JPS6120438A - Optical sensor multiplexing device - Google Patents

Optical sensor multiplexing device

Info

Publication number
JPS6120438A
JPS6120438A JP59140611A JP14061184A JPS6120438A JP S6120438 A JPS6120438 A JP S6120438A JP 59140611 A JP59140611 A JP 59140611A JP 14061184 A JP14061184 A JP 14061184A JP S6120438 A JPS6120438 A JP S6120438A
Authority
JP
Japan
Prior art keywords
optical
light
sensor
optical sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140611A
Other languages
Japanese (ja)
Other versions
JPH0314371B2 (en
Inventor
Kenichi Kamata
健一 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59140611A priority Critical patent/JPS6120438A/en
Publication of JPS6120438A publication Critical patent/JPS6120438A/en
Publication of JPH0314371B2 publication Critical patent/JPH0314371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Abstract

PURPOSE:To multiplex optically sensor information by one optical fiber by connecting many optical sensors in a shape of a loop through the optical fiber, executing a sensitization in accordance with an on/off operating state of each optical sensor, and executing a weighting to its photosensitive quantity. CONSTITUTION:By an E/Q converting part 101 in a collecting device 10, a light of a light quantity determined by its input voltage Es is sent out serially to optical sensors 131, 132-13N through optical fibers 120, 121, 122-12N from an optical connector 103, inputted to an optical/electric converting part 102 in the collecting device 10 from an optical connector 104 after making the round, converted to a voltage from a light and outputted as ER. Each optical sensor controls a light quantity by the respective specified light quantity variation rates (extinction rates) kappa1, kappa2...kappan (0<kappai<1) from a state that the extinction is not executed in accordance with its operating state. In accordance with an operation of each optical sensor, the extinction is executed by weighting which follows 1-1/a, 1-(1/a)<2>,...1-(1/a)<n> (provided that a>1) with respect to the power series 1/a, (1/a)<2>,...(1/a)<n>.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバーを利用した光センサ情報の多重化
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multiplexing device for optical sensor information using optical fibers.

(従来の技術) 温度、圧力、位置等を検出するセンサの機械的変位を利
用して、光ファイバーから伝送された光を制御し、電気
的な処理を必要としない、光のままで応答信号として返
す形式の光センサは、電源線、電気信号線の必要がなく
、電磁干渉、安全性、及び線材の節減等の利点がある。
(Prior technology) The mechanical displacement of a sensor that detects temperature, pressure, position, etc. is used to control the light transmitted from an optical fiber, and the light itself is used as a response signal without the need for electrical processing. The return type optical sensor does not require a power supply line or an electric signal line, and has advantages such as electromagnetic interference, safety, and wire savings.

この様な形式の光センサが多数ある場合に光ファイバー
を介してセンサ情報を収集する方法として従来の代表的
なものを第2図、第3図に示す。
FIGS. 2 and 3 show typical conventional methods for collecting sensor information via optical fibers when there are a large number of optical sensors of this type.

その第1の方法は、第2図に示すように収集装置30に
対して光センサ331.332〜33Nを各々往復2本
の光ファイバー321.341 。
The first method is to connect the optical sensors 331, 332 to 33N to the collecting device 30 using two optical fibers 321, 341, respectively, as shown in FIG.

322.342〜32N、34Nを介してスター状に接
続し、それぞれ収集装置30内の電気/光変換部(以下
r E/Q変換部」という。)soB:toz〜、90
 N及び光/電気変換部(以下r Q/E変換部」とい
う。)311.312〜31Nを介して光センサ情報を
収集する方法である。
322.342 to 32N, 34N are connected in a star shape, and the electric/optical converter (hereinafter referred to as rE/Q converter) in the collecting device 30, respectively, soB: toz~, 90
In this method, optical sensor information is collected via N and optical/electrical converters (hereinafter referred to as rQ/E converters) 311, 312 to 31N.

