JPS61204360A - Production of molybdenum alloy plate - Google Patents

Production of molybdenum alloy plate

Info

Publication number
JPS61204360A
JPS61204360A JP4390985A JP4390985A JPS61204360A JP S61204360 A JPS61204360 A JP S61204360A JP 4390985 A JP4390985 A JP 4390985A JP 4390985 A JP4390985 A JP 4390985A JP S61204360 A JPS61204360 A JP S61204360A
Authority
JP
Japan
Prior art keywords
molybdenum alloy
alloy plate
heat treatment
sintered body
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4390985A
Other languages
Japanese (ja)
Other versions
JPS6331542B2 (en
Inventor
Miharu Fukazawa
深沢 美治
Tatsuhiko Matsumoto
辰彦 松本
Hideo Koizumi
小泉 英雄
Tsutae Takahashi
高橋 傅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4390985A priority Critical patent/JPS61204360A/en
Publication of JPS61204360A publication Critical patent/JPS61204360A/en
Publication of JPS6331542B2 publication Critical patent/JPS6331542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain an Mo alloy plate which decreases the grain boundaries to be the cause for grain boundary cracking by subjecting a sintered body of an Mo alloy contg. K or/and Si at a prescribed ratio to area reduction at a specific reduction ratio or above then to a high-temp. heating treatment. CONSTITUTION:The sintered body of the Mo alloy contg. 0.003-0.05wt.%, more preferably 0.01-0.05wt.% K or/and Si is manufactured. The sintered body is then subjected to the area reduction by forging or rolling, etc. in a temp. region of a room temp. - primary recrystallization temp. in such a man ner that the direction for elongating the sintered body is >=2 directions crossing with the plane of the working plate. The reduction rate in this case is made >=60%, more preferably >=80%. At least one reduction rate of the above- mentioned orthogonal reduction rate is preferably >=20%, more particularly preferably >=40%. Such worked material is subjected to the 1st heating treat ment in a 1,200-1,500 deg.C range then to the 2nd heating treatment in a 1,700-2,000 deg.C range, by which the intended Mo alloy plate is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はモリブデン合金板の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a molybdenum alloy plate.

〔発明の技術的背景〕[Technical background of the invention]

一般に、セラミックスや金属粉末の焼成用ボート、炉内
部品など高温下で使用される構造用材料には、融点が高
く高温強度の大きい多結晶組織のモリブデン合金板が使
用されている。
Generally, molybdenum alloy plates with a polycrystalline structure, which have a high melting point and high high-temperature strength, are used for structural materials used at high temperatures, such as boats for firing ceramics and metal powder, and furnace parts.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、前記多結晶組織のモリブデン合金板は結
晶粒界が脆いという大きな欠点があり、使用中に粒界溝
りによる粒界割れを引き起こす。
However, the polycrystalline molybdenum alloy plate has a major drawback of brittle grain boundaries, which causes grain boundary cracking due to grain boundary grooves during use.

その結果、高温強度が大きいというモリブデン本来の性
質を充分に発揮できず、その用途が限られていた。従っ
て、粒界割れの原因となる結晶粒界を少なくしたモリブ
デン合金板の開発が要望されている。
As a result, molybdenum's inherent properties of high high-temperature strength cannot be fully demonstrated, and its uses have been limited. Therefore, there is a need to develop a molybdenum alloy plate with fewer grain boundaries that cause grain boundary cracking.

〔発明の目的〕[Purpose of the invention]

本発明は、粒界割れの原因となる結晶粒界を少なくした
モリブデン合金板の製造方法を提供しようとするもので
ある。
The present invention aims to provide a method for manufacturing a molybdenum alloy plate in which the number of grain boundaries that cause grain boundary cracking is reduced.

〔発明の概要〕[Summary of the invention]

