JPS61204083A - Production of sterilized liquid - Google Patents

Production of sterilized liquid

Info

Publication number
JPS61204083A
JPS61204083A JP4470385A JP4470385A JPS61204083A JP S61204083 A JPS61204083 A JP S61204083A JP 4470385 A JP4470385 A JP 4470385A JP 4470385 A JP4470385 A JP 4470385A JP S61204083 A JPS61204083 A JP S61204083A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
current density
fungi
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4470385A
Other languages
Japanese (ja)
Other versions
JPH0457395B2 (en
Inventor
Tatsuo Tanaka
龍夫 田中
Toshio Sato
利夫 佐藤
Yasutoshi Kofuchi
小淵 康利
Kazuyuki Ooshima
和幸 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4470385A priority Critical patent/JPS61204083A/en
Publication of JPS61204083A publication Critical patent/JPS61204083A/en
Publication of JPH0457395B2 publication Critical patent/JPH0457395B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To improve a sterilizing rate by bringing an ion exchange membrane having the charge value selective permeability with ions of the same kind of charge into contact with a soln. in which bacteria exist, erecting electrodes to face each other with the ion exchange membrane in-between and passing the electric current above the threshold current density thereto. CONSTITUTION:The ion exchange membrane 1 having the charge value selective permeability with the ions of the same kind of charge is brought into contact with the soln. in which the bacteria exist. The electrodes 8, 8' are erected to face each other with the ion exchange membrane 1 in-between. The current above the threshold current density is passed thereto. The sterilizing rate is remarkably improved at the extremely low current density according to the above-mentioned method as compared to the conventional method. The economical and efficient production of the sterilized liquid is thus made possible from the soln. in which the bacteria exist.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気透析法を利用した滅菌液の新規な製造方
法に関する。詳しくは、薬物の添加或いは加熱処理を行
うことなく、効率よく、且つ経済的に滅菌液を製造する
方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing a sterile liquid using electrodialysis. Specifically, it is a method for efficiently and economically producing a sterile liquid without adding drugs or heat treatment.

[技術の背景] 菌類が存在する不純な水を滅菌する方法として、従来よ
り、塩素、重金属塩類等の薬剤を添加する方法が一般に
知られていた。ところが近年、水道水の塩素殺菌により
、有害なトリへ〇メタンが生成することが問題となって
以来、塩素を始めとする薬剤の添加によらない水の滅菌
方法が望まれている。一方、薬剤の添加によらない水の
滅菌方法として煮沸、或いは蒸留による加熱処理がある
が、これらの方法においては、菌類以外の有用な有機物
等を含有する場合には、熱による影響を考慮しなければ
ならず、また、多量の熱量を必要とするため、工業的な
実施には適さない。
[Technical Background] As a method of sterilizing impure water in which fungi are present, a method of adding chemicals such as chlorine and heavy metal salts has been generally known. However, in recent years, it has become a problem that chlorine sterilization of tap water produces methane, which is harmful to birds.Therefore, there has been a desire for a water sterilization method that does not involve the addition of chemicals such as chlorine. On the other hand, heat treatment by boiling or distillation is a method of sterilizing water that does not involve the addition of chemicals, but in these methods, if the water contains useful organic substances other than fungi, the effects of heat must be taken into account. Moreover, it is not suitable for industrial implementation because it requires a large amount of heat.

[従来の技術] 本発明者等は、このような問題に対して、薬剤の添加或
いは加熱処理を行うことなく、菌類が存在する不純な溶
液から滅菌された溶液(以下、滅菌液ともいう)を製造
する方法として、特願昭43−49031号(特公昭4
9−30906号)で陰イオン交換膜及び陽イオン交換
膜隔膜として使用した電気透析槽に菌類を含有する水を
供給して通電を行う方法を提案した。上記方法は、電極
間に陰イオン交換膜と陽イオン交換膜とを交互に配列し
て脱塩室と濃縮室とを形成し、脱塩室側に被処理液であ
る菌類を含有する水を、濃縮室側に電解質溶液をそれぞ
れ供給して滅菌液を製造するものである。
[Prior Art] In order to solve this problem, the present inventors have developed a solution that has been sterilized from an impure solution containing fungi (hereinafter also referred to as sterilized solution) without the addition of chemicals or heat treatment. As a method for producing
No. 9-30906) proposed a method of supplying water containing fungi to an electrodialysis tank used as an anion exchange membrane and a cation exchange membrane diaphragm and energizing it. In the above method, anion exchange membranes and cation exchange membranes are arranged alternately between electrodes to form a demineralization chamber and a concentration chamber, and water containing fungi, which is a liquid to be treated, is placed in the demineralization chamber side. A sterilizing solution is produced by supplying an electrolyte solution to the concentration chamber side.