第2の方法は収集装置と光センサ群を光ファイバーでル
ープ状に接続して波長多重方式によりセンサ情報を収集
する方式である。例えば第3図に示すように収集装置4
0内の発光部401から広帯域の波長光を光ファイバー
420,421,422〜42Nを介して光センサ43
1,432,433〜4.7NK送出して、該光センサ
でそれぞれ固有の波長λ1.λ2〜λ。を選択吸収し、
前記光センサ431〜43Nを一巡後、収集装置40の
受光部402で前記各波長λ1〜λ。を分波し、分波さ
れた各々の光量を検出し、各光センサの特定と、その動
作を識別する方式である。
The second method is to connect a collection device and a group of optical sensors in a loop using optical fibers and collect sensor information using a wavelength multiplexing method. For example, as shown in FIG.
Broadband wavelength light is transmitted from the light emitting unit 401 in the optical sensor 43 through optical fibers 420, 421, 422 to 42N.
1,432,433 to 4.7 NK, and each optical sensor transmits a unique wavelength λ1. λ2~λ. Select and absorb
After passing through the optical sensors 431 to 43N, the light receiving unit 402 of the collecting device 40 detects the wavelengths λ1 to λ. This method separates the light, detects the amount of each separated light, and identifies each optical sensor and its operation.

(発明が解決しようとする問題点) 以上従来の技術より第1の方法では光センサ1台に対し
て各々1対の光ファイバー、光コネクタ、睦、Q/E変
換部を必要とするため小型軽量化が難かしく、かつ高価
になるという欠点があり、又第2の方法においては、第
1の欠点である多数の光ファイバー、光コネクタ、凶、
い変換部は必要としないが、特定の波長を選択吸収する
光センサが極めて高価である上に、光ファイバーの波長
帯域が狭い上、発光素子、受光素子の波長帯域の選択に
制限があシ、これらにより多重化が限定されるという欠
点があった。
(Problems to be Solved by the Invention) According to the conventional technology, the first method requires one pair of optical fibers, optical connectors, wires, and Q/E converters for each optical sensor, so it is small and lightweight. The second method has the disadvantage of being difficult and expensive to implement, and the second method requires a large number of optical fibers, optical connectors,
However, optical sensors that selectively absorb specific wavelengths are extremely expensive, the wavelength band of optical fibers is narrow, and there are restrictions on the selection of wavelength bands for light emitting elements and light receiving elements. These have the disadvantage that multiplexing is limited.

(問題点を解決するだめの手段) 本発明ではこのような従来の問題点に着目してなされた
もので、光ファイバーにより光センサをループ状に接続
し、各光センサを光が通過するが、当該センサの動作に
応じて通過光量を制御する。
(Means for Solving the Problems) The present invention has been made by focusing on such conventional problems, and optical sensors are connected in a loop using optical fibers, and light passes through each optical sensor. The amount of passing light is controlled according to the operation of the sensor.

この制御する通過光量を各センサ毎の冪級数的な重み付
けをしている、このとき各センサ毎の重み付けを例えば
1−+/a 、 1−(1/a)2.1−(1/a )
3・1−(1/a)”としている。
The amount of transmitted light to be controlled is weighted like a power series for each sensor. At this time, the weighting for each sensor is, for example, 1-+/a, 1-(1/a)2.1-(1/a) )
3.1-(1/a)".

(作用) 次に作用について第1図(a) 、 (b)により説明
すると、収集装置lOから入力された光信号は、ループ
状に接続された光センサを一巡後前記収集装置10内の
光/電気変換器によりミ気信号E3に変換される、この
電気信号ERは比較器20ノに入力され、基準電圧発生
器230から発生する基準電圧231・と比較し、電気
信号ERの値と同値か又はERの電圧値が低い場合すな
わち減光ありと判定し、論理” ] ”を出力しERの
電圧値が基準電圧231より高い場合すなわち減光なし
と判定し、論理″0#を出力する。
(Function) Next, the function will be explained with reference to FIGS. 1(a) and 1(b). After the optical signal inputted from the collecting device 10 goes through the optical sensors connected in a loop, the optical signal inside the collecting device 10 This electric signal ER, which is converted into an electric signal E3 by an electric converter, is input to a comparator 20 and compared with a reference voltage 231 generated from a reference voltage generator 230, and the value is the same as that of the electric signal ER. Or, if the voltage value of ER is low, that is, it is determined that there is dimming, and the logic " ] " is output, and if the voltage value of ER is higher than the reference voltage 231, that is, it is determined that there is no dimming, and the logic "0#" is output. .

