JPS61204990A - Solid state laser oscillator - Google Patents

Solid state laser oscillator

Info

Publication number
JPS61204990A
JPS61204990A JP4453785A JP4453785A JPS61204990A JP S61204990 A JPS61204990 A JP S61204990A JP 4453785 A JP4453785 A JP 4453785A JP 4453785 A JP4453785 A JP 4453785A JP S61204990 A JPS61204990 A JP S61204990A
Authority
JP
Japan
Prior art keywords
laser
laser material
cooling
transparent plates
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4453785A
Other languages
Japanese (ja)
Inventor
Ken Ishikawa
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4453785A priority Critical patent/JPS61204990A/en
Publication of JPS61204990A publication Critical patent/JPS61204990A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent unstable emission of a laser beam, by providing transparent plates on the exciting surfaces of a laser material so as to contact it, cooling the material through the transparent plates, thereby keeping the laser material optically stable during oscillation. CONSTITUTION:Cooling water is introduced from a cooling-medium feeding path 16, and a laser material 4 and the like are cooled. Exciting lamps 5 and 6 are lighted. The light is projected on the laser material 4 through transparent plates 14 and 15. The light is totally reflected within the laser material 4 and resonated. Thus laser oscillation is generated. The laser material 4 is heated and temperature is increased. At this time, temperature distribution is yielded by the amount of heating and heat radiation to the surrounding part. When the heat conductivity of the material of the transparent plates 14 and 15 is equal to or less than that of the laser material 4 and when the contacting degree of the transparent plates 4 and 5 with the exciting surfaces at both sides of the laser material 4 is high, the temperature distribution at the exciting surfaces become uniform. The temperature of the transparent plates 14 and 15 is cooled to about the temperature of the cooling water. Even if the cooling water does not flow uniformly and irregular cooling occurs, the effect of it is not received since the thickness of the plate acts as buffer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は横断面が矩形になる平板または柱状のレーザ物
質を備えた固体レーザ発振装置に係シ。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state laser oscillation device including a flat plate or columnar laser material having a rectangular cross section.

特に発振中におけるレーザ物質が光学的に安定に保てる
装置に関する。
In particular, the present invention relates to a device that can keep a laser substance optically stable during oscillation.

〔発明の技術的背景〕[Technical background of the invention]

上記のよりなレーザ物質を備えた発振装置はいわゆるス
ラブ形レーザ発振装置として知られている。仁の榴の装
置ではレーザ媒質を均一に光励起する仁と、さらに、均
一な冷却を光励起面に行うとともに、その光励起面に直
交し光共振器に対向しない両側面には熱的な絶縁を施す
ことによって。
The oscillation device equipped with the above-mentioned fine laser material is known as a so-called slab type laser oscillation device. This device uses a laser device that uniformly optically excites the laser medium, and also uniformly cools the optical excitation surface, and provides thermal insulation on both sides that are perpendicular to the optical excitation surface and do not face the optical resonator. By that.

レーザ媒質内の温度分布を一方向のみに限定する仁とが
必要である。均一な励起については多数の本を蛇行もし
7くはジグザグ状に折り曲げるなどして平均的に励起す
ることが行われている。一方。
It is necessary to limit the temperature distribution within the laser medium to only one direction. For uniform excitation, a large number of books are bent in a meandering or zigzag pattern to excite the books evenly. on the other hand.

均一な冷却についてはレーザ媒質の技手方向と直交する
幅方向に沿って冷却水を・流すようにして幅方向の温度
勾配を減少したり。あるいは一対の透明板をレーザ物質
の励起面にそれぞれ近接し、近接部における狭い空間を
冷却水路にして冷却することが行われていた。
For uniform cooling, the temperature gradient in the width direction can be reduced by flowing cooling water along the width direction perpendicular to the operator's direction of the laser medium. Alternatively, a pair of transparent plates are placed close to the excitation surface of the laser substance, and a narrow space in the close portion is used as a cooling channel for cooling.