[発明が解決しようとする問題点コ 前記方法によれば、菌類が存在する溶液を滅菌すること
は目■能である。しかしながら、この方法は滅菌速度が
遅く、充分な滅菌速度を得るためには異常に高い電流密
度での運転が必要であり、工業的な実施において大きな
障害となっていた。
[Problems to be Solved by the Invention] According to the above method, it is possible to sterilize a solution in which fungi are present. However, this method has a slow sterilization rate and requires operation at an abnormally high current density to obtain a sufficient sterilization rate, which has been a major obstacle in industrial implementation.

[問題点を解決するための手段] 本発明は、かかる問題に鑑み成されたもので、電極間に
同種電荷のイオンに対する電価選択透過性を有するイオ
ン交換膜く以下、選択透過性イオン交換膜ともいう)を
通電方向に対して、はぼ垂直となるように配置されたセ
ルを用い、該セルに菌類が存在する溶液を選択透過性イ
オン交換膜と接触するように供給しながら、限界電流密
度以上の電流を通ずることにより、低電流密度で、且つ
滅菌速度を著しく向上せしめることを可能とした滅菌液
の製造方法を提供する。
[Means for Solving the Problems] The present invention has been made in view of the above problems. A cell (also called a membrane) is arranged almost perpendicular to the current direction, and a solution containing fungi is supplied to the cell so as to be in contact with a selectively permeable ion exchange membrane. Provided is a method for producing a sterilizing solution that can significantly improve the sterilization speed at a low current density by passing a current higher than the current density.

本発明は、選択透過性イオン交換膜を菌類が存在する溶
液に接触させ、該イオン交換膜を挟んで電極を対立させ
て限界電流密度以北の電流を通ずることを特徴とする滅
菌液の製造方法である。
The present invention relates to the production of a sterilizing solution, which is characterized in that a permselective ion exchange membrane is brought into contact with a solution containing fungi, and electrodes are opposed to each other with the ion exchange membrane in between to pass a current north of a critical current density. It's a method.

本発明の対象とする菌類が存在する溶液は、通電が可能
な程度の電解質を含有する水、アルコール等の極性を有
する液である。通電が可能な電解質の量は、その種類に
よって異なり一層に限定することはできないが、一般に
10ppm以上の量である。また、菌類としては、プラ
ンクトン、細菌、カビ、酵母、ウィルス、その仙の微生
物及びパイロジエン等を総称するものであり、本発明の
方法は、これらのすべての菌類に対して有効である。
The solution containing the fungi targeted by the present invention is a polar solution such as water or alcohol that contains an electrolyte to the extent that electricity can be applied. The amount of electrolyte that can be energized varies depending on its type and cannot be further limited, but is generally 10 ppm or more. Furthermore, fungi include plankton, bacteria, molds, yeast, viruses, related microorganisms, pyrogens, etc., and the method of the present invention is effective against all of these fungi.