電気信号ERはセレクタ221及び直流増幅器21ノに
入力され該直流増幅器211の出力は前記セレクタ22
1に入力される。該セレクタ22ノには前記比較器20
1の出力が接続されておシ、この比較器出力が論理パ1
″すなわち減光ありの場合は当該センサの減光分を直流
増幅器21ノで直流増幅し減光分をキャンセルした電圧
A側を選択し、比較器202に入力する。又比較器出力
が論理パ0″すなわち減光なしの場合は、前記直流増幅
器21ノの入力側Bを選択し、比較器202に入力する
、該比較器202は前記基準電圧発生器230から発生
する基準電圧232と比較し、入力電圧が基準電圧23
2に選べ低いか、又は同値の場合は論理″1”をまた入
力電圧が高い場合は論理°′Onを出力する。
The electric signal ER is input to the selector 221 and the DC amplifier 21, and the output of the DC amplifier 211 is input to the selector 22.
1 is input. The selector 22 includes the comparator 20.
1 output is connected, and this comparator output is the logic
``In other words, if there is dimming, the dimming amount of the sensor is DC amplified by the DC amplifier 21, the voltage A side that cancels the dimming amount is selected, and inputted to the comparator 202. Also, the output of the comparator is the logic voltage. 0'', that is, no dimming, selects the input side B of the DC amplifier 21 and inputs it to the comparator 202, which compares it with the reference voltage 232 generated from the reference voltage generator 230. , the input voltage is the reference voltage 23
If the input voltage is lower than or equal to 2, it outputs a logic "1", and if the input voltage is high, it outputs a logic ''On'.

以下同様な動作を行い出力端子に′1″′又はパ0′″
を出力する。
After that, perform the same operation and set the output terminal to ``1'''' or 0''''.
Output.

(実施例) 第1図(b)は本発明の実施例を示す構成図でアシ、第
1図(、)は本発明のセンサの特定とその動作を識別す
る回路図である。
(Embodiment) FIG. 1(b) is a block diagram showing an embodiment of the present invention, and FIG. 1(2) is a circuit diagram for identifying the sensor of the present invention and identifying its operation.

第1図(b)において10はE/Q 、 vE変換等を
行う収集装置、101,102はVQ 、 Q/E変換
部、1.91〜13Nは光センサ、120〜12Nは光
ファイバー、7 os 、 J o4は光コネクタであ
る。
In FIG. 1(b), 10 is a collection device that performs E/Q and vE conversion, 101 and 102 are VQ and Q/E converters, 1.91 to 13N are optical sensors, 120 to 12N are optical fibers, and 7 os , J o4 is an optical connector.

収集装置10内のη変換部101により、その入力電圧
Esで定まる光量の光を光コネクタ103から光ファイ
バー120,12ノ、122〜12Nを介して光センサ
131,132〜13Nにシリアルに送出し、−産後光
コネクタ104より収集装置10内のい変換部102に
入力し、光から電圧に変換されElとして出力される。
The η converter 101 in the collecting device 10 serially sends out the light amount determined by the input voltage Es from the optical connector 103 to the optical sensors 131, 132-13N via the optical fibers 120, 12, 122-12N, - The postpartum light is input from the optical connector 104 to the conversion unit 102 in the collection device 10, where the light is converted into voltage and output as El.

各光センサはその動作状態に応じて減光しない状態から
それぞれ特定の光量変化率(減光率)に1゜に2…にn
(0くにlく1)だけ光量を制御するものトシ、全テの
センサが減光していないときのループ総減光量をに(但
しにく1)とすると、送出電圧E6に対する受信電圧E
Rは次式のようになる。
Each optical sensor changes from a non-attenuated state to a specific light intensity change rate (attenuation rate) of 1°, 2...n, depending on its operating state.
To control the light amount by (0 kuniku 1), if the loop total dimming amount when all the sensors are not dimming is (however, 1), then the received voltage E with respect to the sending voltage E6
R is as shown in the following formula.