本発明は、K、srの1種又は2種を重置%で0.00
3〜0.05%含有してなるモリブデン合金の焼結体を
、加工率で60%以上の減面加工を行なった後、該加工
材を高温加熱処理することを特徴とするものでおる。か
かる本発明によれば、既述の如く粒界割れの原因となる
結晶粒界を少なくしたモリブデン合金板を得ることがで
きる。
In the present invention, one or both of K and sr are added in an amount of 0.00%.
This method is characterized in that a sintered body of a molybdenum alloy containing 3 to 0.05% is subjected to surface reduction processing at a processing rate of 60% or more, and then the processed material is subjected to high-temperature heat treatment. According to the present invention, it is possible to obtain a molybdenum alloy plate in which the number of grain boundaries that cause grain boundary cracking is reduced as described above.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、K、S;の1種又は2種を重量%で0゜003〜
O,0,05%、好ましくは0.01〜0.05%含有
したモリブデン合金の焼結体を作製する。このに、sr
は、後述する高温加熱処理によってモリブデン合金板の
再結晶粒を大きく成長させ、100m2当りに1個以下
の結晶粒を持つ大結晶粒組織とするか、又は単結晶組織
とするために添加される成分である。このため、それら
の添加成分量を0.00311%未満にすると、効果が
小ざく、加工後の高温加熱処理によっても結晶粒界の多
い従来の多結晶組織のモリブデン合金板となる。一方、
それら添加成分量が0.05重置%を越えると、高温加
熱処理において該モリブデン合金中に微細かつ多量に分
散したに、S+によりモリブデン合金板の再結晶粒を大
きく成長させる効果を抑制する。
First, one or two of K and S;
A sintered body of a molybdenum alloy containing 0.05% O, preferably 0.01 to 0.05% is produced. To this, sr
is added to cause the recrystallized grains of the molybdenum alloy plate to grow large by high-temperature heat treatment described below, to create a large grain structure with one or less crystal grains per 100 m2, or to create a single crystal structure. It is an ingredient. Therefore, if the amount of these additive components is less than 0.00311%, the effect will be small, and even after high-temperature heat treatment after processing, a molybdenum alloy plate with a conventional polycrystalline structure with many grain boundaries will be obtained. on the other hand,
If the amount of these added components exceeds 0.05% by weight, S+ suppresses the effect of increasing recrystallized grains in the molybdenum alloy plate, even though they are finely and abundantly dispersed in the molybdenum alloy during high-temperature heat treatment.

次いで、作製した焼結体をV温から一次再結晶温度以下
の温度域で、加工によって焼結体が引き伸ばされる方向
が加工板平面に対して二方向以上゛のクロスする方向と
なるように鍛造や圧延などによって減面加工する。この
時、加工温度が一次再結晶温度を越えると、加工繊維組
織の発達と加工繊維組織に沿ったKやSiの粒子の配列
ができなくなる等の問題が生じてくる。なお、鍛造、圧
延などは常法をそのまま適用すればよい。
Next, the produced sintered body is forged in a temperature range from V temperature to below the primary recrystallization temperature so that the direction in which the sintered body is stretched by processing is a direction that crosses two or more directions with respect to the plane of the processed plate. The area is reduced by rolling or rolling. At this time, if the processing temperature exceeds the primary recrystallization temperature, problems arise such as the development of the processed fiber structure and the inability to arrange K and Si particles along the processed fiber structure. Note that for forging, rolling, etc., conventional methods may be applied as they are.

また、前記加工処理により、焼結体の組織が板厚方向に
押しつぶされ、加工方向に引き伸ばされて全体として加
工板平面に平行する組織状組織に配列されていく。この
時、含有したKやSlの多くは前述した繊維状組織に沿
って配列する。また一部は繊維状組織内に分散してその
組織の強度を高める。
Further, by the processing, the structure of the sintered body is crushed in the thickness direction and stretched in the processing direction, so that the structure as a whole is arranged in a texture parallel to the plane of the processed plate. At this time, most of the K and Sl contained are arranged along the aforementioned fibrous structure. In addition, some of it is dispersed within the fibrous tissue to increase the strength of that tissue.

更に、前記加工処理においてはモリブデン合金板平面に
対して少なくとも二方向以上を必要とし、かつ加工率が
60%以上、好ましくは80%以上にすることが必要で
ある。この場合、該加工率のうち少なくとも直交する片
方の加工率が20%以上、好ましくは40%以上である
ことが望ましい。
Furthermore, the processing requires at least two directions with respect to the plane of the molybdenum alloy plate, and the processing rate must be 60% or more, preferably 80% or more. In this case, it is desirable that at least one of the processing rates perpendicular to each other is 20% or more, preferably 40% or more.