本発明に用いる選択透過性イオン交換膜は、該膜内の輸
率が、電価の異なる同種電荷のイオン間で差があるもの
で、例えば、陽イオン交換膜の場合−価イオンであるナ
トリウムイオン(Na+)と斗÷ 二価イオンであるカルシウムイオン(Ca  )間の選
択透過係数(PNa)が0.25NNaCI、0.25
NCaCIzの溶液を用い、温度25℃、電流密度IA
/dm  で測定して1以ド、好ましくは0.7以ド、
陰イオン交換膜の場合、−価イオンである塩素イオン(
CI−)と二価イオンである硫酸イオン(SO=)間の
選択透過係数(P”4)が0 、25 N N a C
l −0−25N N &2S 04の溶液を用い、温
度25℃、電流密度IA/dn+  で測定して0.0
5以下、好ましくは0.02以下のものが好適に使用さ
れる。上記選択透過性イオン交換膜をより具体的に例示
すれば、陽(又は陰)イオン交換膜に (イ)、該陽(又は陰)イオン交換膜のイオン交換基に
対して、弱酸性(又は弱塩基性)の陽(又は陰)イオン
交換基を有する層 (ロ)陰(又は陽)イオン交換基を有する樹脂層(ハ)
陰イオン交換基と陽イオン交換基とを併せ有する樹脂j
− り:)上記陽(又は陰)イオン交換膜より緻密な構造を
有する樹脂1― (ネ)陽(又は陰)イオン交換基を有し、且つ該陽(叉
は陰)イオン交換基の容@(meq /g乾燥樹脂)が
上記陽(又は陰)イオン交換膜に比べて2/3以下、好
ましくは1/2以下(ゼロを含む)である樹脂層 (へ)上記(イ)〜(ネ)のうち組合わせ可能な2以上
を併せ有する樹脂層 から選ばれた少なくとも一層を積層した複合膜が挙げら
れる。上記選択透過性イオン交換膜のうち、(0)の層
、即ち、イオン交換膜に該イオン交換膜の有するイオン
交換基と反対の符号のイオン交換基を有する層を積層し
た複合膜が低電流密度における11i菌速度の向上効果
が最も優れており、特に好ましい。尚、本発明でいう選
択透過性イオン交換膜には陽イオン交換膜と陰イオン交
換膜を積層した、所謂バイポーラ膜も含まれる。ここに
いうバイポーラ膜は、陰イオン交換膜と陽イオン交換膜
とを貼り合わせ等によって複合化したものに限定される
ものではなく、夫々の膜を単に重ね合わせたものも含む
ものである。
The permselective ion exchange membrane used in the present invention is one in which the transfer number within the membrane is different between ions of the same type of charge with different charge values.For example, in the case of a cation exchange membrane, the valence ion is sodium The selective permeability coefficient (PNa) between ions (Na+) and calcium ions (Ca), which are divalent ions, is 0.25NNaCI, 0.25
Using a solution of NCaCIz, temperature 25°C, current density IA
/dm 1 or more, preferably 0.7 or more,
In the case of anion exchange membranes, chlorine ions (−), which are negative valent ions,
The selective permeability coefficient (P"4) between CI-) and the divalent sulfate ion (SO=) is 0, 25 N N a C
0.0 when measured using a solution of l -0-25N N &2S 04 at a temperature of 25°C and a current density of IA/dn+.
5 or less, preferably 0.02 or less is suitably used. To give a more specific example of the above-mentioned permselective ion exchange membrane, (a) the cation (or anion) ion exchange membrane has a weakly acidic (or Weakly basic) layer having a positive (or negative) ion exchange group (b) resin layer having a negative (or positive) ion exchange group (c)
Resin j that has both an anion exchange group and a cation exchange group
- Re:) Resin 1- having a structure more dense than the above cation (or anion) ion exchange membrane; @(meq/g dry resin) is 2/3 or less, preferably 1/2 or less (including zero) of the above cation (or anion) ion exchange membrane (to) the resin layer (a) to ( Examples of composite membranes include laminations of at least one layer selected from resin layers having two or more of (4) that can be combined. Among the selectively permeable ion exchange membranes, layer (0), that is, a composite membrane in which an ion exchange membrane is laminated with a layer having an ion exchange group having an opposite sign to that of the ion exchange group possessed by the ion exchange membrane, has a low current. The effect of improving the speed of 11i bacteria in terms of density is the best and is particularly preferred. The permselective ion exchange membrane in the present invention also includes a so-called bipolar membrane in which a cation exchange membrane and an anion exchange membrane are laminated. The bipolar membrane referred to herein is not limited to a composite of an anion exchange membrane and a cation exchange membrane by laminating them together, but also includes a membrane in which the respective membranes are simply stacked on top of each other.

前記複合膜の製法は、特に限定されるものではなく、公
知の方法が何ら制限されることなく採用される。例えば
、代表的な製造方法として、特開昭Fi2−81098
号公報に記載された方法がある。
The method for manufacturing the composite membrane is not particularly limited, and any known method may be employed without any restriction. For example, as a typical manufacturing method, JP-A-Sho Fi2-81098
There is a method described in the publication.