ER=に・η1・η。・(に1・に2…ら)Es   
1式(但しη1.ηa : Elo 、07’E変換部
の変換係数)ここでに1.に2 ・・にが透過状態のと
きを1とすると、該1に対して各光センサの動作に応じ
て、それぞれ幕級数1/a、 (j/a)2.…(1/
a)nに対して1− +/a 、 1− (1/a)2
.…1−(1/a)n(但しa〉1)に従った重み付け
で公知の手段により減光するものとすれば、動作センサ
のいかなる組合せに対しても、その相乗積である総減光
量を検知することにより動作センサを識別することがで
き、かつ全センサが減光状態のときの相乗積は、センサ
の総数nが多くなっても、上記のように1から幕級数を
減算する結果Oに収斂することなく、例えばa=2のと
きn−+ωの収斂値は約0.288で検出光量の級数的
減少がない為、多重化が大巾に向上できる0る0 第1図(a)は本発明による実施例で、a=2.n=4
とした場合、即ち4ケのセンサが2の冪級数的光量制御
する場合の識別回路であシ、第1図(b)のE8. E
R端子に接続する。
ER=ni・η1・η.・(ni1・ni2...etc.) Es
Equation 1 (where η1.ηa: Elo, conversion coefficient of 07'E conversion section) where 1. If 2 is 1 when 2 is in the transmitting state, then the curtain series 1/a, (j/a)2 . …(1/
a) 1- +/a for n, 1- (1/a)2
.. ...If the light is attenuated by a known means with weighting according to 1-(1/a)n (where a>1), the total amount of light attenuation is the multiplicative product of any combination of motion sensors. The motion sensor can be identified by detecting , and when all sensors are in a dimmed state, the multiplicative product is the result of subtracting the curtain series from 1 as described above, even if the total number of sensors n increases. For example, when a=2, the convergence value of n-+ω is about 0.288, and there is no exponential decrease in the amount of detected light, so multiplexing can be greatly improved. a) is an embodiment according to the present invention, where a=2. n=4
In other words, the identification circuit is E8. in FIG. 1(b) when four sensors control the light intensity in a power series of 2. E
Connect to R terminal.

201〜204は比較回路でERと基準電圧を比較する
、211〜213は直流増幅器、221〜223はセレ
クタ、230は基準電圧発生器で各各のセンサの重み付
けに対して比較の為の基準電圧を発生する。
201 to 204 are comparison circuits that compare ER and a reference voltage, 211 to 213 are DC amplifiers, 221 to 223 are selectors, and 230 is a reference voltage generator that generates a reference voltage for comparison with respect to the weighting of each sensor. occurs.

本回路の動作を説明すると、入力電圧Esは、第1図(
b)の収集装置10のE10変換部101でE/Q変換
され、センサー産後い変換部102でφ変換された入力
電圧ERから信号処理によりセンサを識別する。
To explain the operation of this circuit, the input voltage Es is as shown in Figure 1 (
The sensor is identified by signal processing from the input voltage ER which is E/Q converted by the E10 conversion unit 101 of the collection device 10 of b) and φ converted by the sensor postpartum conversion unit 102.

比較回路201〜204で各々の入力電圧と、基準電圧
発生回路230から発生する基準電圧231はAに。E
s+232は3/4に。E8,233は7/8x。E8
. z a 4は15/16に。Esと比較し、入力電
圧が基準電圧と同値かもしくは低い場合に論理パ1″を
、高い場合に論理パ0”をそれぞれの端子2ノ〜24に
出力する。
The input voltages of each of the comparison circuits 201 to 204 and the reference voltage 231 generated from the reference voltage generation circuit 230 are set to A. E
s+232 becomes 3/4. E8,233 is 7/8x. E8
.. z a 4 on 15/16. When the input voltage is equal to or lower than the reference voltage, a logic pass 1'' is output, and when it is higher, a logic pass 0'' is output to the respective terminals 2-24.

直流増幅器211〜213で入力電圧をそれぞれ重み付
け1  ”/’a + 1−(1/a)2.1  (+
/a)3の逆数即ちa = 2に対して2 、4/3 
、8/7倍に増幅してキャンセルした形で次段のセレク
ター221〜223に加える。セレクター(アナログス
イッチ)221〜223では前段の比較回路201〜2
03の出力が論理゛1″のときは直流増幅器211〜2
13の出力電圧を選択し、前記比較回路201〜203
の出力が論理°′0”の場合は前記直流増幅器211〜
213の入力側(増幅前の電圧)を選択し、次段の比較
回路に加える。なお、この動作は、減光率の大きい順に
1.に2…に4に行われる。
The DC amplifiers 211 to 213 each weight the input voltage by 1''/'a + 1-(1/a)2.1 (+
/a) Reciprocal of 3, i.e. 2, 4/3 for a = 2
, is amplified 8/7 times and added to the next stage selectors 221 to 223 in a canceled form. In the selectors (analog switches) 221 to 223, the comparison circuits 201 to 2 in the previous stage
When the output of 03 is logic "1", the DC amplifiers 211-2
13 output voltages are selected and the comparison circuits 201 to 203 are selected.
If the output of
The input side of 213 (voltage before amplification) is selected and applied to the next stage comparison circuit. Note that this operation is performed in descending order of light attenuation rate. It will be held on 2nd... and 4th.

