corrected from the direction A by and directed toward B. This can correct the sloping angle owing to the rock of the ship.

Description

【発明の詳細な説明】 (技術分野) 本発明は、動揺体に搭載し、単一ビームを所定の方向に
指向する指向性空中線において、動揺体の顔斜による仰
角及び方位角の誤差を補正する空中線装置に関するもの
である。
Detailed Description of the Invention (Technical Field) The present invention corrects errors in elevation angle and azimuth angle due to the tilt of the face of the moving body in a directional antenna that is mounted on a moving body and directs a single beam in a predetermined direction. The present invention relates to an antenna device.

(従来技術) 従来この櫛の空中線装置の動揺補正は、例えば船体の動
揺による傾斜角を外部装置から受け、これを補正するよ
うに駆動される機構を有するスタビライザーの上に空中
線装置全体を搭載することによって船体動揺の補正を行
っていた。
(Prior Art) Conventionally, the oscillation correction of this comb antenna device involves mounting the entire antenna device on a stabilizer that has a mechanism that receives the inclination angle due to the oscillation of the ship body from an external device and is driven to correct this angle. This corrected the ship's motion.

(発明が解決しようとする問題点) この方式の動揺補正方式においては、空中線に至る烏周
波の伝送路及びその他の線路を船体く対し一定すること
が不可能となシ、このためロータリー・ジ、インドを設
けて可動部と固定部間の電力の伝送を行ったシ、高筒波
の亀カ発生部を可動部に搭載したシすることが必要であ
った。仁のため空中線系がスタビライザーと併せて、複
雑−高価となるだけでなく、大型で重量も大となるため
船舶高部へ搭載する上で大きな欠点でありた〇他の空中
線動揺補正の例として、空中線を電子走葺方式とし、船
舶からの動揺情報に基づいて放射ビームの指向方向を電
子的に走査する方法もあるが、11子走食空中線が極め
て複雑かつ高価になるという欠点を有していた。
(Problems to be Solved by the Invention) In this type of oscillation correction method, it is impossible to keep the transmission line of the radio wave and other lines leading to the antenna constant with respect to the ship's hull. In addition, it was necessary to provide an electric power transmitter to transmit power between the movable part and the fixed part, and to mount the wave generating part of the high cylindrical wave on the movable part. Because of this, the antenna system, together with the stabilizer, is not only complicated and expensive, but also large and heavy, which is a major drawback when mounted on the high part of a ship. Other examples of antenna sway correction There is also a method of using an electronic scanning antenna and electronically scanning the direction of the radiation beam based on information about the movement of the ship, but this method has the drawback that the 11-element scanning antenna is extremely complex and expensive. was.

本発明は、このような欠点を除去し、空中線放射系は船
体に固定したまま、反射板高低方向の回転により放射ビ
ームを高低方向に制御することにより、小型、簡易で軽
量な機構で船体動揺を補正する空中線装置を提供するも
のである。
The present invention eliminates such drawbacks and controls the radiation beam in the height direction by rotating the reflector in the height direction while the antenna radiation system is fixed to the ship's hull, thereby controlling the ship's motion using a small, simple, and lightweight mechanism. The present invention provides an antenna device that corrects for.

(問題点を解決するための手段) 本発明の動揺補正空中線装置は、動揺体に搭載された放
射器と平板反射鏡と前記平板反射鏡を略反射面上の所定
の1軸又FiZ軸のまわりに回転させる回転機構と前記
動揺体からの動揺角度信号を入力として前記回転機構の
駆動信号を発生する駆動制御器とから構成され、前記動
揺体からの動揺角度信号忙応じて前記反射鏡を前記所定
軸のまわり忙回転駆動すること罠より指向性放射ビーム
を所定の方向へ指向させ動揺補正を行なう。
(Means for Solving the Problems) The oscillation-correcting antenna device of the present invention has a radiator mounted on a oscillating body, a flat reflector, and the flat reflector aligned along a predetermined axis or FiZ axis substantially on a reflecting surface. It is composed of a rotation mechanism that rotates the rotating mechanism, and a drive controller that receives a vibration angle signal from the vibration body and generates a drive signal for the rotation mechanism, and rotates the reflecting mirror in response to the vibration angle signal from the vibration body. By rotating the trap around the predetermined axis, a directional radiation beam is directed in a predetermined direction to correct the oscillation.

(実施例) 以下に、本発明の実施例について図を参照して説明する
(Example) Examples of the present invention will be described below with reference to the drawings.

第2図は、船体の動揺によシ発生するデツキ面の傾斜角
及び高仰角方向を指向した場合の方位角の叫差角の関係
を示す。
FIG. 2 shows the relationship between the inclination angle of the deck surface caused by the movement of the ship and the difference angle of the azimuth when pointing in a high elevation angle direction.

第2図において0方位のデツキ面の傾斜角φは、次式で
表される。
In FIG. 2, the inclination angle φ of the deck surface in the 0 direction is expressed by the following equation.

φ=Rsinθ−Pcnsθ        (1)又
、方位角誤差Δθは、次式で近似される。
φ=Rsinθ−Pcnsθ (1) Also, the azimuth error Δθ is approximated by the following equation.

△φ=t3nθm tan (Ps inθ+R+co
sθ)  (2)本発明は、ピッチング角(8,ローリ
ング角(R)、空中線ビーム指向方位(θ)及び目標の
仰角(θ)を受け(1)式及び(2)式によりφ角及び
△θ角を演算しこれにもとづき簡易な構造で傾斜角φ及
び方位角誤差△θを補正するものである。
△φ=t3nθm tan (Ps inθ+R+co
sθ) (2) The present invention calculates the φ angle and Δ using equations (1) and (2) based on the pitching angle (8, rolling angle (R), antenna beam direction azimuth (θ), and target elevation angle (θ). The θ angle is calculated, and based on this, the inclination angle φ and the azimuth angle error Δθ are corrected with a simple structure.

第1図は、本発明による第1の実施例を示す。FIG. 1 shows a first embodiment according to the invention.

第1図において、201#i−次放射党中線、202は
平板反射値、ZO3は平板反射鏡(202)の支点52
04は平板反射鏡回転機構、205け駆動制御器である
In Fig. 1, 201#i-th radiant median line, 202 is the flat plate reflection value, and ZO3 is the fulcrum 52 of the flat plate reflector (202).
04 is a flat reflector rotation mechanism and a 205 drive controller.

一次放射空中線(201)から放射された電波は、■の
位置にある平板反射*(202)KよシAの方向に反射
され、−次放射窒中線があたかもaの位置にあるように
空中線ビーム方向が指向される。
The radio waves radiated from the primary radiation antenna (201) are reflected in the direction of A from the flat plate reflection * (202) K at position ■, and the antenna is reflected as if the -order radiation central line was at position a. The beam direction is directed.

つきに、駆動制御器205が空中線指向方位(θ)及び
船体動揺によるピッチング角(ト)、o−リング角(I
匂を受け、θ方位における傾斜角φを演算しこれにもと
づきこの傾斜角を補正するように平板反射鏡−転IA構
(204)によシ、平板反射鏡(202)を■の位置か
らφ/2だけ回転させ■の位&に設定する。その結果空
中線のビームは、人からφだけ補正されBの方向に指向
され、ちょうど船体の動揺による傾斜角を補正すること
ができる。
At the same time, the drive controller 205 determines the antenna pointing direction (θ), the pitching angle (T) due to the ship's vibration, and the O-ring angle (I).
Upon receiving the smell, the flat reflector-transfer IA structure (204) is operated to calculate the inclination angle φ in the θ direction and correct this inclination angle based on this, and the flat reflector (202) is moved from the position of ■ to φ. Rotate it by /2 and set it to &. As a result, the antenna beam is corrected by φ from the person and directed in the direction B, making it possible to just correct the angle of inclination caused by the movement of the ship.

低仰角目標を対象とする装置で、θは低角度となるこ七
から、ΔθFi極めて小さな値となシ、無視できる場合
、上記第1の実施例は有効である。
The first embodiment is effective in the case where ΔθFi is an extremely small value and can be ignored in a device that targets a low elevation angle target because θ is a low angle.

gA3図は、本発明による仰角及び方位角を補正する第
2の実施例を示すものである。
Figure gA3 shows a second embodiment of correcting the elevation and azimuth angles according to the present invention.