また、前記複合膜における陽(又は陰)イオン交換膜は
、陽(又は陰)イオン交換基を有する高分子膜状物であ
れば特に限定されず、炭化水素系、含ふっ素光、縮合系
、重合系、均−系、不均一系のものの如何を問わず従来
公知の方法で製造されたものが特に制限なく使用される
。陽イオン交換基としてはスルホン酸基、硫酸エステル
基、リン酸基、リン酸エチル基、亜すン酸基S亜すン酸
エステル基、カルボキシル基、解離しろる水素原子を有
するスルホン酸アミド、カルボン酸アミド、リン酸アミ
ド等の酸アミド基、フェノール性水酸基、チオール基等
から適宜に選択される。例えば、陽イオン交換膜が本来
性するイオン交換基に対して弱酸性陽イオン交換基を有
する層を形成させる場合には、該陽イオン交換膜の陽イ
オン交換基としてはスルホン酸基、硫酸エステル基、リ
ン酸基等の強酸性又は比較的強酸性陽イオン交換基が選
択される。
Further, the cation (or anion) ion exchange membrane in the composite membrane is not particularly limited as long as it is a polymer film having a cation (or anion) ion exchange group, and may include hydrocarbon, fluorine-containing, condensed, Those produced by conventionally known methods, whether polymerized, homogeneous, or heterogeneous, can be used without particular limitation. Cation exchange groups include sulfonic acid groups, sulfuric ester groups, phosphoric acid groups, ethyl phosphate groups, sulfonic acid ester groups, carboxyl groups, sulfonic acid amides having a dissociable hydrogen atom, It is appropriately selected from acid amide groups such as carboxylic acid amide and phosphoric acid amide, phenolic hydroxyl groups, thiol groups, and the like. For example, when forming a layer having a weakly acidic cation exchange group in contrast to the ion exchange group inherent in the cation exchange membrane, the cation exchange group of the cation exchange membrane may be a sulfonic acid group, a sulfuric acid ester, etc. A strongly acidic or relatively strongly acidic cation exchange group such as a phosphoric acid group or a phosphoric acid group is selected.

使方、弱酸性陽イオン交換基としては、カルボキシル基
、解離しうる水素原子を有するスルホン酸アミド、カル
ボン酸アミド、リン酸アミド等の酸アミド基、フェノー
ル性水酸基、チオール基、亜リン酸基、亜リン酸エステ
ル基等である。また、陰イオン交換基としては、−4、
二級、三級アミン、第四級アンモニウム塩基、第三級ス
ルホニウム塩基、第四級ホスホニウム塩基、スチボニウ
ム塩基、アルソニウム塩基、金属キレート化合物で正の
電荷となるもの例えばコバルチジニウム塩なと、中性、
酸性、塩基性のいずれかの雰囲気で正の電荷になって陰
イオンを交換しうるものなどである。この陰イオン交換
性の官能基を有する層には同時に、前記した陽イオン交
換基も存在していてよいが、該層中の全イオン性官能基
のうち、陰イオン交換性の官能基は20%以上あること
が望ましい。
Usage: Weakly acidic cation exchange groups include carboxyl groups, acid amide groups such as sulfonic acid amide, carboxylic acid amide, and phosphoric acid amide with dissociable hydrogen atoms, phenolic hydroxyl groups, thiol groups, and phosphorous acid groups. , phosphite group, etc. In addition, as anion exchange groups, -4,
Secondary, tertiary amines, quaternary ammonium bases, tertiary sulfonium bases, quaternary phosphonium bases, stibonium bases, arsonium bases, metal chelate compounds that are positively charged, such as cobaltidinium salts, neutral,
These include those that become positively charged in either acidic or basic atmospheres and can exchange anions. The above-mentioned cation exchange group may also be present in this layer having an anion exchange functional group, but out of all the ionic functional groups in this layer, 20 anion exchange functional groups are present. % or more is desirable.

また、陰イオン交換膜に対して前記したような層を形成
させる場合、陰イオン交換基は第四級アンモニウム塩基
、第四級ホスホニウム塩基、スチボニウム塩基、アルソ
ニウム塩基などが一般的である。上基陰イオン交換基に
対する弱塩基性陰イオン交換基として、第一級、第二級
、及び第三級アミノ基、金属キレートを含む基等が挙げ
られる。
Further, when a layer as described above is formed on an anion exchange membrane, the anion exchange group is generally a quaternary ammonium base, a quaternary phosphonium base, a stibonium base, an arsonium base, or the like. Examples of the weakly basic anion exchange group for the upper group anion exchange group include primary, secondary, and tertiary amino groups, groups containing metal chelates, and the like.

また、反対イオンを有する基としては、前記陽イオン交
換基の例がすべて適用し得る。
Furthermore, as the group having an opposite ion, all of the above examples of cation exchange groups can be applied.