〔背景技術の問題点〕[Problems with background technology]

上記の冷却では2水などの冷却媒質が直接l/・ザ物質
に触れるので、冷却礫質の温度分布・や6流速などの差
(C,!:、、:)てレーザ媒質の冷却面に温度勾配が
生じ、レーザ物質の光学反射面が変形し5高糖度の光学
反射?f−実現することができなくなる。
In the above cooling, the cooling medium such as 2 water comes into direct contact with the material, so the temperature distribution of the cooling gravel and the difference in flow velocity (C,!:,,:) affect the cooling surface of the laser medium. A temperature gradient occurs and the optical reflection surface of the laser material is deformed, resulting in optical reflection of 5 high sugar content? f- It becomes impossible to realize.

したがって、レーザ発振ビー・ムの偏光性金乱しまたシ
6発振モードの高次化を招く結果となっていた。
As a result, the polarization of the laser oscillation beam is disturbed and the oscillation mode becomes higher order.

また、構造的にも複雑になっているため、保守2点検が
煩わしい問題があっ7’C。
In addition, because it is structurally complex, maintenance and inspections are troublesome.7'C.

〔発明の目的〕[Purpose of the invention]

本発明は発振中におけるレーザ物質が光学的に安定に保
て、不安定なレーザビームが放出されないようにしたレ
ーf発振装置全提供することを目的とする。
An object of the present invention is to provide an entire laser f oscillation device in which a laser substance can be kept optically stable during oscillation, and an unstable laser beam can be prevented from being emitted.

L′発明の概要〕 横断面矩形のv−ザ物質を備えた固体l/−ザ発&装置
ンこおいて、レーザ物質の励起面に透明版体を接して設
け、透明板体を通して冷却および冷却されるように構成
し7たものである。
L'Summary of the Invention] In a solid l/- laser generator and apparatus equipped with a v-ther substance having a rectangular cross section, a transparent plate is provided in contact with the excitation surface of the laser substance, and cooling and cooling are carried out through the transparent plate. It is configured to be cooled.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明全実施例を示す図面に、暴いて説す1する
DESCRIPTION OF THE PREFERRED EMBODIMENTS All embodiments of the present invention will be disclosed and explained below with reference to the drawings.

第1図L〆こおいて、(1)は絶縁性部材からなる框体
で、本体とこの本体に水密に冠着されるに体とによる2
分割体で構成され、内部には収納部(2)が形成されて
いる。この収納部(2)には内面が高反射面になる二重
円筒状の集光反射鏡(3)が設けられている。ざらに、
この集光反射鏡(3)内には、その中火部に位置するレ
ーザ物質(4)と、このLノ−ザ物質(4)を間にした
一対の励起ランプ(5)9(6)が設けられている。こ
れらレーザ物質(4)および励11゛弓ランプ(5)、
 (6)け集光反射鏡(3)の軸線に平行にt−りてい
る。レーザ物質(4)は横断面が矩形の平板体であって
1両端部にシリコーン樹脂攻着剤等の有機系有着剤を介
してそれぞれ固着した保持管体(81、(9)により直
線的に保持されている。保持管体(8)19)は框体(
1)テそれぞれ09ング0■を介して水密に貫装されて
いる1、框体(1)の外部には全反射鏡(11)、出力
鏡(121からなる光共振器がレーザ物質(1)の所定
の角度の光学部に形成された両端面に対向し、て設けら
れている。
Figure 1 L〆 Here, (1) is a frame made of an insulating material, consisting of a main body and a body that is watertightly attached to the main body.
It is composed of a divided body, and a storage section (2) is formed inside. This storage part (2) is provided with a double cylindrical condensing reflector (3) whose inner surface is a highly reflective surface. Roughly,
Inside this condensing reflector (3), there is a laser material (4) located in the middle part of the mirror, and a pair of excitation lamps (5) 9 (6) located between this L laser material (4). is provided. These laser materials (4) and an excited 11-bow lamp (5),
(6) It extends parallel to the axis of the converging reflector (3). The laser substance (4) is a flat plate with a rectangular cross section, and is linearly held by holding tubes (81 and (9)) fixed to both ends of the body through an organic adhesive such as a silicone resin adhesive. The holding tube body (8) 19) is held by the frame body (
1) An optical resonator consisting of a total reflection mirror (11) and an output mirror (121) is installed on the outside of the frame (1), which is penetrated watertightly through a laser material (1) and an output mirror (121). ) is provided facing both end faces formed in the optical part at a predetermined angle.