式を簡略化する為に前記1式のに・η、・η。の項をに
。とすると、ER=に。・に2・に3・に4・E、とな
りa = 2 、 n = 4とすると、ER=に。・
(1−捧)・(1−(’A)2)・(1−(社)3)・
(1−(’A)’)・E8=にO−’A −3/4−7
/8−15/16− Es−2式となる、ここでに□以
外のに2.に3.に4が全て減光状態のときの減少電圧
はに。°3/4・7/8・15/16・Es=0.61
5に。E、となシ、に□のみ減光状態のときの減少電圧
差に。E8よシ大きい値となる。
In order to simplify the equation, ・η, ・η in the above equation 1. section. Then, ER=.・to 2・to 3・to 4・E, so if a = 2 and n = 4, then ER=.・
(1-dedicated)・(1-('A)2)・(1-(sha)3)・
(1-('A)')・E8=to O-'A -3/4-7
/8-15/16- Es-2 formula, where 2. except for □. 3. The reduced voltage when all 4 are in the dimmed state is . °3/4・7/8・15/16・Es=0.61
To 5. E, Tonashi, and □ are the reduced voltage differences when the light is dimmed. This is a larger value than E8.

従ってERの電圧が基準電圧231の捧に。ESと同値
かもしくは小さければ他のに2.に3.に4に関係なく
に1が” 1 ”と判定できる。
Therefore, the voltage of ER is the same as the reference voltage 231. If it is equal to or smaller than ES, add 2. 3. 1 can be determined as "1" regardless of 4.

即ちE8に基づく基準電圧231のIAにoE8を基準
電圧発生回路230で発生し比較回路20ノでERと比
較し、に1の状態を°′1″あるいは“0#を端子2ノ
にblとして出力することができる。一方前記す。
That is, the reference voltage generation circuit 230 generates oE8 at IA of the reference voltage 231 based on E8, compares it with ER in the comparator circuit 20, and sets the state of 1 to 0 as BL to terminal 2. It can be output. On the other hand, as mentioned above.

の出力はセレクタ22ノにも加えられ、前記す。The output of is also applied to the selector 22, as described above.

が1”のとき即ち前記ERの値が基準電圧23ノと比較
して捧に。Esと同値かもしくはそれ以下のときはER
O値を直流増幅器21ノで2倍(1−μの逆数倍)して
減光分をキャンセルした信号を選択し、前記b1が0”
のときは前記ERの電圧をそのま捷選択して次段の比較
回路2θ2に加え蛋2を判定する。
When is 1'', that is, when the value of ER is compared with the reference voltage of 23.
Select a signal in which the O value is doubled (reciprocal of 1-μ) using the DC amplifier 21 to cancel the attenuation, and the b1 is 0.
In this case, the voltage of the ER is directly selected and applied to the next stage comparison circuit 2θ2 to determine the error 2.

この場合も前記に1と同様に、に2以外のに3.に4が
全て減光状態のとき、比較回路202の入力はに。・7
/8・15/16− B8= 0.82に。Esでに2
のみ減光状態のときの値に。・3/4Es=0.75に
。Esよシ大きい値いとなる、従って比較回路202の
入力電圧を、基準電圧発生回路230で発生する基準電
圧232の3/4に。Es=0.75にoE8と比較す
ることにより、他のに3.に4にかかわらず、比較回路
202から1″あるいは0′″としてす、を出力するこ
とができる。
In this case, as in 1 above, except for 2 and 3. When all 4 are in the dimmed state, the input of the comparator circuit 202 is .・7
/8・15/16- B8 = 0.82. Es deni 2
Only in the dimmed state.・3/4Es=0.75. Therefore, the input voltage of the comparison circuit 202 is set to 3/4 of the reference voltage 232 generated by the reference voltage generation circuit 230. By comparing oE8 to Es=0.75, 3. Regardless of 4, the comparison circuit 202 can output 1'' or 0''.