本発明において、前記選択透過性イオン交換膜を用いて
構成されるセルの態様は、電極間に、選択透過性イオン
交換膜を通電方向に対して、はぼ垂直に配置した室が構
成されていれば特に限定されず、一般には公知の電気透
析槽の構造が特に制限なく採用される。例えば第1図に
示すように、選択透過性イオン交換膜lと普通の陰イオ
ン交換膜2とを交互に配列して脱塩室4及び濃縮室3と
を形成する態様、第2図に示すように、選択透過性イオ
ン交換膜lL!l−普通の陽イオン交換膜5とを受力、
に配列して濃縮室3及び脱塩室4を形成する態様、第3
図に示すように、すべての隔膜を0選択透過性イオン交
換膜1で構成して室6を形成する態様が代表的である。
In the present invention, an aspect of the cell configured using the permselective ion exchange membrane is such that a chamber is formed between the electrodes, and the permselective ion exchange membrane is arranged approximately perpendicularly to the current direction. If so, there are no particular limitations, and generally known structures of electrodialyzers are employed without particular limitations. For example, as shown in FIG. 1, there is a mode in which selectively permeable ion exchange membranes 1 and ordinary anion exchange membranes 2 are arranged alternately to form a desalting chamber 4 and a concentration chamber 3, as shown in FIG. As in, permselective ion exchange membrane LL! l - receiving force with an ordinary cation exchange membrane 5;
A third aspect of forming the concentration chamber 3 and the demineralization chamber 4 by arranging the
As shown in the figure, a typical embodiment is such that all the diaphragms are composed of 0-permselective ion exchange membranes 1 to form chambers 6.

第3図に示す態様において、選択透過性イオン交換膜は
、同種の膜を使用し°Cもよいし、選択透過性を有する
陰イオン交換膜と陽イオン交換膜とを交互に配列して使
用してもよい。また、セル内において、選択透過性イオ
ン交換膜lは、前記した陽(又は陰)イオン交換膜が、
積層された層に対して陰(又は陽)極側に位置す   
−る如く設けることが好ましい。
In the embodiment shown in Fig. 3, the permselective ion exchange membrane may be of the same type and may be heated at °C, or an anion exchange membrane and a cation exchange membrane having permselectivity may be alternately arranged. You may. In addition, in the cell, the permselective ion exchange membrane l has the above-mentioned cation (or anion) ion exchange membrane
Located on the cathode (or anode) side of the stacked layers.
- It is preferable to provide it as follows.

本発明において、セル透析層への菌類が存在する溶液の
供給は、該溶液が前記した選択透過性イオン交換膜1に
接触し得る室であればいずれの室に行ってもよい。第1
図において、脱塩室4に菌類が存在する溶液を供給した
場合、該溶液に含有されている陰イオンが陰イオン交換
膜2を透過して濃縮室3に移動すると共に、菌類は滅菌
される。
In the present invention, the solution containing fungi may be supplied to the cell dialysis layer in any chamber as long as the solution can come into contact with the permselective ion exchange membrane 1 described above. 1st
In the figure, when a solution containing fungi is supplied to the demineralization chamber 4, the anions contained in the solution pass through the anion exchange membrane 2 and move to the concentration chamber 3, and the fungi are sterilized. .

この場合、濃縮室3には電解質溶液を供給してもよいし
、該濃縮室3にも菌類が存在する溶液を供給して滅菌す
ることも可能である。また、第2図において、脱塩室4
に菌類が存在する溶液を供給した場合には、該溶液に含
有されている陽イオンが陽イオン交換膜5を透過して濃
縮室3に移動すると共に、菌類は滅菌される。この場合
においても、第1図の態様と同様、濃縮室3に電解質溶
液ンは菌類が存在する溶液を供給することができる。
In this case, an electrolyte solution may be supplied to the concentration chamber 3, or a solution containing fungi may also be supplied to the concentration chamber 3 for sterilization. In addition, in FIG. 2, the desalination chamber 4
When a solution containing fungi is supplied, the cations contained in the solution pass through the cation exchange membrane 5 and move to the concentration chamber 3, and the fungi are sterilized. In this case, as in the embodiment shown in FIG. 1, the electrolyte solution containing fungi can be supplied to the concentration chamber 3.

一方、第;3図の態様において、全て同種の膜を使用す
る場合には、全室に菌類が存在する溶液を供給しても、
各室から均等にイオンが透過するため、端部以外の室に
おいて該溶液に含まれる電解質の量の変化はほとんどな
く、また、PHの変化もほとんどない。
On the other hand, in the embodiment shown in Figure 3, when all the same types of membranes are used, even if a solution containing fungi is supplied to all the chambers,
Since ions permeate equally from each chamber, there is almost no change in the amount of electrolyte contained in the solution in the chambers other than the end portions, and there is also almost no change in PH.