また3、レーザ、物質(4)の両側面には第2図f示す
ように断熱物質(13)が固着され、励起う・ンブ(5
)、(6)に対面する励起面は全反射向に形成されてい
て、これらの面に石英等からなりレーザ物質(4)の厚
みより薄い透明板体U・l)、(1最が肖接されている
。力お。
In addition, a heat insulating material (13) is fixed to both sides of the laser and material (4) as shown in Fig.
), (6) are formed in the direction of total reflection, and transparent plates U and L made of quartz or the like and thinner than the thickness of the laser material (4) are attached to these surfaces. I am in contact with you.

これら透明板体のそれぞれの両面は光散乱1口iに形成
されている。どころで、框体(1)に(は収納部(2)
に連通ずる冷却媒体供給路αωと排出路(1ηとが形成
されている。
Both surfaces of each of these transparent plates are formed into one light scattering hole i. By the way, in the frame (1) (is the storage part (2)
A cooling medium supply passage αω and a discharge passage (1η) are formed which communicate with the cooling medium supply passage αω and the exhaust passage (1η).

」−5記構成によるレーザ発振中のレーザ媒質の熱冷却
媒体供給路(IQから冷却水を導入してレーザ物質(4
)等を冷却しつつ励起ランプ(5)、(6)を点灯し。
”-5 The thermal cooling medium supply path for the laser medium during laser oscillation according to the configuration described above (cooling water is introduced from the IQ to cool the laser material (4
) etc. while cooling the excitation lamps (5) and (6).

それらの発光が透明板体04)、us全全通てレーザ物
質(4)に照射されるとレーザ媒質(4)が光励起され
シ、・−ザ媒質(4)内をジグザグに、全反射しながら
共振し。
When the emitted light is irradiated onto the laser material (4) through the entire transparent plate 04), the laser medium (4) is excited and is totally reflected in a zigzag pattern within the medium (4). while resonating.

レーザ発振が起る。この発振によリレーザ媒質(4)は
発熱して温度上昇する。このときの発熱量と周囲への熱
放散によって@度分布が生じる。この温度分布は励起ラ
ング(5)、(6)に交わる方向に々るX方向には断熱
物質−が固着されているので第3図に示すようにレーザ
物質(4)内に平坦な温度分布(1))が形成され、断
熱物質(13)のところで冷却水との間の温度勾配が形
成される。一方8 X方向て直交するX方向の温度分布
(C)をみれば第4図に示すように、レーザ物質(4)
の厚み部分は比較的均一になり。
Laser oscillation occurs. This oscillation causes the laser medium (4) to generate heat and rise in temperature. At this time, the amount of heat generated and the heat dissipated to the surroundings create a degree distribution. This temperature distribution is caused by a flat temperature distribution within the laser material (4) as shown in Figure 3, since a heat insulating material is fixed in the X direction that intersects the excitation rungs (5) and (6). (1)) is formed, and a temperature gradient is formed between the cooling water and the cooling water at the insulating material (13). On the other hand, if we look at the temperature distribution (C) in the X direction perpendicular to the 8 X direction, we can see that the laser material (4)
The thickness of the area is relatively uniform.