ここで加工率とは、加工前後におけるモリブデン合金板
の断面積の減少を加工前の断面積で除した値の百分率表
示値であって、この値が大きいほど加工は進んでいるこ
とを意味する。加工率が60%未満の場合には、前述し
た繊維状組織に沿ってにヤS1が充分に配列せず、後述
の加熱処理時に再結晶粒が大きく成長しない。また、加
工方向のうち片方の加工率が20%未満の場合には、後
述の加熱処理時に再結晶粒が大きな加工率の加工方向に
長く、小さな加工率の方向に短く配列されて円筒状とな
る恐れがある。
Here, the processing rate is the percentage value obtained by dividing the decrease in the cross-sectional area of the molybdenum alloy plate before and after processing by the cross-sectional area before processing, and the larger this value, the more advanced the processing is. . If the processing rate is less than 60%, the fibers S1 will not be sufficiently aligned along the fibrous structure described above, and recrystallized grains will not grow significantly during the heat treatment described below. In addition, if the processing rate in one of the processing directions is less than 20%, during the heat treatment described below, the recrystallized grains will be arranged long in the processing direction with a large processing rate and short in the direction with a small processing rate, resulting in a cylindrical shape. There is a risk that it will happen.

次いで、得られた加工材に、1200℃〜15oo’c
、好ましくは1250’C〜1450℃の温度域で第1
の加熱処理を施した後、1700〜2200℃、好まし
くは1900℃〜2200’Cの温度域での第2加熱処
理を施す二段加熱処理を行なう。この結果、加工材は1
00m”当りに1個以下の結晶粒を持った大結晶粒組織
又は単結晶組織を有するモリブデン合金板となる。ここ
で、第1の加熱処理は加工段階で繊維状組織に沿って存
在したに、S;を第2の加熱処理によって再結晶粒を大
きくさせる効果を有効に発揮できる大きざと配列状態に
させるための処理であることから、前記温度範囲にする
ことが望ましい。また、前記第2の加熱処理はモリブデ
ン合金板の結晶組織を1007111112当りに1個
以下の結晶粒を持った大結晶粒組織又は単結晶組織にさ
せるだめの処理であり、加熱温度が高い程再結晶粒を大
きくさせるのに有効である。この第2の加熱処理温度を
1700℃未満にすると、100m2当りに1個以下の
結晶粒の形成が困難となる。かといって、第2の加熱処
理温度が2200℃を越えると、含有するKの蒸気圧が
モリブデンの強さより高くなるため、この部分に空孔が
発生したり、隣り合う空孔が合体したりして欠陥穴とな
り、クリープ強度を低下させる。しかも、第2の加熱処
理温度が2200°Cを越えると、モリブデン合金中に
附随的に含まれる不純物が合体し、欠陥物となったり、
モリブデン合金が過大に焼きなましされるため、クリー
プ強度を低下させる。従って、良好なりリープ強度を有
し、かつ粒界滑りを起こし難くする第2の加熱処理温度
は前記範囲にあることが望ましい。
Next, the obtained processed material was heated at 1200°C to 150°C.
, preferably in the temperature range of 1250'C to 1450°C.
After the heat treatment, a two-stage heat treatment is performed in which a second heat treatment is performed in a temperature range of 1700 to 2200°C, preferably 1900°C to 2200'C. As a result, the processed material is 1
The result is a molybdenum alloy plate having a large grain structure or a single crystal structure with one or less grains per 00 m. , S; is preferably in the above-mentioned temperature range because the second heat treatment is for bringing the recrystallized grains into a roughly arranged state that can effectively exhibit the effect of enlarging the recrystallized grains. The heat treatment is a process to make the crystal structure of the molybdenum alloy plate into a large crystal grain structure or a single crystal structure with one or less crystal grains per 1007111112, and the higher the heating temperature, the larger the recrystallized grains. If the second heat treatment temperature is lower than 1700°C, it will be difficult to form less than one crystal grain per 100 m2.On the other hand, if the second heat treatment temperature is lower than 2200°C, If it exceeds this, the vapor pressure of the K contained becomes higher than the strength of molybdenum, so pores are generated in this part, or adjacent pores combine to form defective holes, reducing the creep strength.Moreover, If the second heat treatment temperature exceeds 2200°C, impurities incidentally included in the molybdenum alloy may coalesce and become defects.
Molybdenum alloys are over-annealed, reducing their creep strength. Therefore, it is desirable that the second heat treatment temperature, which provides good leap strength and makes it difficult to cause grain boundary sliding, is within the above range.

〔発明の実施例〕[Embodiments of the invention]

まず、第1表に示した重量%の割合でMO粉末とKCg
又はに2 S ! 03の溶液とを混合した債、乾燥し
てMOとKの混合粉末試料及びMOとに1Siの混合粉
末試料を調製した。
First, MO powder and KCg in the weight% ratio shown in Table 1.
Or 2 S! A mixed powder sample of MO and K and a mixed powder sample of MO and 1Si were prepared by drying the bond mixed with the solution of 03.