従って、目的とする滅菌液の性状に合わせて使用するセ
ル及び供給方法を上記各態様から決定すればよい。また
、本発明において、各室から得られる滅菌液は、夫々別
々に使用してもよいし、適当に混合してもよい。
Therefore, the cell to be used and the supply method may be determined from the above-mentioned aspects depending on the properties of the intended sterilizing liquid. Further, in the present invention, the sterilization liquid obtained from each chamber may be used separately or may be appropriately mixed.

前記した態様のうち、滅菌の効果については第二(図に
示す態様のセルの室6に、菌類が存在する溶液を供給す
る態様が最も大きく推奨される方法である。
Among the above embodiments, the second method (the embodiment shown in the figure in which a solution containing fungi is supplied to the chamber 6 of the cell) is the most recommended method in terms of the sterilization effect.

一方、本発明の方法を簡易に実施する方法として、第4
図に示すセルを用いる方法がある。第4図に示すセルは
、容器7と、電極8,8′間に選択透過性イオン交換膜
lを支持したユニット1とよりなるものである。かかる
セルを使用した滅菌液の製造は、菌類が存在する溶液を
容器7に入れ、これにユニット3−を装入して電極間に
限界電流密度以上の電流を一定時間通ずることによって
行われる。
On the other hand, as a method for easily implementing the method of the present invention, the fourth
There is a method using the cell shown in the figure. The cell shown in FIG. 4 consists of a container 7 and a unit 1 in which a permselective ion exchange membrane 1 is supported between electrodes 8 and 8'. The production of a sterilizing solution using such a cell is carried out by placing a solution containing fungi in the container 7, inserting the unit 3- into the container 7, and passing a current higher than the critical current density between the electrodes for a certain period of time.

本発明において、菌類が存在する溶液を供給したセルに
限界電流密度以上、好ましくは限界電流密度に対して1
.1〜10倍の電流密度で通電することが滅菌効果を発
揮させるために必要である。
In the present invention, a cell to which a solution containing fungi is supplied has a current density greater than or equal to the critical current density, preferably 1% relative to the critical current density.
.. It is necessary to apply current at a current density of 1 to 10 times in order to exhibit a sterilization effect.

また、かかる通電時間はセルの室の厚み、電流密度、菌
類の濃度等によって異なるため、予め実験を行って目的
とする滅菌状態とするために適当な時間を決定すればよ
い。
Further, since the current application time varies depending on the thickness of the cell chamber, the current density, the concentration of fungi, etc., an appropriate time to achieve the desired sterilization state may be determined by conducting experiments in advance.

[作用及び効果コ 本発明の方法によれば、従来の方法に比べて極めて低い
電流密度で滅菌速度を著しく向上させることが可能であ
る。従って、菌類が存在する溶液から、経済的に且つ効
率よく滅菌液を製造することができる。
[Operations and Effects] According to the method of the present invention, it is possible to significantly improve the sterilization rate with an extremely low current density compared to conventional methods. Therefore, a sterilizing solution can be economically and efficiently produced from a solution containing fungi.

本発明の方法において、低電流密度で滅菌速度が飛躍的
に向上する機構は明らかではないが、選択透過性イオン
交換膜の表面活性が電流密度と何らかの形で相乗的に働
いているものと思われる。
In the method of the present invention, the mechanism by which the sterilization rate is dramatically improved at low current density is not clear, but it is thought that the surface activity of the selectively permeable ion exchange membrane works synergistically with the current density in some way. It will be done.

[実施例] 以下、本発明を更に具体的に説明するため実施例を示す
が、本発明はこれらの実施例に限定されるものではない
。尚、実施例及び比較例において、滅菌効果は通電前と
通電後の水中の菌数を下記の方法により算定し、通電後
における生菌率で示した。菌数の算定は、培養液及び試
料液を滅菌生理食塩水で稀釈し、その各稀釈液0.05
m1を平板培地表面にコンラージ棒で均一に塗抹、37
℃で24時間培養した後、生じたコロニーを数えて測定
した。
[Examples] Examples are shown below to further specifically explain the present invention, but the present invention is not limited to these Examples. In the Examples and Comparative Examples, the sterilization effect was determined by calculating the number of bacteria in the water before and after energization by the following method, and expressed as the viable rate after energization. To calculate the number of bacteria, dilute the culture solution and sample solution with sterile physiological saline, and add 0.05 to each dilution.
Spread m1 uniformly on the surface of the plate medium with a Conrage rod, 37
After culturing at ℃ for 24 hours, the resulting colonies were counted and measured.

また、パイロジエンは、下記の2種類の測定により測定
した。
Moreover, pyrodiene was measured by the following two types of measurements.