以下同様に比較回路203,204で、基準電圧発生回
路230から発生される基準電圧233゜234の値、
7/8に。Es、15/16に。Esと比較することに
よりJ+b4を順次゛°1″あるいはO”として出力す
ることができる。本実施例においては、センサが4ケの
場合であるが、比較回路、直流増幅器、セレクタ、基準
電圧発生回路等を増設することによりそれ以上のセンサ
の特定と動作の識別が可能である。
Similarly, the comparison circuits 203 and 204 calculate the value of the reference voltage 233°234 generated from the reference voltage generation circuit 230,
On 7/8. Es, on 15/16. By comparing with Es, J+b4 can be sequentially output as ``°1'' or O''. In this embodiment, there are four sensors, but by adding a comparator circuit, a DC amplifier, a selector, a reference voltage generation circuit, etc., it is possible to identify more sensors and identify their operations.

以上説明したように本実施例では多数の光センサを、光
ファイバーを介して、ループ状に接続し、各光センサの
オン、オフ動作状態に応じて減光し、その減光量に重み
付けをすることにより、光センサを識別するようにした
為、一本の光ファイバーに単純な原理でセンサ情報を光
多重化することができるという利点がある。
As explained above, in this embodiment, a large number of optical sensors are connected in a loop via optical fibers, and the light is attenuated according to the on/off operating state of each optical sensor, and the amount of attenuation is weighted. Since the optical sensor is identified by this method, there is an advantage that sensor information can be optically multiplexed onto a single optical fiber using a simple principle.

(発明の効果) 本発明は以上説明したように減光量の重み付けを、幕級
数を、1からの差とすることにより、全センサの総減光
量を小さくした為、光多重化が著るしく向上され、少数
の光ファイバー、光コネクタ、い、O/E変換モジュー
ルにより、効率的にセンサ情報を収集できるので各種の
制御システム、計測システム、工場ゾラント、自動車、
飛行機、船舶等のセンサ入力多重化に利用できる。
(Effects of the Invention) As explained above, the present invention reduces the total amount of light attenuation of all sensors by weighting the amount of light attenuation and sets the curtain series as a difference from 1, thereby significantly reducing optical multiplexing. With a small number of optical fibers, optical connectors, and O/E conversion modules, sensor information can be collected efficiently, making it suitable for various control systems, measurement systems, factory Zorant, automobiles,
It can be used for multiplexing sensor inputs on airplanes, ships, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(b)は本発明の実施例の構成図、第1図(a)
は本発明の詳細説明図、第2図は従来のスター接続によ
る光センサデータ収集装置、第3図は従来の波長多重方
式によるループ式光センサデータ収集装置である。 10…収集装置、10ノ…電圧−光変換器(Elo)、
102…光−電圧変換器(o、”g )、103,10
4…光コネクタ、131〜13N…光センサ、120〜
12N…光ファイバー、201〜204…比較回路、2
11〜213…直流増幅器、221〜223…セレクタ
ー、230…基準電圧発生器、 20〜25…端子。 〕 フ4 つ 第2図 ス0 第3図 手続補正書(自発) 8 ヶ60・〃・11I3
FIG. 1(b) is a configuration diagram of an embodiment of the present invention, FIG. 1(a)
2 is a detailed explanatory diagram of the present invention, FIG. 2 is a conventional star connection type optical sensor data collection device, and FIG. 3 is a conventional wavelength multiplexing type loop type optical sensor data collection device. 10... Collection device, 10... Voltage-light converter (Elo),
102...Light-voltage converter (o,"g), 103,10
4... Optical connector, 131~13N... Optical sensor, 120~
12N...Optical fiber, 201-204...Comparison circuit, 2
11-213...DC amplifier, 221-223...Selector, 230...Reference voltage generator, 20-25...Terminal. 〕F4 Figure 2 S0 Figure 3 Procedural amendment (voluntary) 8 months 60・〃・11I3

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも2個以上の光センサを、光ファイバー
を介してループ状に接続し、前記各光センサの通過光量
を動作に応じて、センサ別に冪級数的な重み付けに従っ
た、光量減光制御により光多重化を行うことを特徴とす
る光センサ多重化装置。
(1) At least two or more optical sensors are connected in a loop via optical fibers, and the amount of light passing through each optical sensor is controlled according to power series weighting for each sensor according to the operation. An optical sensor multiplexing device that performs optical multiplexing.
(2)各センサ毎の重み付けを1−1/a、1−(1/
a)^2、1−(1/a)^3…1−(1/a)^n(
但しa>1とする。)としたことを特徴とする特許請求
の範囲第1項記載の光センサ多重化装置。
(2) Weighting for each sensor is 1-1/a, 1-(1/
a) ^2, 1-(1/a)^3...1-(1/a)^n(
However, a>1. ) The optical sensor multiplexing device according to claim 1, characterized in that:
JP59140611A 1984-07-09 1984-07-09 Optical sensor multiplexing device Granted JPS6120438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140611A JPS6120438A (en) 1984-07-09 1984-07-09 Optical sensor multiplexing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140611A JPS6120438A (en) 1984-07-09 1984-07-09 Optical sensor multiplexing device

Publications (2)

Publication Number Publication Date
JPS6120438A true JPS6120438A (en) 1986-01-29
JPH0314371B2 JPH0314371B2 (en) 1991-02-26

Family

ID=15272731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140611A Granted JPS6120438A (en) 1984-07-09 1984-07-09 Optical sensor multiplexing device

Country Status (1)

Country Link
JP (1) JPS6120438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261834A2 (en) * 1986-09-22 1988-03-30 Simmonds Precision Products Inc. Apparatus and method for self-referencing and multiplexing intensity modulating fiber optic sensors
JPS6368232U (en) * 1986-10-21 1988-05-09
JP2006044645A (en) * 2004-06-30 2006-02-16 Nippon Plast Co Ltd Vehicular table device
KR20210074462A (en) * 2019-12-11 2021-06-22 현대자동차주식회사 Retractable table

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696754U (en) * 1979-12-25 1981-07-31
JPS56127296A (en) * 1980-03-12 1981-10-05 Mitsubishi Electric Corp Optical measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696754U (en) * 1979-12-25 1981-07-31
JPS56127296A (en) * 1980-03-12 1981-10-05 Mitsubishi Electric Corp Optical measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261834A2 (en) * 1986-09-22 1988-03-30 Simmonds Precision Products Inc. Apparatus and method for self-referencing and multiplexing intensity modulating fiber optic sensors
JPS6368232U (en) * 1986-10-21 1988-05-09
JPH0416512Y2 (en) * 1986-10-21 1992-04-14
JP2006044645A (en) * 2004-06-30 2006-02-16 Nippon Plast Co Ltd Vehicular table device
KR20210074462A (en) * 2019-12-11 2021-06-22 현대자동차주식회사 Retractable table

Also Published As

Publication number Publication date
JPH0314371B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
US5299293A (en) Protection arrangement for an optical transmitter/receiver device
JP2019083681A5 (en)
JPS6361681B2 (en)
EP0914624A1 (en) Fiber optic sensor using wdm tap coupler
TWI234668B (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
JPS6120438A (en) Optical sensor multiplexing device
JP6657885B2 (en) Data collection device and optical transmission system
US4991229A (en) Optical transmitter power measurement and control
WO2002035677A1 (en) A battery monitoring system
CN104935376A (en) Optical power measuring device
US3302175A (en) Attenuation network for carrier-current telecommunication systems
CN101526824B (en) Optical circuit and method for measuring monitor characteristic
CN202372185U (en) Adjustable automatic gain scanning and filtering system
RU217362U1 (en) Voltage measurement unit of a distributed controlled point
JPS5981935A (en) Compound optical communication system
CN111240400B (en) Optical division module, photonic neural network chip, chip system and optical divider
US11437926B2 (en) Method for operating a controllable electrical device, and assembly having the controllable electrical device
Saveliev et al. Neural Network System for Monitoring State of a Optical Telecommunication System
WO1989006473A1 (en) Distributed crossbar switch
JPH04120696A (en) Multipoint measuring instrument
SU828310A1 (en) Device for distributing active or reactive load between synchronous generators and industrial network
JPH06132899A (en) Optical reception circuit
JPS60194631A (en) Optical loop trasmission system
JP2003134049A (en) Optical communication system with optical output level control function
SU896770A1 (en) Method of monitoring communication system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term