透明板体(14)、 !1.5のところで急激に温度低
下する勾配金もった温度分布になっている。透明板体(
14)、 +、i51の材料が熱伝導率において、レー
ザ物質(4)と同等もしくけそれ以下の場合には、1/
−ザ物質(4)の両4+N /A liW+ tai冨
1/l” +、、:h Jr+  2. オ[IB t
fFイk f+Al   +’に1 μ y s w 
tr> 穿接置が高ければ励起面における温度分布は一
様となる。ま之、透明板体Q4)、(151は冷却水の
水温近くに冷却される。また仮に、冷却水が透明板体U
、a乏に一様に流れないで、冷却むらが生じてもそれら
板体の厚さが緩衝作用を示すので、それによる影響は受
けなくなる。このように、レーザ媒質(4)のジグザグ
光路を形成するための光学的全反射面の温度分布は均一
化され、光学的に平坦な反射光路が形成される。゛また
。透明板体α肴、αωの表面は光散乱面になっているの
で、励起光が散乱し、その強度分布が均一化するので、
上記温度分布の一様性をよシ効果的なものにすることが
できた。
Transparent plate (14), ! The temperature distribution has a steep gradient where the temperature drops sharply at 1.5. Transparent plate (
14), +, If the thermal conductivity of the material of i51 is equal to or lower than that of the laser material (4), then 1/
-The substance (4) both 4+N /A liW+ tai 1/l" +, :h Jr+ 2. O[IB t
1 μ y s w to fF i k f+Al +'
tr> If the puncture position is high, the temperature distribution on the excitation surface will be uniform. The transparent plate Q4) and (151 are cooled to near the water temperature of the cooling water. Also, suppose that the cooling water is cooled to the transparent plate U.
Even if uneven cooling occurs due to insufficiently uniform flow, the thickness of these plates exhibits a buffering effect, so it will not be affected by this. In this way, the temperature distribution of the optical total reflection surface for forming the zigzag optical path of the laser medium (4) is made uniform, and an optically flat reflection optical path is formed.゛Again. The surfaces of the transparent plates α and αω are light scattering surfaces, so the excitation light is scattered and the intensity distribution is made uniform.
The uniformity of the temperature distribution described above could be made more effective.

なお、透明板体(14)、(1!9の光散乱面はI¥f
く形成しないでも上記実施に近い効果を得るが、形成す
る場合は上記のように両面もしくはどちらか一方のみで
もよい。また、レーザ物質(4)の励起光として有効な
スペクトルの光を主として透過し、有害な紫外線などの
光を遮断するフィルタ作用をもった物質の透明板体を適
用すれば上記の効果の他K。
In addition, the light scattering surfaces of the transparent plates (14) and (1!9) are I¥f
Although an effect similar to the above embodiment can be obtained even if the wafer is not formed, if it is formed, it may be formed on both sides or only on either side as described above. In addition, if a transparent plate made of a material that mainly transmits light in a spectrum that is effective as excitation light for the laser material (4) and has a filtering effect that blocks harmful ultraviolet rays and other light is used, the above effect and other effects can be obtained. .

レーザ発振の効率を向上やレーザ媒質の劣化を防止する
Improves the efficiency of laser oscillation and prevents deterioration of the laser medium.

〔発明の効果〕〔Effect of the invention〕

)   以上詳述したように、レーザ物質の励起面を透
明板体で補強するよう釦狭装しかつこれら透明板体を冷
却することによってレーザ物質を間接的に冷却するよう
にし九ので1発振中、レーザ物質に蓄積される熱はよシ
平均的に除去され、しかも部分的な冷却むらは上記の補
強作用で影響を受けなくなるため、レーザ物質の光学特
性を発振中においても安定に保つことができた。した、
かって、レーザ発振により出力されるレーザ光のモード
、偏光性等を安定化することができた。
) As detailed above, the excitation surface of the laser material is reinforced with transparent plates, and the laser material is indirectly cooled by cooling these transparent plates. The heat accumulated in the laser material is removed evenly, and the uneven cooling is not affected by the above-mentioned reinforcement effect, so the optical properties of the laser material can be kept stable even during oscillation. did it. did,
Once upon a time, it was possible to stabilize the mode, polarization, etc. of laser light output by laser oscillation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図1−n線における断面図、第3図および第4図は温度
分布図である。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
The sectional view taken along the line n in FIG. 1, and FIGS. 3 and 4 are temperature distribution charts.

Claims (3)

【特許請求の範囲】[Claims] (1)光共振器とこの光共振器の間に設けられ共振軸に
対向する両端面が所定角度の平行光学面に形成されかつ
これら両端面からの入射光をジグザグ光路にする相対向
した全反射面をもつ横断面矩形状のレーザ物質とこのレ
ーザ物質の励起面に励起光を照射する位置に設けられる
少なくとも一対の励起ランプと上記レーザ物質および励
起ランプを囲う集光反射鏡とこの集光反射鏡を収納し少
なくともレーザ物質を冷却するための冷却水路を備えた
框体と上記冷却水路に冷却媒質を供給する手段とを備え
た固体レーザ発振装置において、上記レーザ物質はその
励起面に接する透明板体が設けられ上記透明板体を通し
て冷却および励起されることを特徴とする固体レーザ発
振装置。
(1) An optical resonator is provided between an optical resonator, and both end faces facing the resonance axis are formed as parallel optical surfaces at a predetermined angle, and an oppositely facing optical resonator is provided between the optical resonator and the optical resonator, and both end faces facing the resonance axis are formed as parallel optical surfaces at a predetermined angle. A laser material having a rectangular cross section and a reflecting surface, at least a pair of excitation lamps provided at a position to irradiate excitation light onto the excitation surface of this laser material, a condensing reflector surrounding the laser material and excitation lamp, and this condensing light. In a solid-state laser oscillation device, the solid-state laser oscillation device includes a frame that houses a reflecting mirror and is provided with a cooling channel for cooling at least the laser material, and means for supplying a cooling medium to the cooling channel, wherein the laser material is heated at its excitation surface. A solid-state laser oscillation device characterized in that a transparent plate is provided in contact with the solid-state laser oscillation device, and the solid-state laser oscillation device is cooled and excited through the transparent plate.
(2)透明板体は光散乱性を有することを特徴とする特
許請求の範囲第1項記載の固体レーザ発振装置。
(2) The solid-state laser oscillation device according to claim 1, wherein the transparent plate has light scattering properties.
(3)透明板体はレーザ物質にとって有害光を吸収する
フィルタ作用を有することを特徴とする特許請求の範囲
第1項記載の固体レーザ発振装置。
(3) The solid-state laser oscillation device according to claim 1, wherein the transparent plate has a filtering effect that absorbs harmful light to the laser material.
JP4453785A 1985-03-08 1985-03-08 Solid state laser oscillator Pending JPS61204990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4453785A JPS61204990A (en) 1985-03-08 1985-03-08 Solid state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4453785A JPS61204990A (en) 1985-03-08 1985-03-08 Solid state laser oscillator

Publications (1)

Publication Number Publication Date
JPS61204990A true JPS61204990A (en) 1986-09-11

Family

ID=12694256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4453785A Pending JPS61204990A (en) 1985-03-08 1985-03-08 Solid state laser oscillator

Country Status (1)

Country Link
JP (1) JPS61204990A (en)

Similar Documents

Publication Publication Date Title
US4730324A (en) Method and apparatus for compensating for wave front distortion in a slab laser
JP4377232B2 (en) Laser with distributed gain medium
JP2005506687A (en) High power high power solid state laser amplification system and method
US5774489A (en) Transversely pumped solid state laser
JPH09214024A (en) Solid-state laser oscillator
JPS61204990A (en) Solid state laser oscillator
EP0407194B1 (en) Input/output ports for a lasing medium
JPS6123374A (en) Solid laser ocillator
CA1281402C (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
JPS6336586A (en) Laser device and method of pumping laser
JP2645051B2 (en) Solid state laser oscillator
JPH06310782A (en) Slab type solid state laser device
JPH10284775A (en) Solid-state laser
JP2002134817A (en) Ld excited slab type solid-state laser generator
JPH01289180A (en) Solid state laser
JPH08330648A (en) Solid-state laser oscillator
JPH08274393A (en) Slab laser and laser processor
JP2678998B2 (en) Slab type solid state laser oscillator
JPS60239076A (en) Solid-state laser oscillator
JPH0521873A (en) Solid-state laser apparatus
JPH0644121Y2 (en) Slab type solid laser
JP2000208836A (en) Solid state laser device
JPH10135539A (en) Laser device
JPH05327073A (en) Solid laser device
JP2001326405A (en) Solid-state slab laser device