A法) H水薬局方に規定された発熱性物質試験により
測定した。
Method A) Measured using the pyrogenic substance test specified in the H Hydropharmacopoeia.

B法) エントドキシ検出用試薬としてパイロセードく
商品名:ミドリ十字社製、日本標準商品分類)を使用し
て測定した。
Method B) Measurement was performed using Pyrosade (trade name: Midori Juji Co., Ltd., Japan Standard Product Classification) as a reagent for detecting entodoxia.

実施例及び比較例において使用したイオン交換膜を第1
表に示す。
The ion exchange membrane used in the examples and comparative examples was
Shown in the table.

第  1  表 実施例1 選択透過性イオン交換膜として第1表の記号Cの膜を、
陰イオン交換膜として第1表の記号Bの膜を5対用いて
第1図に示す態様のセルを構成した。尚、選択透過性イ
オン交換膜は陽イオン交換膜が陰極側に面するように配
置した。また、−上記セルの有効通電向積はldm2、
各室の厚みはlcnとした。
Table 1 Example 1 A membrane with symbol C in Table 1 was used as a permselective ion exchange membrane.
A cell of the embodiment shown in FIG. 1 was constructed using five pairs of membranes with symbol B in Table 1 as anion exchange membranes. The permselective ion exchange membrane was arranged so that the cation exchange membrane faced the cathode side. Also, - the effective current direction product of the above cell is ldm2,
The thickness of each chamber was lcn.

上記セルの脱塩室及び濃縮室に夫々、約150個のコロ
ニーを生ずる濃度で大+t!菌を含有する水(0,IN
食塩水)を通過速度BOcc/分で通過させた後、各室
の処理液を混合した。この際、かかるセルに限界電流密
度に対して、第2表に示す倍率の電流密度で通電した。
Large+t! at a concentration that produces about 150 colonies in each of the desalination chamber and concentration chamber of the above cell! Water containing bacteria (0, IN
After passing the saline solution at a passing rate of BOcc/min, the treatment liquids in each chamber were mixed. At this time, current was applied to the cell at a current density that was a multiple of the limiting current density shown in Table 2.

上記処理を行った後の滅菌効果を第2表に併せて示す。The sterilization effect after the above treatment is also shown in Table 2.

第  2  表 No、1は比較例である。Table 2 No. 1 is a comparative example.

実施例2 実施例1のNo、4において、使用する選択透過性イオ
ン交換膜の種類を第3表に示す種類に代 。
Example 2 In Nos. and 4 of Example 1, the types of selectively permeable ion exchange membranes used were changed to those shown in Table 3.

λた以外は、同様な方法で菌類を含有する水を処理した
。結果を第3表に示す。
Water containing fungi was treated in the same manner, except for λ. The results are shown in Table 3.

第  3  表 木No、3は比較例である。Table 3 Tree No. 3 is a comparative example.

実施例3 実施例1のNo、4において、隔膜のすべてを第4表に
示す選択透過性イオン交換膜に代え、第3図に示すよう
にすべての隔膜を同種の選択透過性イオン交換膜とした
以外は、同様にして菌類を含有する水を処理した。結果
を第4表に示す。
Example 3 In No. 4 of Example 1, all of the diaphragms were replaced with the permselective ion exchange membranes shown in Table 4, and all the diaphragms were replaced with the same type of permselective ion exchange membranes as shown in Figure 3. Water containing fungi was treated in the same manner, except that: The results are shown in Table 4.

第  4  表 実施例4 実施例1ONO04において、選択透過性イオン交換膜
の配列をC膜とF膜とを交互に6附記列する態様に代え
た以′外は、同様な方法で(電流密度0.48A/d−
実施した。その結果、生菌率は0%であった。
Table 4 Example 4 In Example 1 ONO04, the same method was used except that the arrangement of the permselective ion exchange membranes was changed to one in which C membranes and F membranes were listed alternately (current density 0). .48A/d-
carried out. As a result, the viable bacteria rate was 0%.

実施例5 実施例3において、菌類としてパイロジエン陽性の水道
水を使用した以外は、同様にして菌類を含む水を処理し
た。結果を第5表に示す。また、参考のため、未処理の
水道水の結果を第5表に併せて示す。
Example 5 Water containing fungi was treated in the same manner as in Example 3, except that pyrodiene-positive tap water was used as the fungi. The results are shown in Table 5. For reference, the results of untreated tap water are also shown in Table 5.