第1表 次いで、前記各混合粉末をそれぞれ約2tOn/dの圧
力でプレス成形し、得られた成形体を1830℃の水素
炉中で7時間焼結した。これら焼結体中のに、s;の含
有率を下記第2表に示す。
Table 1 Next, each of the mixed powders was press-molded at a pressure of about 2 tOn/d, and the obtained molded body was sintered in a hydrogen furnace at 1830° C. for 7 hours. The content of s in these sintered bodies is shown in Table 2 below.

次いで、前記各焼結体につき、1200〜13oo’c
で鍛造した後、700℃〜1100℃の温度で圧延して
厚さ2.5711111で加工率90%の板材とした。
Next, for each of the sintered bodies, 1200 to 13 oo'c
After forging at a temperature of 700° C. to 1100° C., a plate material having a thickness of 2.5711111 mm and a processing rate of 90% was obtained.

しかして、得られた各板材からクリープ試験片と110
05X100++の金属組織観察用の試験片を作製し、
この両者に1350℃の水素炉中で30分間の加熱処理
を施した後、1950℃の真空炉中で14時間の加熱処
理を施した。この二段加熱処理を施したクリープ試験片
について、1800℃のアルゴン雰囲気炉中で引張応力
1Kg/lIn2でのクリープ試験を行ない、1時間当
りのクリープ歪み速度を算出した。これらの試験結果を
、第3表に示す。
Therefore, creep test pieces and 110
A test piece for metallographic observation of 05X100++ was prepared,
Both were heat-treated for 30 minutes in a hydrogen furnace at 1350°C, and then heat-treated for 14 hours in a vacuum furnace at 1950°C. The creep test piece subjected to the two-stage heat treatment was subjected to a creep test at a tensile stress of 1 Kg/lIn2 in an argon atmosphere furnace at 1800°C, and the creep strain rate per hour was calculated. The results of these tests are shown in Table 3.

また、二段加熱処理後の金属組織観察用試験片の組織を
観察したところ、実施例1〜7(試料1〜7)は単結晶
組織、実施例8(試料8)は6個の結晶粒を持つ多結晶
組織であった。
In addition, when we observed the structure of the metal structure observation specimen after the two-stage heat treatment, Examples 1 to 7 (Samples 1 to 7) had a single crystal structure, and Example 8 (Sample 8) had a single crystal structure. It had a polycrystalline structure.

なお、第3表中には前記実施例と同様な条件で作成した
純モリブデン板試験片の結果、及び試料6の板材から作
製したクリープ試験片に1350°Cの水素炉中で30
分間の加熱処理を施した後、2350°Cの真空炉中で
7時間の加熱処理を施した試験片の結果を比較例として
併記した。
Table 3 shows the results of a pure molybdenum plate test piece made under the same conditions as in the above example, and a creep test piece made from the sample 6 plate in a hydrogen furnace at 1350°C.
The results of a test piece that was heat-treated for 7 hours in a vacuum furnace at 2350°C after being heat-treated for 7 hours are also shown as a comparative example.

上記第3表から明らかなように、本発明の方法で製造し
たモリブデン合金板(実施例1〜8)は、従来の純モリ
ブデン板(比較例1)及び2350℃での第2の加熱処
理を施したモリブデン合金板(比較例2)に比べて1時
間当りのクリープ歪み速度が115〜1/250と小ざ
く、優れた高温クリープ強度を持つことが確認された。
As is clear from Table 3 above, the molybdenum alloy plates manufactured by the method of the present invention (Examples 1 to 8) are different from the conventional pure molybdenum plate (Comparative Example 1) and the second heat treatment at 2350°C. Compared to the applied molybdenum alloy plate (Comparative Example 2), the creep strain rate per hour was 115 to 1/250, which was confirmed to have excellent high-temperature creep strength.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば高温下で使用される
焼成用ボート、炉内部品等の高温構造用材料の粒界割れ
の原因となる結晶粒界を少なくでき、破壊寿命を大幅に
伸ばし、かつ長時間安定化させ、信頼性を大幅に向上し
得るモリブデン合金板の製造方法を提供できる。更に、
本発明で製造したモリブデン合金板を使用することによ
り、希少金属の有効活用が可能になりその工業的価値は
大である。
As detailed above, according to the present invention, it is possible to reduce the number of grain boundaries that cause intergranular cracking in materials for high-temperature structures such as firing boats and furnace parts used at high temperatures, thereby significantly extending the fracture life. It is possible to provide a method for producing a molybdenum alloy plate that can be stretched, stabilized for a long time, and significantly improved in reliability. Furthermore,
By using the molybdenum alloy plate produced according to the present invention, it is possible to effectively utilize rare metals, and its industrial value is great.

Claims (3)

【特許請求の範囲】[Claims] (1)K、Siの1種又は2種を重量%で0.003〜
0.05%含有してなるモリブデン合金の焼結体を、加
工率で60%以上の減面加工を行なった後、該加工材を
高温加熱処理することを特徴とするモリブデン合金板の
製造方法。
(1) 0.003 to 0.003% by weight of one or both of K and Si
A method for producing a molybdenum alloy plate, which comprises subjecting a sintered body of a molybdenum alloy containing 0.05% to an area reduction process of 60% or more, and then subjecting the processed material to high-temperature heat treatment. .
(2)高温加熱処理が1200℃〜1500℃での第1
の加熱処理を施した後、1700〜2200℃での第2
の加熱処理を施す二段加熱処理であることを特徴とする
特許請求の範囲第1項に記載のモリブデン合金板の製造
方法。
(2) High temperature heat treatment at 1200°C to 1500°C
After the heat treatment, the second heat treatment at 1700-2200℃
The method for producing a molybdenum alloy plate according to claim 1, characterized in that the method is a two-stage heat treatment in which a heat treatment is performed.
(3)加熱処理を施したモリブデン合金板の二次再結晶
組織が100mm^2当り1個以下の結晶粒を持つ大結
晶粒組織又は単結晶組織であることを特徴とする特許請
求の範囲第1項記載のモリブデン合金板の製造方法。
(3) The second recrystallized structure of the heat-treated molybdenum alloy plate is a large-grain structure or a single-crystal structure with one or less crystal grains per 100 mm^2. A method for producing a molybdenum alloy plate according to item 1.
JP4390985A 1985-03-06 1985-03-06 Production of molybdenum alloy plate Granted JPS61204360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4390985A JPS61204360A (en) 1985-03-06 1985-03-06 Production of molybdenum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4390985A JPS61204360A (en) 1985-03-06 1985-03-06 Production of molybdenum alloy plate

Publications (2)

Publication Number Publication Date
JPS61204360A true JPS61204360A (en) 1986-09-10
JPS6331542B2 JPS6331542B2 (en) 1988-06-24

Family

ID=12676840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4390985A Granted JPS61204360A (en) 1985-03-06 1985-03-06 Production of molybdenum alloy plate

Country Status (1)

Country Link
JP (1) JPS61204360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309777B1 (en) 1998-03-20 2001-10-30 Nec Corporation Explosion-resistant large capacitive lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150070A (en) * 1983-02-10 1984-08-28 Toshiba Corp Manufacture of molybdenum material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150070A (en) * 1983-02-10 1984-08-28 Toshiba Corp Manufacture of molybdenum material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309777B1 (en) 1998-03-20 2001-10-30 Nec Corporation Explosion-resistant large capacitive lithium ion secondary battery

Also Published As

Publication number Publication date
JPS6331542B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
CA2861163C (en) Titanium alloy with improved properties
US4842653A (en) Process for improving the static and dynamic mechanical properties of (α+β)-titanium alloys
EP0408313A1 (en) Titanium base alloy and method of superplastic forming thereof
Fan et al. Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM)
AU2019350496B2 (en) Creep resistant titanium alloys
CA2010672A1 (en) Titanium aluminide alloys
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
KR20010015595A (en) Aluminium based alloy and method for subjecting it to heat treatment
CN109554578B (en) Negative expansion memory alloy and preparation method thereof
EP3856944A2 (en) Titanium alloy with moderate strength and high ductility
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JPS61204360A (en) Production of molybdenum alloy plate
JPH05255827A (en) Production of alloy based on tial intermetallic compound
WO1990002824A1 (en) Reinforced composite material
US2667435A (en) Low temperature fabrication of molybdenum and alloys thereof
JPS6137944A (en) Manufacture of molybdenum plate
US2721138A (en) Method of ductilizing molybdenum and alloys thereof
JPS62146235A (en) Tungsten member and its production
CN117210718B (en) Alpha-type titanium alloy and preparation method thereof
JPH08120372A (en) Tial intermetallic compound base alloy and its production
JPH01222038A (en) Manufacture of alpha+beta type ti alloy member having high strength and high toughness
JP2932653B2 (en) Skid rail for heating furnace and method of manufacturing the same
JPH0382732A (en) Aluminum alloy sintered product and its manufacture