第2図に示すとおシ、目標の仰角が大きい場合デツキ面
の傾斜に伴い仰角の誤差に加え、方位角の誤差が大きく
なる。
As shown in FIG. 2, when the elevation angle of the target is large, the azimuth error becomes large in addition to the elevation angle error due to the inclination of the deck surface.

目標の仰角が水平面画表においてθの場合、デ、キ面の
訓斜によりデツキ面が水平の時は2点に正対していた空
中像ビームがb点力向に指向する。
When the elevation angle of the target is θ on the horizontal plane map, the aerial image beam, which was directly facing two points when the deck plane was horizontal, is directed in the direction of point b due to the slope of the plane.

その結果方位方向にΔθのia差を生ずるため、これを
補正する必要がある。Δθは、前記(2)式で表される
As a result, an ia difference of Δθ occurs in the azimuth direction, so it is necessary to correct this. Δθ is expressed by the above equation (2).

第3図において、201〜205は第2図に示す第1の
実m例と同一であり、ざらに301は支点203と直交
する平面反射板(202)の第2の支点、302は平板
反射鏡水平回転機構及び303#:I−垂直駆動制御器
である。
In FIG. 3, 201 to 205 are the same as the first example shown in FIG. Mirror horizontal rotation mechanism and 303#: I-vertical drive controller.

この構成において、仰角の補正は前記第2図による説明
と同一であり、さらに垂直駆動制御器(303)は、外
部からピッチング角(肋、cr−リング角(均及び方位
角(の及び目標仰角((ロ)をうけ(2)式により補正
量△θを演算する。これにもとづき垂直回転機構(30
2)が、平板反射鏡(202)を△θ/2だけ支点(3
01)を特徴とする特許動制御することによって、船体
の動揺による頌斜角を2次元にわたり補正することが可
能となる。
In this configuration, the correction of the elevation angle is the same as the explanation with reference to FIG. (Based on (b), calculate the correction amount △θ using equation (2). Based on this, the vertical rotation mechanism (30
2) moves the flat reflector (202) by △θ/2 to the fulcrum (3
By using the patented motion control characterized by 01), it is possible to correct the heel angle caused by the motion of the ship over two dimensions.

(発明の効果) 以上説明したように、本発明は船体の動揺によって空中
線ビームの指向方向罠誤差が発生したものを平板反射板
の#t$1角を変えるのみで、常に所定方向に指向する
ものであり、従来方法に比較し一次放舷系を船体に固定
することができ極めて簡単、小型、軽量かつ低価格化の
効果を有するものである。
(Effects of the Invention) As explained above, the present invention allows the antenna beam to always be directed in a predetermined direction by simply changing the #t$1 angle of the flat reflector, even though the antenna beam has a pointing direction error caused by the motion of the ship. Compared to the conventional method, the primary broadside system can be fixed to the hull, and it has the effect of being extremely simple, compact, lightweight, and inexpensive.

なお、本発明の実施例では、船舶に搭載しピッチング及
びローリングによる動揺補正について説明したが、本発
明による空中線装置の利用は船舶に限定するものではな
く、車輌搭載など本発明による空中線装置を搭載するペ
ースが動揺するものには、すべて利用可能である0
In addition, in the embodiment of the present invention, the vibration correction by pitching and rolling was explained when installed on a ship, but the use of the antenna device according to the present invention is not limited to ships, and the antenna device according to the present invention is installed on a vehicle, etc. All are available for those whose pace is unsettling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す構a図、第2図は
船体の1頃斜にもとづく、デツキ面の1頃斜角及び同仰
角目標の方位角誤差の関係を示す図、第3図は第2の実
施例を示す構成図である。 101・・・・・−次放射空中吻、102・・・・・・
平板反射鏡、103.301・・・・・・平板反射鏡の
支点、104.302・・・・・平板反射鏡回転機構、
105゜303・・・・・駆動制御器。 代理人 弁理士  内 原   音 鴻 1 区
Fig. 1 is a diagram showing the composition of the first embodiment of the present invention, and Fig. 2 is a diagram showing the relationship between the heel angle of the deck surface at about 1 and the azimuth error of the elevation target based on the heel of the hull at about 1. , FIG. 3 is a block diagram showing the second embodiment. 101...-Next radiation aerial proboscis, 102...
Flat reflector, 103.301... Fulcrum of the flat reflector, 104.302... Flat reflector rotation mechanism,
105°303... Drive controller. Agent Patent Attorney Otoko Uchihara 1st Ward

Claims (1)

【特許請求の範囲】[Claims] 動揺体に搭載された放射器と平板反射鏡と前記平板反射
鏡を略反射面上の所定の1軸又は2以上の軸の回りに回
転させる回転機構と前記動揺体からの動揺角度信号を入
力として前記回転機構の駆動信号を発生する駆動制御器
とを備え、前記動揺体からの動揺角度信号に応じて前記
反射鏡を前記所定軸のまわりに回転駆動することにより
指向性放射ビームを所定の方向へ指向させ動揺補正を行
なうことを特徴とする動揺補正空中線装置。
A radiator mounted on the shaking body, a flat reflecting mirror, a rotation mechanism for rotating the flat reflecting mirror around one or more predetermined axes substantially on the reflecting surface, and inputting a shaking angle signal from the shaking body. and a drive controller that generates a drive signal for the rotation mechanism, and rotates the reflecting mirror around the predetermined axis in response to the swing angle signal from the swing body, thereby directing the directional radiation beam to a predetermined direction. A sway correction antenna device characterized in that it corrects the sway by directing the antenna in a certain direction.
JP4593385A 1985-03-08 1985-03-08 Antenna system Granted JPS61205003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4593385A JPS61205003A (en) 1985-03-08 1985-03-08 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4593385A JPS61205003A (en) 1985-03-08 1985-03-08 Antenna system

Publications (2)

Publication Number Publication Date
JPS61205003A true JPS61205003A (en) 1986-09-11
JPH0156561B2 JPH0156561B2 (en) 1989-11-30

Family

ID=12733061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4593385A Granted JPS61205003A (en) 1985-03-08 1985-03-08 Antenna system

Country Status (1)

Country Link
JP (1) JPS61205003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291805A (en) * 1991-03-20 1992-10-15 Japan Radio Co Ltd Rocking compensation type antenna system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291805A (en) * 1991-03-20 1992-10-15 Japan Radio Co Ltd Rocking compensation type antenna system

Also Published As

Publication number Publication date
JPH0156561B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US5202695A (en) Orientation stabilization by software simulated stabilized platform
GB2253520A (en) Array antenna and stabilized antenna system
JPH10145129A (en) Antenna equipment
KR102673029B1 (en) Lidar optical apparatus
US20050280593A1 (en) Satellite tracking antenna and method using rotation of a subreflector
JP2002523005A (en) Antenna device
JP3553582B2 (en) Flying object guidance device and guidance method thereof
JPWO2018151250A1 (en) Antenna apparatus, antenna control apparatus and control method of antenna apparatus
JPS61205003A (en) Antenna system
JP2006311187A (en) Antenna supporting equipment and marine radar device
JPH09178790A (en) Device and method for measuring antenna pattern
JPWO2019202789A1 (en) Antenna device, antenna control method, and program
JP3600354B2 (en) Mobile SNG device
US5574461A (en) Radar apparatus for connecting to a gun
JP2641544B2 (en) Attitude control method and apparatus for receiving antenna
JP2008098853A (en) Lens antenna apparatus for satellite broadcasting and communication
JP3524944B2 (en) Antenna direction adjustment device
JP3157976B2 (en) Mobile antenna mount
JP2002122659A (en) Radar signal processing method and radar device using this method
JP2006013823A (en) Satellite tracking antenna and tracing method using rotation of sub-reflection board
JPH11308604A (en) Gimbal controller
JPH02148902A (en) Antenna direction adjusting device
JPH0444238B2 (en)
JPH0834373B2 (en) Antenna mount device
JPH028768A (en) Radar apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term