第  5  表 実施例6 実施例4において、被処理液をプランクトンを含む海水
に代え、電流密度を1.5倍(7A/dW?)とした以
外は同様な方法で実施した。その結果、プランクトンの
生存率はゼロであった。
Table 5 Example 6 The same method as in Example 4 was carried out except that the liquid to be treated was replaced with seawater containing plankton and the current density was 1.5 times (7 A/dW?). As a result, the survival rate of plankton was zero.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は、本発明に使用す
るセルの一態様を示す概略図である。図において、1は
選択透過性イオン交換膜、2は陰イオン交換膜、3は濃
縮室、4は脱塩室、5は陽イオン交換膜、6は室、7は
容器、8.8′は電極、1はユニットを夫々示す。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are schematic diagrams showing one embodiment of a cell used in the present invention. In the figure, 1 is a permselective ion exchange membrane, 2 is an anion exchange membrane, 3 is a concentration chamber, 4 is a desalination chamber, 5 is a cation exchange membrane, 6 is a chamber, 7 is a container, and 8.8' is a container. Electrode 1 indicates a unit, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)同種電荷のイオンに対する電価選択透過性を有す
るイオン交換膜を菌類が存在する溶液に接触させ、該イ
オン交換膜を挟んで電極を対立させて限界電流密度以上
の電流を通ずることを特徴とする滅菌液の製造方法。
(1) An ion exchange membrane that has charge-selective permeability to ions of the same charge is brought into contact with a solution containing fungi, and electrodes are opposed to each other with the ion exchange membrane in between to pass a current higher than the critical current density. Characteristic method for producing sterile liquid.
JP4470385A 1985-03-08 1985-03-08 Production of sterilized liquid Granted JPS61204083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4470385A JPS61204083A (en) 1985-03-08 1985-03-08 Production of sterilized liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4470385A JPS61204083A (en) 1985-03-08 1985-03-08 Production of sterilized liquid

Publications (2)

Publication Number Publication Date
JPS61204083A true JPS61204083A (en) 1986-09-10
JPH0457395B2 JPH0457395B2 (en) 1992-09-11

Family

ID=12698773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4470385A Granted JPS61204083A (en) 1985-03-08 1985-03-08 Production of sterilized liquid

Country Status (1)

Country Link
JP (1) JPS61204083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298396A (en) * 1989-04-28 1990-12-10 Asea Brown Boveri Ag Method and apparatus for removing nitrate from water stream in water-treatment field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298396A (en) * 1989-04-28 1990-12-10 Asea Brown Boveri Ag Method and apparatus for removing nitrate from water stream in water-treatment field

Also Published As

Publication number Publication date
JPH0457395B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JP4972049B2 (en) Desalination method
Korngold et al. Fouling of anionselective membranes in electrodialysis
Zabolotskii et al. Dissociation of water molecules in systems with ion-exchange membranes
Dufton et al. How electrodialysis configuration influences acid whey deacidification and membrane scaling
Venugopal et al. Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell
US4110175A (en) Electrodialysis method
CN103237600A (en) Anion exchange membranes and process for making same
Myronchuk et al. Electrodialytic whey demineralization involving polymer-inorganic membranes, anion exchange resin and graphene-containing composite
Sata et al. Modification of the transport properties of ion exchange membranes. XII. Ionic composition in cation exchange membranes with and without a cationic polyelectrolyte layer at equilibrium and during electrodialysis
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
Ignatov et al. Studying electrochemically activated naCl solutions of anolyte and catholyte by methods of non-Equilibrium energy spectrum (NES) and differential non-equilibrium energy spectrum (DNES)
JP3965220B2 (en) Method for producing organic acid
JP4480251B2 (en) Disinfection of electric regenerative deionized water purifier
JP6148675B2 (en) Desalination system and method
Pismenskaya et al. How Chemical Nature of Fixed Groups of Anion-Exchange Membranes Affects the Performance of Electrodialysis of Phosphate-Containing Solutions?
JPS61204083A (en) Production of sterilized liquid
Luo et al. On-line construction of electrodialyzer with mono-cation permselectivity and its application in reclamation of high salinity wastewater
JPS61204084A (en) Production of sterilized liquid
Rehman et al. Improving groundwater quality for irrigation using monovalent selective electrodialysis
JP3151042B2 (en) Method for producing acid and alkali
JP3324853B2 (en) Method for producing acid aqueous solution and alkaline aqueous solution
RU2412748C2 (en) Method of concentrating basic amino acids through electrodialysis
JPH06338A (en) Production of acid and alkali
Madhumala et al. Electromembrane Processes: Recent Advances, Applications, and Future Perspectives
JPH07265863A (en) Nitrate ion removing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees